0231_0321_1032_2031_2103
Counting sequence:
1, 1, 2, 6, 19, 57, 163, 457, 1280, 3602, 10171, 28749, 81241, 229477, 648046, 1830030, 5168055, 14595229, 41219259, 116409685, 328758020, 928458634, 2622095607, 7405162713, 20913216433, 59061860329, 166798989978, 471063762294, 1330350158043, 3757095474817, 10610564702739, 29965723365825, 84627407065992, 238999671095778, 674968603543987, 1906206036057125, 5383393290419593, 15203457953258381, 42936698337493510, 121259260217291070, 342453163793137535, 967135781478154085, 2731327138148930091, 7713651049265121805, 21784432805126503436, 61522294644945467034, 173747591789006264303, 490687576377014213809, 1385770560222409505121, 3913610488690266082385, 11052585108120699464242, 31214051047050751748710, 88152859556089644005283, 248956043424229360724169, 703086795704124941001347, 1985615755674335698754873, 5607657480231400091012624, 15836811490708505197114162, 44725377588840800992971179, 126310741378591176854678781, 356719255324745357536397753, 1007425225524079289426290485, 2845110180829194923214182302, 8034990325805036499490811758, 22691940006683496897608517959, 64085222307387417790810450989, 180985659092067439890776642715, 511128893957415996839807563333, 1443499709030714331106007349012, 4076645704449955886513935624490, 11513019431621279522292360574183, 32514382176553043062161802344329, 91825177105088575592324972690705, 259327183416737852774364087997753, 732376350136455588419988760773322, 2068333566779396597797398719644374, 5841264184280810684461558427513963, 16496549598472459355180335216427793, 46588570567856941083438636516990451, 131572659761358133175751984086567985, 371579651096267294868847932164878488, 1049393068128689178132340085476425218, 2963633256524165071528701320342788003, 8369716120612810949828259906167305941, 23637252613977327957143256604631197161, 66754917739799026641492083426470927197, 188525253557270674105171682970627676214, 532421766548643814588762895058421680926, 1503633768664655072849096569486971377935, 4246472725795497347925828944969929262837, 11992634767001372419612118689507286939659, 33868883174740620852708885065985176367613, 95650477963404907214409290815687170293788, 270130369738649463203247166424712030206778, 762886064020060118850021653252690274142175, 2154497279365879100212052849273779389330785, 6084602597581225499448774877536016416721601, 17183771418541213182590261415031831126583969, 48529381406446417426473991027465663594182754, 137053781869514620802310439405297337688302278, 387059108943048468418464358731247926372288307
Generating function in Maple syntax:
-(x-1)^4/(x^5-3*x^4+9*x^3-9*x^2+5*x-1)
Generating function in latex syntax:
-\frac{\left(x -1\right)^{4}}{x^{5}-3 x^{4}+9 x^{3}-9 x^{2}+5 x -1}
Generating function in sympy syntax:
-(x - 1)**4/(x**5 - 3*x**4 + 9*x**3 - 9*x**2 + 5*x - 1)
Implicit equation for the generating function in Maple syntax:
(x^5-3*x^4+9*x^3-9*x^2+5*x-1)*F(x)+(x-1)^4 = 0
Implicit equation for the generating function in latex syntax:
\left(x^{5}-3 x^{4}+9 x^{3}-9 x^{2}+5 x -1\right) F \! \left(x \right)+\left(x -1\right)^{4} = 0
Explicit closed form in Maple syntax:
-2279169/420414016*((((RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-38/471)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-38/471*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-28/157)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)+(-38/471*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-28/157)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-28/157*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+73/157)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)+((-38/471*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-28/157)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-28/157*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+73/157)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)+(-28/157*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+73/157)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+73/157*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+619/471)*((((-1+4733/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(2921/1613-1363/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)+1174/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-1570/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^3+((-1+4733/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^3+(30869/4839-7709/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(-75412/4839+22204/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)-5092/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+3300/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^2+((2921/1613-1363/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^3+(-75412/4839+22204/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(54560/1613-4832/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)+5277/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-29045/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)+(1174/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-1570/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^3+(-5092/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+3300/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(5277/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-29045/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