0231_0321_1302_2013_2031

Counting sequence:
1, 1, 2, 6, 19, 59, 181, 553, 1688, 5152, 15725, 47997, 146501, 447165, 1364882, 4166030, 12715975, 38812975, 118468857, 361602533, 1103719536, 3368883520, 10282844329, 31386329289, 95800503705, 292411910473, 892528975106, 2724266498294, 8315279571563, 25380730701843, 77469613067789, 236460526663921, 721748547023880, 2202993338805600, 6724197327218549, 20524269819121317, 62646235841853501, 191215127248855653, 583645998797080658, 1781462883260876990, 5437559772494119487, 16597065567442702631, 50659228951085532721, 154627181985274899981, 471968600860337121248, 1440589923052966487680, 4397113118581940119697, 13421309887154135915729, 40965868793731060425073, 125040135436514800440785, 381660048483447960607618, 1164941097511401577023846, 3555750113388993486697603, 10853217296458284016159659, 33127278894149603565153445, 101114404784734963789158649, 308631532569880037947871864, 942036133221773544440171168, 2875377214071603667482222525, 8776514861405829000397535245, 26788559335978385037091345269, 81766728892917826691612946509, 249576614777807755322659972754, 761782787293883370216198586734, 2325189864178088599933905773943, 7097177823723622115778640282079, 21662718317138030418635503779241, 66121122584675138697422292857461, 201821525251464552133716565866064, 616019911075556414558378025173952, 1880277786864970032250997906876857, 5739172536817886024026279844843033, 17517678311928098551485842224607625, 53469215548334292548422907389075353, 163204105044417844571485100789355394, 498147946069486386664697960835038550, 1520497147456620111495822383196695643, 4641013967166355578537618557670742275, 14165768531339979824234492181882237565, 43238180169930338947989811015351761985, 131975912233158036430751589898957030888, 402830122390007484457574545107443579872, 1229558521391895808362277902914785464389, 3752981898567491119024377787352162879925, 11455227942327435087441429030563252157421, 34964796195997274477150157305303963569781, 106723059478398688454638620032440883271250, 325750831224170421506128386001203805255582, 994289374403813055748039112938055823365999, 3034869800138738232950921451053915841267031, 9263334136821912453014207085433936778241377, 28274477978095605534710192374575203394419997, 86302198876320497835546187354937059066321856, 263420231371133912971005093747076541923294464, 804037662992396070830396020008928927272453665, 2454164435834278149943278991169061286714351265, 7490846953236244885117474092004395424106365921, 22864314736813279003611064488257474378205704353, 69788755750536777429922231697025640167776173314, 213016243227541550858799012314499198823201931462, 650189552611792116030546828258924270213585571827

Generating function in Maple syntax:
-(x-1)*(x^2+2*x-1)/(x^4-3*x^2+4*x-1)

Generating function in latex syntax:
-\frac{\left(x -1\right) \left(x^{2}+2 x -1\right)}{x^{4}-3 x^{2}+4 x -1}

Generating function in sympy syntax:
(1 - x)*(x**2 + 2*x - 1)/(x**4 - 3*x**2 + 4*x - 1)

Implicit equation for the generating function in Maple syntax:
(x^4-3*x^2+4*x-1)*F(x)+(x-1)*(x^2+2*x-1) = 0

Implicit equation for the generating function in latex syntax:
\left(x^{4}-3 x^{2}+4 x -1\right) F \! \left(x \right)+\left(x -1\right) \left(x^{2}+2 x -1\right) = 0

Explicit closed form in Maple syntax:
-247/51228288*((((81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-3/2*(81+6*61^(1/2)*3^(1/2))^(1/3)-27/2*(81+6*61^(1/2)*3^(1/2))^(2/3)-54/19)*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2)+(-78/19*61^(1/2)*3^(1/2)+1053/19)*(81+6*61^(1/2)*3^(1/2))^(2/3)+117/19*(81+6*61^(1/2)*3^(1/2))^(1/3)+135/19)*(-27*(81+6*61^(1/2)*3^(1/2))^(2/3)+2*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)+36-3*(81+6*61^(1/2)*3^(1/2))^(1/3)+6*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2))^(1/2)-9882/19+((15/38*61^(1/2)*3^(1/2)-183/38)*(81+6*61^(1/2)*3^(1/2))^(2/3)+39/38*(81+6*61^(1/2)*3^(1/2))^(1/3)*61^(1/2)*3^(1/2)-549/38*(81+6*61^(1/2)*3^(1/2))^(1/3)+549/19)*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2))*((((((263/793*I+229/793*3^(1/2))*61^(1/2)-51/13-19/13*I*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(2/3)+((-3/61*3^(1/2)-147/793*I)*61^(1/2)+3/13+I*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+6/61*I*61^(1/2)-54/13)*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2)+((-120/793*3^(1/2)+252/793*I)*61^(1/2)-12/13*I*3^(1/2)+24/13)*(81+6*61^(1/2)*3^(1/2))^(2/3)+((-2412/793*I-24/61*3^(1/2))*61^(1/2)+180/13*I*3^(1/2)+72/13)*(81+6*61^(1/2)*3^(1/2))^(1/3)-36+324/793*I*61^(1/2))*(-27*(81+6*61^(1/2)*3^(1/2))^(2/3)+2*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)+36-3*(81+6*61^