)+18425/4839-13475/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^(-n+1)+(((-4733/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2+1363/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-1174/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(-6334/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+1363/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2+2617/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)-327/1613+2617/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-1174/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^2+((-6334/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+1363/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2+2617/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(-6334/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2+276/1613+19970/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)+276/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-15125/4839+2617/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)+(-327/1613+2617/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-1174/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(276/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-15125/4839+2617/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)+32204/4839-15125/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-327/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)^(-n+1)+(((-4733/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+1)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-7589/4839+RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^4+((6346/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-22106/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+68750/4839-22106/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^3+((-19038/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+22106/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-68750/1613+22106/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^2+((53686/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-14)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+414502/4839-14*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)+(655/4839+185/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+655/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-28285/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^(-n+1)+(((-1+4733/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(2921/1613-1363/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)+1174/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-1570/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^2+((2921/1613-1363/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(6334/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-50170/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)+2057/1613-2617/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)+(1174/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-1570/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(2057/1613-2617/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)+327/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+1531/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^(-n+2)+(((-4733/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+1)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-7589/4839+RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^3+((6346/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-22106/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+68750/4839-22106/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^2+((-5290/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+8414/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-47226/1613+8414/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)+(-1243/1613+825/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-1243/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+6721/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^(-n+2)+(((-4733/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+1)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-7589/4839+RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^2+((1363/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-2921/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+15851/1613-2921/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)+(1570/4839-1174/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+1570/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-1730/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^(-n+3)+(((-32462/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+14702/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-67646/4839+14702/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)+(-67646/4839+14702/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-67646/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+385562/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^(-n+1)+(((13748/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-13692/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+21524/1613-13692/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)+(21524/1613-13692/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+21524/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-131228/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^(-n+2)+(((-4983/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+13343/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-21197/4839+13343/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)+(-21197/4839+13343/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-21197/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+44253/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^(-n+3)+(((4733/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-1)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+7589/4839-RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)+(7589/4839-RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+7589/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-45983/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^(-n+4)+(((7589/4839-RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(-15851/1613+2921/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)-1570/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+1730/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^3-((-7589/4839+RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(15851/1613-2921/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)+1570/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-1730/1613)*(RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)-3)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^2+((-15851/1613+2921/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^3+(49283/1613-27859/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(-398870/4839+22982/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)-18292/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+51484/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)+(-1570/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+1730/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^3+(1570/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-5190/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(-18292/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+51484/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)-20156/1613+12284/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^(-n)+(((RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2-2921/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+1570/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(50170/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-2921/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2-2057/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)-1531/1613-2057/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+1570/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^2+((50170/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-2921/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2-2057/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(50170/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2-4372/4839-31302/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)-4372/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+26063/4839-2057/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)+(-1531/1613-2057/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+1570/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^2+(-4372/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+26063/4839-2057/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)-33932/1613+26063/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-1531/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)^2)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)^(-n)+(((-7589/4839+RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-7589/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+45983/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^4+((-3*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+7589/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-45983/1613+7589/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^3+((9*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-22767/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+137949/1613-22767/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^2+((-4877/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)+44677/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)-375967/4839+44677/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)+(4774/4839-4162/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+4774/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-20434/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)^(-n)+(((9640/1613*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-23624/4839)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+37880/4839-23624/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 2)+(37880/4839-23624/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3))*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 4)+37880/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 3)-80920/1613)*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 1)^(-n)-82016/4839*RootOf(_Z^5-3*_Z^4+9*_Z^3-9*_Z^2+5*_Z-1,index = 5)^(-n))
Explicit closed form in latex syntax:
-\frac{2279169 \left(\left(\left(\left(\mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)-\frac{38}{471}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)-\frac{38 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{471}-\frac{28}{157}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)+\left(-\frac{38 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{471}-\frac{28}{157}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)-\frac{28 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{157}+\frac{73}{157}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)+\left(\left(-\frac{38 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{471}-\frac{28}{157}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)-\frac{28 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{157}+\frac{73}{157}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)+\left(-\frac{28 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{157}+\frac{73}{157}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)+\frac{73 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{157}+\frac{619}{471}\right) \left(\left(\left(\left(-1+\frac{4733 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(\frac{2921}{1613}-\frac{1363 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)+\frac{1174 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}-\frac{1570}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{3}+\left(\left(-1+\frac{4733 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{3}+\left(\frac{30869}{4839}-\frac{7709 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(-\frac{75412}{4839}+\frac{22204 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)-\frac{5092 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}+\frac{3300}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{2}+\left(\left(\frac{2921}{1613}-\frac{1363 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{3}+\left(-\frac{75412}{4839}+\frac{22204 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(\frac{54560}{1613}-\frac{4832 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)+\frac{5277 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{1613}-\frac{29045}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)+\left(\frac{1174 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}-\frac{1570}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{3}+\left(-\frac{5092 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}+\frac{3300}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(\frac{5277 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{1613}-\frac{29045}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)+\frac{18425}{4839}-\frac{13475 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{-n +1}+\left(\left(\left(-\frac{4733 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{4839}+\frac{1363 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}-\frac{1174}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(-\frac{6334 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}+\frac{1363 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{1613}+\frac{2617}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)-\frac{327}{1613}+\frac{2617 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}-\frac{1174 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{2}+\left(\left(-\frac{6334 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}+\frac{1363 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{1613}+\frac{2617}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(-\frac{6334 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{4839}+\frac{276}{1613}+\frac{19970 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)+\frac{276 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}-\frac{15125}{4839}+\frac{2617 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)+\left(-\frac{327}{1613}+\frac{2617 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}-\frac{1174 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(\frac{276 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}-\frac{15125}{4839}+\frac{2617 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)+\frac{32204}{4839}-\frac{15125 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}-\frac{327 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)^{-n +1}+\left(\left(\left(-\frac{4733 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}+1\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)-\frac{7589}{4839}+\mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{4}+\left(\left(\frac{6346 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}-\frac{22106}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)+\frac{68750}{4839}-\frac{22106 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{3}+\left(\left(-\frac{19038 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}+\frac{22106}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)-\frac{68750}{1613}+\frac{22106 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{2}+\left(\left(\frac{53686 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}-14\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)+\frac{414502}{4839}-14 \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)+\left(\frac{655}{4839}+\frac{185 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)+\frac{655 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}-\frac{28285}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{-n +1}+\left(\left(\left(-1+\frac{4733 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(\frac{2921}{1613}-\frac{1363 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)+\frac{1174 