(1/2)*3^(1/2))^(1/3)+6*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2))^(1/2)+(((-918/793*3^(1/2)-750/793*I)*61^(1/2)+51/13*I*3^(1/2)+207/13)*(81+6*61^(1/2)*3^(1/2))^(2/3)+((36/61*3^(1/2)+1584/793*I)*61^(1/2)-123/13*I*3^(1/2)-81/13)*(81+6*61^(1/2)*3^(1/2))^(1/3)+594/13-36/61*I*61^(1/2))*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2)+((2268/793*3^(1/2)-6804/793*I)*61^(1/2)+36*I*3^(1/2)-36)*(81+6*61^(1/2)*3^(1/2))^(2/3)+4752/13+((4140/793*3^(1/2)+12420/793*I)*61^(1/2)-972/13-972/13*I*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3))*(1/72*((81+6*61^(1/2)*3^(1/2))^(1/3)+6)*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2)-1/6*I*(27*(81+6*61^(1/2)*3^(1/2))^(2/3)-2*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-36+3*(81+6*61^(1/2)*3^(1/2))^(1/3)+6*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2))^(1/2)-1/36*((122*61^(1/2)*3^(5/6)-2013*3^(1/3))*(81+6*61^(1/2)*3^(1/2))^(1/3)+(244*61^(1/2)*3^(5/6)-3233*3^(1/3))*(81+6*61^(1/2)*3^(1/2))^(2/3)+2379*3^(1/3))^(1/2)*(2*61^(1/2)*3^(1/2)+27)^(2/3)+1/8*((6*61^(1/2)*3^(5/6)-99*3^(1/3))*(81+6*61^(1/2)*3^(1/2))^(1/3)+(12*61^(1/2)*3^(5/6)-159*3^(1/3))*(81+6*61^(1/2)*3^(1/2))^(2/3)+117*3^(1/3))^(1/2)*(2*61^(1/2)*3^(1/2)+27)^(2/3))^(-n)+(((((-263/793*I+229/793*3^(1/2))*61^(1/2)-51/13+19/13*I*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(2/3)+((-3/61*3^(1/2)+147/793*I)*61^(1/2)+3/13-I*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)-6/61*I*61^(1/2)-54/13)*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2)+((-120/793*3^(1/2)-252/793*I)*61^(1/2)+12/13*I*3^(1/2)+24/13)*(81+6*61^(1/2)*3^(1/2))^(2/3)+((2412/793*I-24/61*3^(1/2))*61^(1/2)-180/13*I*3^(1/2)+72/13)*(81+6*61^(1/2)*3^(1/2))^(1/3)-36-324/793*I*61^(1/2))*(-27*(81+6*61^(1/2)*3^(1/2))^(2/3)+2*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)+36-3*(81+6*61^(1/2)*3^(1/2))^(1/3)+6*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2))^(1/2)+(((-918/793*3^(1/2)+750/793*I)*61^(1/2)-51/13*I*3^(1/2)+207/13)*(81+6*61^(1/2)*3^(1/2))^(2/3)+((36/61*3^(1/2)-1584/793*I)*61^(1/2)+123/13*I*3^(1/2)-81/13)*(81+6*61^(1/2)*3^(1/2))^(1/3)+594/13+36/61*I*61^(1/2))*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2)+((2268/793*3^(1/2)+6804/793*I)*61^(1/2)-36*I*3^(1/2)-36)*(81+6*61^(1/2)*3^(1/2))^(2/3)+4752/13+((4140/793*3^(1/2)-12420/793*I)*61^(1/2)-972/13+972/13*I*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3))*(1/72*((81+6*61^(1/2)*3^(1/2))^(1/3)+6)*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2)+1/6*I*(27*(81+6*61^(1/2)*3^(1/2))^(2/3)-2*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-36+3*(81+6*61^(1/2)*3^(1/2))^(1/3)+6*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2))^(1/2)-1/36*((122*61^(1/2)*3^(5/6)-2013*3^(1/3))*(81+6*61^(1/2)*3^(1/2))^(1/3)+(244*61^(1/2)*3^(5/6)-3233*3^(1/3))*(81+6*61^(1/2)*3^(1/2))^(2/3)+2379*3^(1/3))^(1/2)*(2*61^(1/2)*3^(1/2)+27)^(2/3)+1/8*((6*61^(1/2)*3^(5/6)-99*3^(1/3))*(81+6*61^(1/2)*3^(1/2))^(1/3)+(12*61^(1/2)*3^(5/6)-159*3^(1/3))*(81+6*61^(1/2)*3^(1/2))^(2/3)+117*3^(1/3))^(1/2)*(2*61^(1/2)*3^(1/2)+27)^(2/3))^(-n)+((((-114/13+518/793*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(2/3)+6/61*(81+6*61^(1/2)*3^(1/2))^(1/3)*61^(1/2)*3^(1/2)-36/13-30/13*(81+6*61^(1/2)*3^(1/2))^(1/3))*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2)+(-48/13+240/793*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(2/3)-144/13*(81+6*61^(1/2)*3^(1/2))^(1/3)+48/61*(81+6*61^(1/2)*3^(1/2))^(1/3)*61^(1/2)*3^(1/2)-360/13)*(-27*(81+6*61^(1/2)*3^(1/2))^(2/3)+2*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)+36-3*(81+6*61^(1/2)*3^(1/2))^(1/3)+6*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2))^(1/2)+((558/13-2556/793*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(2/3)+270/13*(81+6*61^(1/2)*3^(1/2))^(1/3)-72/61*(81+6*61^(1/2)*3^(1/2))^(1/3)*61^(1/2)*3^(1/2)+324/13)*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2)+(-4536/793*61^(1/2)*3^(1/2)+72)*(81+6*61^(1/2)*3^(1/2))^(2/3)+4752/13-8280/793*(81+6*61^(1/2)*3^(1/2))^(1/3)*61^(1/2)*3^(1/2)+1944/13*(81+6*61^(1/2)*3^(1/2))^(1/3))*(1/72*(-(81+6*61^(1/2)*3^(1/2))^(1/3)-6)*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2)+1/36*((122*61^(1/2)*3^(5/6)-2013*3^(1/3))*(81+6*61^(1/2)*3^(1/2))^(1/3)+(244*61^(1/2)*3^(5/6)-3233*3^(1/3))*(81+6*61^(1/2)*3^(1/2))^(2/3)+2379*3^(1/3))^(1/2)*(2*61^(1/2)*3^(1/2)+27)^(2/3)-1/8*((6*61^(1/2)*3^(5/6)-99*3^(1/3))*(81+6*61^(1/2)*3^(1/2))^(1/3)+(12*61^(1/2)*3^(5/6)-159*3^(1/3))*(81+6*61^(1/2)*3^(1/2))^(2/3)+117*3^(1/3))^(1/2)*(2*61^(1/2)*3^(1/2)+27)^(2/3)-1/6*(-27*(81+6*61^(1/2)*3^(1/2))^(2/3)+2*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)+36-3*(81+6*61^(1/2)*3^(1/2))^(1/3)+6*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2))^(1/2))^(-n)+1296/13*(1/72*(-(81+6*61^(1/2)*3^(1/2))^(1/3)-6)*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2)+1/36*((122*61^(1/2)*3^(5/6)-2013*3^(1/3))*(81+6*61^(1/2)*3^(1/2))^(1/3)+(244*61^(1/2)*3^(5/6)-3233*3^(1/3))*(81+6*61^(1/2)*3^(1/2))^(2/3)+2379*3^(1/3))^(1/2)*(2*61^(1/2)*3^(1/2)+27)^(2/3)-1/8*((6*61^(1/2)*3^(5/6)-99*3^(1/3))*(81+6*61^(1/2)*3^(1/2))^(1/3)+(12*61^(1/2)*3^(5/6)-159*3^(1/3))*(81+6*61^(1/2)*3^(1/2))^(2/3)+117*3^(1/3))^(1/2)*(2*61^(1/2)*3^(1/2)+27)^(2/3)+1/6*(-27*(81+6*61^(1/2)*3^(1/2))^(2/3)+2*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)+36-3*(81+6*61^(1/2)*3^(1/2))^(1/3)+6*((-33+2*61^(1/2)*3^(1/2))*(81+6*61^(1/2)*3^(1/2))^(1/3)+4*(81+6*61^(1/2)*3^(1/2))^(2/3)*61^(1/2)*3^(1/2)-53*(81+6*61^(1/2)*3^(1/2))^(2/3)+39)^(1/2))^(1/2))^(-n))

Explicit closed form in latex syntax:
-\frac{247 \left(\left(\left(\left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-\frac{3 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}}{2}-\frac{27 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}}{2}-\frac{54}{19}\right) \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}+\left(-\frac{78 \sqrt{61}\, \sqrt{3}}{19}+\frac{1053}{19}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+\frac{117 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}}{19}+\frac{135}{19}\right) \sqrt{-27 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+2 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}+36-3 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+6 \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}}-\frac{9882}{19}+\left(\left(\frac{15 \sqrt{61}\, \sqrt{3}}{38}-\frac{183}{38}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+\frac{39 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{61}\, \sqrt{3}}{38}-\frac{549 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}}{38}+\frac{549}{19}\right) \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}\right) \left(\left(\left(\left(\left(\left(\frac{263 \,\mathrm{I}}{793}+\frac{229 \sqrt{3}}{793}\right) \sqrt{61}-\frac{51}{13}-\frac{19 \,\mathrm{I} \sqrt{3}}{13}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(\left(-\frac{3 \sqrt{3}}{61}-\frac{147 \,\mathrm{I}}{793}\right) \sqrt{61}+\frac{3}{13}+\mathrm{I} \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+\frac{6 \,\mathrm{I} \sqrt{61}}{61}-\frac{54}{13}\right) \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}+\left(\left(-\frac{120 \sqrt{3}}{793}+\frac{252 \,\mathrm{I}}{793}\right) \sqrt{61}-\frac{12 \,\mathrm{I} \sqrt{3}}{13}+\frac{24}{13}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(\left(-\frac{2412 \,\mathrm{I}}{793}-\frac{24 \sqrt{3}}{61}\right) \sqrt{61}+\frac{180 \,\mathrm{I} \sqrt{3}}{13}+\frac{72}{13}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}-36+\frac{324 \,\mathrm{I} \sqrt{61}}{793}\right) \sqrt{-27 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+2 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}+36-3 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+6 \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}}+\left(\left(\left(-\frac{918 \sqrt{3}}{793}-\frac{750 \,\mathrm{I}}{793}\right) \sqrt{61}+\frac{51 \,\mathrm{I} \sqrt{3}}{13}+\frac{207}{13}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(\left(\frac{36 \sqrt{3}}{61}+\frac{1584 \,\mathrm{I}}{793}\right) \sqrt{61}-\frac{123 \,\mathrm{I} \sqrt{3}}{13}-\frac{81}{13}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+\frac{594}{13}-\frac{36 \,\mathrm{I} \sqrt{61}}{61}\right) \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}+\left(\left(\frac{2268 \sqrt{3}}{793}-\frac{6804 \,\mathrm{I}}{793}\right) \sqrt{61}+36 \,\mathrm{I} \sqrt{3}-36\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+\frac{4752}{13}+\left(\left(\frac{4140 \sqrt{3}}{793}+\frac{12420 \,\mathrm{I}}{793}\right) \sqrt{61}-\frac{972}{13}-\frac{972 \,\mathrm{I} \sqrt{3}}{13}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{\left(\left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+6\right) \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}}{72}-\frac{\mathrm{I} \sqrt{27 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}-2 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-36+3 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+6 \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}}}{6}-\frac{\sqrt{\left(122 \sqrt{61}\, 3^{\frac{5}{6}}-2013 \,3^{\frac{1}{3}}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(244 \sqrt{61}\, 3^{\frac{5}{6}}-3233 \,3^{\frac{1}{3}}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+2379 \,3^{\frac{1}{3}}}\, \left(2 \sqrt{61}\, \sqrt{3}+27\right)^{\frac{2}{3}}}{36}+\frac{\sqrt{\left(6 \sqrt{61}\, 3^{\frac{5}{6}}-99 \,3^{\frac{1}{3}}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(12 \sqrt{61}\, 3^{\frac{5}{6}}-159 \,3^{\frac{1}{3}}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+117 \,3^{\frac{1}{3}}}\, \left(2 \sqrt{61}\, \sqrt{3}+27\right)^{\frac{2}{3}}}{8}\right)^{-n}+\left(\left(\left(\left(\left(-\frac{263 \,\mathrm{I}}{793}+\frac{229 \sqrt{3}}{793}\right) \sqrt{61}-\frac{51}{13}+\frac{19 \,\mathrm{I} \sqrt{3}}{13}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(\left(-\frac{3 \sqrt{3}}{61}+\frac{147 \,\mathrm{I}}{793}\right) \sqrt{61}+\frac{3}{13}-\mathrm{I} \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}-\frac{6 \,\mathrm{I} \sqrt{61}}{61}-\frac{54}{13}\right) \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}+\left(\left(-\frac{120 \sqrt{3}}{793}-\frac{252 \,\mathrm{I}}{793}\right) \sqrt{61}+\frac{12 \,\mathrm{I} \sqrt{3}}{13}+\frac{24}{13}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(\left(\frac{2412 \,\mathrm{I}}{793}-\frac{24 \sqrt{3}}{61}\right) \sqrt{61}-\frac{180 \,\mathrm{I} \sqrt{3}}{13}+\frac{72}{13}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}-36-\frac{324 \,\mathrm{I} \sqrt{61}}{793}\right) \sqrt{-27 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+2 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}+36-3 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+6 \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}}+\left(\left(\left(-\frac{918 \sqrt{3}}{793}+\frac{750 \,\mathrm{I}}{793}\right) \sqrt{61}-\frac{51 \,\mathrm{I} \sqrt{3}}{13}+\frac{207}{13}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(\left(\frac{36 \sqrt{3}}{61}-\frac{1584 \,\mathrm{I}}{793}\right) \sqrt{61}+\frac{123 \,\mathrm{I} \sqrt{3}}{13}-\frac{81}{13}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+\frac{594}{13}+\frac{36 \,\mathrm{I} \sqrt{61}}{61}\right) \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}+\left(\left(\frac{2268 \sqrt{3}}{793}+\frac{6804 \,\mathrm{I}}{793}\right) \sqrt{61}-36 \,\mathrm{I} \sqrt{3}-36\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+\frac{4752}{13}+\left(\left(\frac{4140 \sqrt{3}}{793}-\frac{12420 \,\mathrm{I}}{793}\right) \sqrt{61}-\frac{972}{13}+\frac{972 \,\mathrm{I} \sqrt{3}}{13}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{\left(\left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+6\right) \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}}{72}+\frac{\mathrm{I} \sqrt{27 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}-2 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-36+3 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+6 \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}}}{6}-\frac{\sqrt{\left(122 \sqrt{61}\, 3^{\frac{5}{6}}-2013 \,3^{\frac{1}{3}}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(244 \sqrt{61}\, 3^{\frac{5}{6}}-3233 \,3^{\frac{1}{3}}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+2379 \,3^{\frac{1}{3}}}\, \left(2 \sqrt{61}\, \sqrt{3}+27\right)^{\frac{2}{3}}}{36}+\frac{\sqrt{\left(6 \sqrt{61}\, 3^{\frac{5}{6}}-99 \,3^{\frac{1}{3}}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(12 \sqrt{61}\, 3^{\frac{5}{6}}-159 \,3^{\frac{1}{3}}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+117 \,3^{\frac{1}{3}}}\, \left(2 \sqrt{61}\, \sqrt{3}+27\right)^{\frac{2}{3}}}{8}\right)^{-n}+\left(\left(\left(\left(-\frac{114}{13}+\frac{518 \sqrt{61}\, \sqrt{3}}{793}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+\frac{6 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{61}\, \sqrt{3}}{61}-\frac{36}{13}-\frac{30 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}}{13}\right) \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}+\left(-\frac{48}{13}+\frac{240 \sqrt{61}\, \sqrt{3}}{793}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}-\frac{144 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}}{13}+\frac{48 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{61}\, \sqrt{3}}{61}-\frac{360}{13}\right) \sqrt{-27 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+2 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}+36-3 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+6 \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}}+\left(\left(\frac{558}{13}-\frac{2556 \sqrt{61}\, \sqrt{3}}{793}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+\frac{270 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}}{13}-\frac{72 