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}-\frac{1570}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{2}+\left(\left(\frac{2921}{1613}-\frac{1363 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(\frac{6334 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}-\frac{50170}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)+\frac{2057}{1613}-\frac{2617 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)+\left(\frac{1174 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}-\frac{1570}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(\frac{2057}{1613}-\frac{2617 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)+\frac{327 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{1613}+\frac{1531}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{-n +2}+\left(\left(\left(-\frac{4733 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}+1\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)-\frac{7589}{4839}+\mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{3}+\left(\left(\frac{6346 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}-\frac{22106}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)+\frac{68750}{4839}-\frac{22106 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{2}+\left(\left(-\frac{5290 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}+\frac{8414}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)-\frac{47226}{1613}+\frac{8414 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)+\left(-\frac{1243}{1613}+\frac{825 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)-\frac{1243 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}+\frac{6721}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{-n +2}+\left(\left(\left(-\frac{4733 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}+1\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)-\frac{7589}{4839}+\mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{2}+\left(\left(\frac{1363 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}-\frac{2921}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)+\frac{15851}{1613}-\frac{2921 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)+\left(\frac{1570}{4839}-\frac{1174 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)+\frac{1570 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}-\frac{1730}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{-n +3}+\left(\left(\left(-\frac{32462 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}+\frac{14702}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)-\frac{67646}{4839}+\frac{14702 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)+\left(-\frac{67646}{4839}+\frac{14702 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)-\frac{67646 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}+\frac{385562}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{-n +1}+\left(\left(\left(\frac{13748 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}-\frac{13692}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)+\frac{21524}{1613}-\frac{13692 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)+\left(\frac{21524}{1613}-\frac{13692 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)+\frac{21524 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}-\frac{131228}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{-n +2}+\left(\left(\left(-\frac{4983 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}+\frac{13343}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)-\frac{21197}{4839}+\frac{13343 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)+\left(-\frac{21197}{4839}+\frac{13343 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)-\frac{21197 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}+\frac{44253}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{-n +3}+\left(\left(\left(\frac{4733 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}-1\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)+\frac{7589}{4839}-\mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)+\left(\frac{7589}{4839}-\mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)+\frac{7589 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}-\frac{45983}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{-n +4}+\left(\left(\left(\frac{7589}{4839}-\mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(-\frac{15851}{1613}+\frac{2921 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)-\frac{1570 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}+\frac{1730}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{3}-\left(\left(-\frac{7589}{4839}+\mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(\frac{15851}{1613}-\frac{2921 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)+\frac{1570 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}-\frac{1730}{1613}\right) \left(\mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)-3\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{2}+\left(\left(-\frac{15851}{1613}+\frac{2921 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{3}+\left(\frac{49283}{1613}-\frac{27859 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(-\frac{398870}{4839}+\frac{22982 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)-\frac{18292 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}+\frac{51484}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)+\left(-\frac{1570 