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{61}\, \sqrt{3}}{61}+\frac{324}{13}\right) \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}+\left(-\frac{4536 \sqrt{61}\, \sqrt{3}}{793}+72\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+\frac{4752}{13}-\frac{8280 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{61}\, \sqrt{3}}{793}+\frac{1944 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}}{13}\right) \left(\frac{\left(-\left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}-6\right) \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}}{72}+\frac{\sqrt{\left(122 \sqrt{61}\, 3^{\frac{5}{6}}-2013 \,3^{\frac{1}{3}}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(244 \sqrt{61}\, 3^{\frac{5}{6}}-3233 \,3^{\frac{1}{3}}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+2379 \,3^{\frac{1}{3}}}\, \left(2 \sqrt{61}\, \sqrt{3}+27\right)^{\frac{2}{3}}}{36}-\frac{\sqrt{\left(6 \sqrt{61}\, 3^{\frac{5}{6}}-99 \,3^{\frac{1}{3}}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(12 \sqrt{61}\, 3^{\frac{5}{6}}-159 \,3^{\frac{1}{3}}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+117 \,3^{\frac{1}{3}}}\, \left(2 \sqrt{61}\, \sqrt{3}+27\right)^{\frac{2}{3}}}{8}-\frac{\sqrt{-27 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+2 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}+36-3 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+6 \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}}}{6}\right)^{-n}+\frac{1296 \left(\frac{\left(-\left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}-6\right) \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}}{72}+\frac{\sqrt{\left(122 \sqrt{61}\, 3^{\frac{5}{6}}-2013 \,3^{\frac{1}{3}}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(244 \sqrt{61}\, 3^{\frac{5}{6}}-3233 \,3^{\frac{1}{3}}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+2379 \,3^{\frac{1}{3}}}\, \left(2 \sqrt{61}\, \sqrt{3}+27\right)^{\frac{2}{3}}}{36}-\frac{\sqrt{\left(6 \sqrt{61}\, 3^{\frac{5}{6}}-99 \,3^{\frac{1}{3}}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(12 \sqrt{61}\, 3^{\frac{5}{6}}-159 \,3^{\frac{1}{3}}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+117 \,3^{\frac{1}{3}}}\, \left(2 \sqrt{61}\, \sqrt{3}+27\right)^{\frac{2}{3}}}{8}+\frac{\sqrt{-27 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+2 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}+36-3 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+6 \sqrt{\left(-33+2 \sqrt{61}\, \sqrt{3}\right) \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{61}\, \sqrt{3}-53 \left(81+6 \sqrt{61}\, \sqrt{3}\right)^{\frac{2}{3}}+39}}}{6}\right)^{-n}}{13}\right)}{51228288}

Recurrence in maple format:
a(0) = 1
a(1) = 1
a(2) = 2
a(3) = 6
a(n) = 3*a(n+2)-4*a(n+3)+a(n+4), n >= 4

Recurrence in latex format:
a \! \left(0\right) = 1
a \! \left(1\right) = 1
a \! \left(2\right) = 2
a \! \left(3\right) = 6
a \! \left(n \right) = 3 a \! \left(n +2\right)-4 a \! \left(n +3\right)+a \! \left(n +4\right), \quad n \geq 4

Specification 1
Strategy pack name: point_placements
Tree: http://www.permpal.com/tree/20887/
System of equations in Maple syntax:
F[0,x] = F[1,x]+F[2,x]
F[1,x] = 1
F[2,x] = F[3,x]
F[3,x] = F[4,x]*F[5,x]
F[4,x] = x
F[5,x] = F[17,x]+F[6,x]
F[6,x] = F[1,x]+F[7,x]
F[7,x] = F[8,x]
F[8,x] = F[4,x]*F[9,x]
F[9,x] = F[10,x]+F[6,x]
F[10,x] = F[11,x]+F[14,x]
F[11,x] = F[12,x]
F[12,x] = F[13,x]*F[4,x]
F[13,x] = F[1,x]+F[11,x]
F[14,x] = F[15,x]
F[15,x] = F[16,x]*F[4,x]
F[16,x] = F[7,x]
F[17,x] = F[18,x]+F[2,x]
F[18,x] = F[19,x]+F[20,x]+F[24,x]
F[19,x] = 0
F[20,x] = F[21,x]*F[4,x]
F[21,x] = F[22,x]+F[23,x]
F[22,x] = F[7,x]
F[23,x] = F[18,x]
F[24,x] = F[25,x]*F[4,x]
F[25,x] = F[17,x]+F[26,x]
F[26,x] = F[27,x]+F[30,x]
F[27,x] = F[28,x]
F[28,x] = F[29,x]*F[4,x]
F[29,x] = F[2,x]+F[27,x]
F[30,x] = F[31,x]
F[31,x] = F[32,x]*F[4,x]
F[32,x] = F[18,x]
System of equations in latex syntax:
F_{0}\! \left(x \right) = F_{1}\! \left(x \right)+F_{2}\! \left(x \right)
F_{1}\! \left(x \right) = 1
F_{2}\! \left(x \right) = F_{3}\! \left(x \right)
F_{3}\! \left(x \right) = F_{4}\! \left(x \right) F_{5}\! \left(x \right)
F_{4}\! \left(x \right) = x
F_{5}\! \left(x \right) = F_{17}\! \left(x \right)+F_{6}\! \left(x \right)
F_{6}\! \left(x \right) = F_{1}\! \left(x \right)+F_{7}\! \left(x \right)
F_{7}\! \left(x \right) = F_{8}\! \left(x \right)
F_{8}\! \left(x \right) = F_{4}\! \left(x \right) F_{9}\! \left(x \right)
F_{9}\! \left(x \right) = F_{10}\! \left(x \right)+F_{6}\! \left(x \right)
F_{10}\! \left(x \right) = F_{11}\! \left(x \right)+F_{14}\! \left(x \right)
F_{11}\! \left(x \right) = F_{12}\! \left(x \right)
F_{12}\! \left(x \right) = F_{13}\! \left(x \right) F_{4}\! \left(x \right)