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}+\frac{1730}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{3}+\left(\frac{1570 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{1613}-\frac{5190}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(-\frac{18292 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}+\frac{51484}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)-\frac{20156}{1613}+\frac{12284 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{-n}+\left(\left(\left(\mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}-\frac{2921 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}+\frac{1570}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(\frac{50170 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}-\frac{2921 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{1613}-\frac{2057}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)-\frac{1531}{1613}-\frac{2057 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}+\frac{1570 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{2}+\left(\left(\frac{50170 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}-\frac{2921 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{1613}-\frac{2057}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(\frac{50170 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{4839}-\frac{4372}{4839}-\frac{31302 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)-\frac{4372 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}+\frac{26063}{4839}-\frac{2057 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)+\left(-\frac{1531}{1613}-\frac{2057 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}+\frac{1570 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{2}+\left(-\frac{4372 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}+\frac{26063}{4839}-\frac{2057 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)-\frac{33932}{1613}+\frac{26063 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}-\frac{1531 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)^{2}}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)^{-n}+\left(\left(\left(-\frac{7589}{4839}+\mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)-\frac{7589 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}+\frac{45983}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{4}+\left(\left(-3 \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)+\frac{7589}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)-\frac{45983}{1613}+\frac{7589 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{3}+\left(\left(9 \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)-\frac{22767}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)+\frac{137949}{1613}-\frac{22767 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{2}+\left(\left(-\frac{4877 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}+\frac{44677}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)-\frac{375967}{4839}+\frac{44677 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)+\left(\frac{4774}{4839}-\frac{4162 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)+\frac{4774 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}-\frac{20434}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)^{-n}+\left(\left(\left(\frac{9640 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{1613}-\frac{23624}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)+\frac{37880}{4839}-\frac{23624 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =2\right)+\left(\frac{37880}{4839}-\frac{23624 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =4\right)+\frac{37880 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =3\right)}{4839}-\frac{80920}{1613}\right) \mathit{RootOf}\! \left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =1\right)^{-n}-\frac{82016 \mathit{RootOf}\left(\textit{\_Z}^{5}-3 \textit{\_Z}^{4}+9 \textit{\_Z}^{3}-9 \textit{\_Z}^{2}+5 \textit{\_Z} -1, \mathit{index} =5\right)^{-n}}{4839}\right)}{420414016}
Recurrence in maple format:
a(0) = 1
a(1) = 1
a(2) = 2
a(3) = 6
a(4) = 19
a(n+5) = a(n)-3*a(n+1)+9*a(n+2)-9*a(n+3)+5*a(n+4), n >= 5
Recurrence in latex format:
a \! \left(0\right) = 1
a \! \left(1\right) = 1
a \! \left(2\right) = 2
a \! \left(3\right) = 6
a \! \left(4\right) = 19
a \! \left(n +5\right) = a \! \left(n \right)-3 a \! \left(n +1\right)+9 a \! \left(n +2\right)-9 a \! \left(n +3\right)+5 a \! \left(n +4\right), \quad n \geq 5
Specification 1
Strategy pack name: point_placements
Tree: http://www.permpal.com/tree/20791/
System of equations in Maple syntax:
F[0,x] = F[1,x]+F[2,x]
F[1,x] = 1
F[2,x] = F[3,x]
F[3,x] = F[4,x]*F[5,x]
F[4,x] = x
F[5,x] = F[18,x]+F[6,x]
F[6,x] = F[1,x]+F[7,x]
F[7,x] = F[8,x]
F[8,x] = F[4,x]*F[9,x]
F[9,x] = F[10,x]+F[6,x]
F[10,x] = F[11,x]+F[14,x]
F[11,x] = F[12,x]
F[12,x] = F[13,x]*F[4,x]
F[13,x] = F[1,x]+F[11,x]
F[14,x] = F[15,x]
F[15,x] = F[16,x]*F[4,x]
F[16,x] = F[11,x]+F[17,x]
F[17,x] = F[15,x]
F[18,x] = F[19,x]+F[2,x]
F[19,x] = F[20,x]+F[21,x]+F[34,x]
F[20,x] = 0
F[21,x] = F[22,x]*F[4,x]
F[22,x] = F[23,x]+F[27,x]
F[23,x] = F[11,x]+F[24,x]
F[24,x] = F[25,x]
F[25,x] = F[26,x]*F[4,x]
F[26,x] = F[23,x]
F[27,x] = F[28,x]+F[31,x]
F[28,x] = F[29,x]
F[29,x] = F[30,x]*F[4,x]
F[30,x] = F[2,x]+F[28,x]
F[31,x] = F[32,x]
F[32,x] = F[33,x]*F[4,x]
F[33,x] = F[27,x]
F[34,x] = F[35,x]*F[4,x]
F[35,x] = F[18,x]+F[36,x]
F[36,x] = F[37,x]+F[40,x]
F[37,x] = F[20,x]+F[21,x]+F[38,x]
F[38,x] = F[39,x]*F[4,x]
F[39,x] = F[2,x]+F[37,x]
F[40,x] = 2*F[20,x]+F[41,x]+F[54,x]
F[41,x] = F[4,x]*F[42,x]
F[42,x] = F[43,x]+F[47,x]
F[43,x] = F[17,x]+F[44,x]
F[44,x] = F[45,x]
F[45,x] = F[4,x]*F[46,x]
F[46,x] = F[43,x]
F[47,x] = F[48,x]+F[51,x]
F[48,x] = F[49,x]
F[49,x] = F[4,x]*F[50,x]
F[50,x] = F[28,x]+F[48,x]
F[51,x] = F[52,x]
F[52,x] = F[4,x]*F[53,x]
F[53,x] = F[47,x]
F[54,x] = F[4,x]*F[55,x]
F[55,x] = F[28,x]+F[56,x]
F[56,x] = F[54,x]
System of equations in latex syntax:
F_{0}\! \left(x \right) = F_{1}\! \left(x \right)+F_{2}\! \left(x \right)
F_{1}\! \left(x \right) = 1
F_{2}\! \left(x \right) = F_{3}\! \left(x \right)
F_{3}\! \left(x \right) = F_{4}\! \left(x \right) F_{5}\! \left(x \right)
F_{4}\! \left(x \right) = x
F_{5}\! \left(x \right) = F_{18}\! \left(x \right)+F_{6}\! \left(x \right)
F_{6}\! \left(x \right) = F_{1}\! \left(x \right)+F_{7}\! \left(x \right)
F_{7}\! \left(x \right) = F_{8}\! \left(x \right)
F_{8}\! \left(x \right) = F_{4}\! \left(x \right) F_{9}\! \left(x \right)
F_{9}\! \left(x \right) = F_{10}\! \left(x \right)+F_{6}\! \left(x \right)
F_{10}\! \left(x \right) = F_{11}\! \left(x \right)+F_{14}\! \left(x \right)
F_{11}\! \left(x \right) = F_{12}\! \left(x \right)
F_{12}\! \left(x \right) = F_{13}\! \left(x \right) F_{4}\! \left(x \right)
F_{13}\! \left(x \right) = F_{1}\! \left(x \right)+F_{11}\! \left(x \right)
F_{14}\! \left(x \right) = F_{15}\! \left(x \right)
F_{15}\! \left(x \right) = F_{16}\! \left(x \right) F_{4}\! \left(x \right)
F_{16}\! \left(x \right) = F_{11}\! \left(x \right)+F_{17}\! \left(x \right)
F_{17}\! \left(x \right) = F_{15}\! \left(x \right)
F_{18}\! \left(x \right) = F_{19}\! \left(x \right)+F_{2}\! \left(x \right)
F_{19}\! \left(x \right) = F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{34}\! \left(x \right)
F_{20}\! \left(x \right) = 0
F_{21}\! \left(x \right) = F_{22}\! \left(x \right) F_{4}\! \left(x \right)
F_{22}\! \left(x \right) = F_{23}\! \left(x \right)+F_{27}\! \left(x \right)
F_{23}\! \left(x \right) = F_{11}\! \left(x \right)+F_{24}\! \left(x \right)
F_{24}\! \left(x \right) = F_{25}\! \left(x \right)
F_{25}\! \left(x \right) = F_{26}\! \left(x \right) F_{4}\! \left(x \right)
F_{26}\! \left(x \right) = F_{23}\! \left(x \right)
F_{27}\! \left(x \right) = F_{28}\! \left(x \right)+F_{31}\! \left(x \right)
F_{28}\! \left(x \right) = F_{29}\! \left(x \right)
F_{29}\! \left(x \right) = F_{30}\! \left(x \right) F_{4}\! \left(x \right)
F_{30}\! \left(x \right) = F_{2}\! \left(x \right)+F_{28}\! \left(x \right)
F_{31}\! \left(x \right) = F_{32}\! \left(x \right)
F_{32}\! \left(x \right) = F_{33}\! \left(x \right) F_{4}\! \left(x \right)
F_{33}\! \left(x \right) = F_{27}\! \left(x \right)
F_{34}\! \left(x \right) = F_{35}\! \left(x \right) F_{4}\! \left(x \right)
F_{35}\! \left(x \right) = F_{18}\! \left(x \right)+F_{36}\! \left(x \right)
F_{36}\! \left(x \right) = F_{37}\! \left(x \right)+F_{40}\! \left(x \right)
F_{37}\! \left(x \right) = F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{38}\! \left(x \right)
F_{38}\! \left(x \right) = F_{39}\! \left(x \right) F_{4}\! \left(x \right)
F_{39}\! \left(x \right) = F_{2}\! \left(x \right)+F_{37}\! \left(x \right)
F_{40}\! \left(x \right) = 2 F_{20}\! \left(x \right)+F_{41}\! \left(x \right)+F_{54}\! \left(x \right)
F_{41}\! \left(x \right) = F_{4}\! \left(x \right) F_{42}\! \left(x \right)
F_{42}\! \left(x \right) = F_{43}\! \left(x \right)+F_{47}\! \left(x \right)
F_{43}\! \left(x \right) = F_{17}\! \left(x \right)+F_{44}\! \left(x \right)
F_{44}\! \left(x \right) = F_{45}\! \left(x \right)
F_{45}\! \left(x \right) = F_{4}\! \left(x \right) F_{46}\! \left(x \right)
F_{46}\! \left(x \right) = F_{43}\! \left(x \right)
F_{47}\! \left(x \right) = F_{48}\! \left(x \right)+F_{51}\! \left(x \right)
F_{48}\! \left(x \right) = F_{49}\! \left(x \right)
F_{49}\! \left(x \right) = F_{4}\! \left(x \right) F_{50}\! \left(x \right)
F_{50}\! \left(x \right) = F_{28}\! \left(x \right)+F_{48}\! \left(x \right)
F_{51}\! \left(x \right) = F_{52}\! \left(x \right)
F_{52}\! \left(x \right) = F_{4}\! \left(x \right) F_{53}\! \left(x \right)
F_{53}\! \left(x \right) = F_{47}\! \left(x \right)
F_{54}\! \left(x \right) = F_{4}\! \left(x \right) F_{55}\! \left(x \right)
F_{55}\! \left(x \right) = F_{28}\! \left(x \right)+F_{56}\! \left(x \right)
F_{56}\! \left(x \right) = F_{54}\! \left(x \right)
System of equations in sympy syntax:
Eq(F_0(x), F_1(x) + F_2(x))
Eq(F_1(x), 1)
Eq(F_2(x), F_3(x))
Eq(F_3(x), F_4(x)*F_5(x))
Eq(F_4(x), x)
Eq(F_5(x), F_18(x) + F_6(x))
Eq(F_6(x), F_1(x) + F_7(x))
Eq(F_7(x), F_8(x))
Eq(F_8(x), F_4(x)*F_9(x))
Eq(F_9(x), F_10(x) + F_6(x))
Eq(F_10(x), F_11(x) + F_14(x))
Eq(F_11(x), F_12(x))
Eq(F_12(x), F_13(x)*F_4(x))
Eq(F_13(x), F_1(x) + F_11(x))
Eq(F_14(x), F_15(x))
Eq(F_15(x), F_16(x)*F_4(x))
Eq(F_16(x), F_11(x) + F_17(x))
Eq(F_17(x), F_15(x))
Eq(F_18(x), F_19(x) + F_2(x))
Eq(F_19(x), F_20(x) + F_21(x) + F_34(x))
Eq(F_20(x), 0)
Eq(F_21(x), F_22(x)*F_4(x))
Eq(F_22(x), F_23(x) + F_27(x))
Eq(F_23(x), F_11(x) + F_24(x))
Eq(F_24(x), F_25(x))
Eq(F_25(x), F_26(x)*F_4(x))
Eq(F_26(x), F_23(x))
Eq(F_27(x), F_28(x) + F_31(x))
Eq(F_28(x), F_29(x))
Eq(F_29(x), F_30(x)*F_4(x))
Eq(F_30(x), F_2(x) + F_28(x))
Eq(F_31(x), F_32(x))
Eq(F_32(x), F_33(x)*F_4(x))