F_{13}\! \left(x \right) = F_{1}\! \left(x \right)+F_{11}\! \left(x \right)
F_{14}\! \left(x \right) = F_{15}\! \left(x \right)
F_{15}\! \left(x \right) = F_{16}\! \left(x \right) F_{4}\! \left(x \right)
F_{16}\! \left(x \right) = F_{7}\! \left(x \right)
F_{17}\! \left(x \right) = F_{18}\! \left(x \right)+F_{2}\! \left(x \right)
F_{18}\! \left(x \right) = F_{19}\! \left(x \right)+F_{20}\! \left(x \right)+F_{24}\! \left(x \right)
F_{19}\! \left(x \right) = 0
F_{20}\! \left(x \right) = F_{21}\! \left(x \right) F_{4}\! \left(x \right)
F_{21}\! \left(x \right) = F_{22}\! \left(x \right)+F_{23}\! \left(x \right)
F_{22}\! \left(x \right) = F_{7}\! \left(x \right)
F_{23}\! \left(x \right) = F_{18}\! \left(x \right)
F_{24}\! \left(x \right) = F_{25}\! \left(x \right) F_{4}\! \left(x \right)
F_{25}\! \left(x \right) = F_{17}\! \left(x \right)+F_{26}\! \left(x \right)
F_{26}\! \left(x \right) = F_{27}\! \left(x \right)+F_{30}\! \left(x \right)
F_{27}\! \left(x \right) = F_{28}\! \left(x \right)
F_{28}\! \left(x \right) = F_{29}\! \left(x \right) F_{4}\! \left(x \right)
F_{29}\! \left(x \right) = F_{2}\! \left(x \right)+F_{27}\! \left(x \right)
F_{30}\! \left(x \right) = F_{31}\! \left(x \right)
F_{31}\! \left(x \right) = F_{32}\! \left(x \right) F_{4}\! \left(x \right)
F_{32}\! \left(x \right) = F_{18}\! \left(x \right)
System of equations in sympy syntax:
Eq(F_0(x), F_1(x) + F_2(x))
Eq(F_1(x), 1)
Eq(F_2(x), F_3(x))
Eq(F_3(x), F_4(x)*F_5(x))
Eq(F_4(x), x)
Eq(F_5(x), F_17(x) + F_6(x))
Eq(F_6(x), F_1(x) + F_7(x))
Eq(F_7(x), F_8(x))
Eq(F_8(x), F_4(x)*F_9(x))
Eq(F_9(x), F_10(x) + F_6(x))
Eq(F_10(x), F_11(x) + F_14(x))
Eq(F_11(x), F_12(x))
Eq(F_12(x), F_13(x)*F_4(x))
Eq(F_13(x), F_1(x) + F_11(x))
Eq(F_14(x), F_15(x))
Eq(F_15(x), F_16(x)*F_4(x))
Eq(F_16(x), F_7(x))
Eq(F_17(x), F_18(x) + F_2(x))
Eq(F_18(x), F_19(x) + F_20(x) + F_24(x))
Eq(F_19(x), 0)
Eq(F_20(x), F_21(x)*F_4(x))
Eq(F_21(x), F_22(x) + F_23(x))
Eq(F_22(x), F_7(x))
Eq(F_23(x), F_18(x))
Eq(F_24(x), F_25(x)*F_4(x))
Eq(F_25(x), F_17(x) + F_26(x))
Eq(F_26(x), F_27(x) + F_30(x))
Eq(F_27(x), F_28(x))
Eq(F_28(x), F_29(x)*F_4(x))
Eq(F_29(x), F_2(x) + F_27(x))
Eq(F_30(x), F_31(x))
Eq(F_31(x), F_32(x)*F_4(x))
Eq(F_32(x), F_18(x))
Pack JSON:
{"expansion_strats": [[{"class_module": "tilings.strategies.requirement_insertion", "extra_basis": [], "ignore_parent": false, "maxreqlen": 1, "one_cell_only": false, "strategy_class": "CellInsertionFactory"}, {"class_module": "tilings.strategies.requirement_placement", "dirs": [0, 1, 2, 3], "ignore_parent": false, "partial": false, "point_only": false, "strategy_class": "PatternPlacementFactory"}]], "inferral_strats": [{"class_module": "tilings.strategies.row_and_col_separation", "ignore_parent": true, "inferrable": true, "possibly_empty": false, "strategy_class": "RowColumnSeparationStrategy", "workable": true}, {"class_module": "tilings.strategies.obstruction_inferral", "strategy_class": "ObstructionTransitivityFactory"}], "initial_strats": [{"class_module": "tilings.strategies.factor", "ignore_parent": true, "interleaving": null, "strategy_class": "FactorFactory", "tracked": false, "unions": false, "workable": true}], "iterative": false, "name": "point_placements", "symmetries": [], "ver_strats": [{"class_module": "tilings.strategies.verification", "strategy_class": "BasicVerificationStrategy"}, {"class_module": "tilings.strategies.verification", "ignore_parent": false, "strategy_class": "InsertionEncodingVerificationStrategy"}, {"basis": [], "class_module": "tilings.strategies.verification", "ignore_parent": false, "strategy_class": "OneByOneVerificationStrategy", "symmetry": false}, {"basis": [], "class_module": "tilings.strategies.verification", "ignore_parent": false, "strategy_class": "LocallyFactorableVerificationStrategy", "symmetry": false}]}
Specification JSON:
{"root": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": []}, "rules": [{"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": []}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1], "pos": [[0, 1], [0, 0], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 0]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 1], "pos": [[1, 2], [1, 0], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 1]], [[1, 0], [1, 2]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1], "pos": [[0, 1], [0, 0], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1], "pos": [[0, 1], [0, 0], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": []}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": []}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1], "pos": [[0, 1], [0, 0], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1], "pos": [[0, 1], [0, 0], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 0], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 0]]}, {"patt": [0, 1, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 1]], [[1, 0], [1, 2]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": []}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 2], [1, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [0, 1, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [0, 1, 2], "pos": [[1, 0], [1, 0], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 0]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [1, 2, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 1], "pos": [[1, 2], [1, 0], [1, 2]]}, {"patt": [2, 0, 1], "pos": [[1, 3], [1, 0], [1, 3]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 3], [1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 3]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 2]]}, {"patt": [0, 1], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 1]]}, {"patt": [0, 1, 2], "pos": [[1, 0], [1, 0], [1, 3]]}, {"patt": [0, 1, 2], "pos": [[1, 1], [1, 1], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 0]]}, {"patt": [1, 2, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 1], "pos": [[1, 3], [1, 0], [1, 3]]}, {"patt": [2, 1, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 3], [1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[1, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1], "pos": [[0, 1], [0, 0], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}], "ignore_parent": false, "include_empty": true, "indices": [0, 0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 1], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 1], "pos": [[0, 1], [0, 0], [0, 1]]}, {"patt": [2, 0, 1], "pos": [[0, 2], [0, 0], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 2], [1, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [0, 1, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [0, 1, 2], "pos": [[1, 0], [1, 0], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 0]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [1, 2, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 1], "pos": [[1, 2], [1, 0], [1, 2]]}, {"patt": [2, 0, 1], "pos": [[1, 3], [1, 0], [1, 3]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 3], [1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 3]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 1]], [[1, 0], [1, 2], [1, 3]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [0, 1, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 1], "pos": [[0, 2], [0, 0], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 2]]}, {"patt": [0, 1], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 1]]}, {"patt": [0, 1, 2], "pos": [[1, 0], [1, 0], [1, 3]]}, {"patt": [0, 1, 2], "pos": [[1, 1], [1, 1], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 0]]}, {"patt": [1, 2, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 1], "pos": [[1, 3], [1, 0], [1, 3]]}, {"patt": [2, 1, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 3], [1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[1, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 2]], [[1, 0], [1, 1], [1, 3]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 1], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 1], "pos": [[0, 1], [0, 0], [0, 1]]}, {"patt": [2, 0, 1], "pos": [[0, 2], [0, 0], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 1], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 1], "pos": [[0, 1], [0, 0], [0, 1]]}, {"patt": [2, 0, 1], "pos": [[0, 2], [0, 0], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1], "pos": [[0, 1], [0, 0], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [0, 1, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 1], "pos": [[0, 2], [0, 0], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [0, 1, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 1], "pos": [[0, 2], [0, 0], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [0, 1, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 1], "pos": [[0, 2], [0, 0], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [0, 1, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 1], "pos": [[0, 2], [0, 0], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 2]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[1, 0]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 0]], [[1, 1]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": []}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 0]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [0, 1], "pos": [[1, 1], [1, 2]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 1]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[1, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 0]], [[1, 1], [1, 2]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 2]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 1]], [[1, 0], [1, 2]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 1], "pos": [[0, 2], [0, 0], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 2]]}, {"patt": [0, 1], "pos": [[1, 2], [1, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [0, 1, 2], "pos": [[1, 0], [1, 0], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 0]]}, {"patt": [1, 2, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 1], "pos": [[1, 3], [1, 0], [1, 3]]}, {"patt": [2, 1, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 3], [1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 0]]}], [{"patt": [0], "pos": [[1, 3]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 1]], [[1, 0], [1, 2], [1, 3]]], "strategy_class": "FactorStrategy", "workable": true}}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 0]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 1], "pos": [[1, 2], [1, 0], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": false, "include_empty": true, "indices": [0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 0], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 0]]}, {"patt": [0, 1, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": false, "include_empty": true, "indices": [0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1], "pos": [[0, 1], [0, 0], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 1], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 1], "pos": [[0, 1], [0, 0], [0, 1]]}, {"patt": [2, 0, 1], "pos": [[0, 2], [0, 0], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 1], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 1], "pos": [[0, 1], [0, 0], [0, 1]]}, {"patt": [2, 0, 1], "pos": [[0, 2], [0, 0], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[1, 0]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": false, "include_empty": true, "indices": [0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 0]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [0, 1], "pos": [[1, 1], [1, 2]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 1]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[1, 2]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}], "ignore_parent": false, "include_empty": true, "indices": [0, 0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 2]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}], "ignore_parent": false, "include_empty": true, "indices": [0, 0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 2]]}, {"patt": [0, 1], "pos": [[1, 2], [1, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [0, 1, 2], "pos": [[1, 0], [1, 0], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 0]]}, {"patt": [1, 2, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 1], "pos": [[1, 3], [1, 0], [1, 3]]}, {"patt": [2, 1, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[1, 3], [1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 0]]}], [{"patt": [0], "pos": [[1, 3]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [0, 1, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 1], "pos": [[0, 2], [0, 0], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 2]]}], "ignore_parent": false, "include_empty": true, "indices": [0, 0, 0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 1], "pos": [[0, 1], [0, 0], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 1], "pos": [[0, 2], [0, 0], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 1, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 1], "pos": [[0, 2], [0, 0], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 3, 0, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 1, 3], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}], "requirements": []}, "rule_class": "VerificationRule", "strategy": {"class_module": "tilings.strategies.verification", "strategy_class": "BasicVerificationStrategy"}}, {"class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "VerificationRule", "strategy": {"class_module": "tilings.strategies.verification", "strategy_class": "BasicVerificationStrategy"}}, {"class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, "rule_class": "VerificationRule", "strategy": {"class_module": "comb_spec_searcher.strategies.strategy", "strategy_class": "EmptyStrategy"}}]}