Eq(F_33(x), F_27(x))
Eq(F_34(x), F_35(x)*F_4(x))
Eq(F_35(x), F_18(x) + F_36(x))
Eq(F_36(x), F_37(x) + F_40(x))
Eq(F_37(x), F_20(x) + F_21(x) + F_38(x))
Eq(F_38(x), F_39(x)*F_4(x))
Eq(F_39(x), F_2(x) + F_37(x))
Eq(F_40(x), 2*F_20(x) + F_41(x) + F_54(x))
Eq(F_41(x), F_4(x)*F_42(x))
Eq(F_42(x), F_43(x) + F_47(x))
Eq(F_43(x), F_17(x) + F_44(x))
Eq(F_44(x), F_45(x))
Eq(F_45(x), F_4(x)*F_46(x))
Eq(F_46(x), F_43(x))
Eq(F_47(x), F_48(x) + F_51(x))
Eq(F_48(x), F_49(x))
Eq(F_49(x), F_4(x)*F_50(x))
Eq(F_50(x), F_28(x) + F_48(x))
Eq(F_51(x), F_52(x))
Eq(F_52(x), F_4(x)*F_53(x))
Eq(F_53(x), F_47(x))
Eq(F_54(x), F_4(x)*F_55(x))
Eq(F_55(x), F_28(x) + F_56(x))
Eq(F_56(x), F_54(x))
Pack JSON:
{"expansion_strats": [[{"class_module": "tilings.strategies.requirement_insertion", "extra_basis": [], "ignore_parent": false, "maxreqlen": 1, "one_cell_only": false, "strategy_class": "CellInsertionFactory"}, {"class_module": "tilings.strategies.requirement_placement", "dirs": [0, 1, 2, 3], "ignore_parent": false, "partial": false, "point_only": false, "strategy_class": "PatternPlacementFactory"}]], "inferral_strats": [{"class_module": "tilings.strategies.row_and_col_separation", "ignore_parent": true, "inferrable": true, "possibly_empty": false, "strategy_class": "RowColumnSeparationStrategy", "workable": true}, {"class_module": "tilings.strategies.obstruction_inferral", "strategy_class": "ObstructionTransitivityFactory"}], "initial_strats": [{"class_module": "tilings.strategies.factor", "ignore_parent": true, "interleaving": null, "strategy_class": "FactorFactory", "tracked": false, "unions": false, "workable": true}], "iterative": false, "name": "point_placements", "symmetries": [], "ver_strats": [{"class_module": "tilings.strategies.verification", "strategy_class": "BasicVerificationStrategy"}, {"class_module": "tilings.strategies.verification", "ignore_parent": false, "strategy_class": "InsertionEncodingVerificationStrategy"}, {"basis": [], "class_module": "tilings.strategies.verification", "ignore_parent": false, "strategy_class": "OneByOneVerificationStrategy", "symmetry": false}, {"basis": [], "class_module": "tilings.strategies.verification", "ignore_parent": false, "strategy_class": "LocallyFactorableVerificationStrategy", "symmetry": false}]}
Specification JSON:
{"root": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": []}, "rules": [{"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": []}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 2]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 2], [1, 2], [1, 0], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 1]], [[1, 0], [1, 2]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": []}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": []}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 0], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 2]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 1]], [[1, 0], [1, 2]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": []}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 2]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [1, 0, 2], "pos": [[1, 2], [1, 2], [1, 3]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 2], [1, 2], [1, 0], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 3]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 2]]}, {"patt": [0, 1], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 1]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 1], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 1], [1, 3], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 1]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 1], [1, 0], [1, 3]]}, {"patt": [1, 2, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [2, 1, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 3], [1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 3], [1, 3], [1, 0], [1, 3]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[1, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}], "ignore_parent": false, "include_empty": true, "indices": [0, 0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 2]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [1, 0, 2], "pos": [[1, 2], [1, 2], [1, 3]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 2], [1, 2], [1, 0], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 3]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 1]], [[1, 0], [1, 2], [1, 3]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 1], [0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 0], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 2], [0, 2], [0, 0], [0, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 2]]}, {"patt": [0, 1], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 1]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 1], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 1], [1, 3], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 1]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 1], [1, 0], [1, 3]]}, {"patt": [1, 2, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [2, 1, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 3], [1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 3], [1, 3], [1, 0], [1, 3]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[1, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 2]], [[1, 0], [1, 1], [1, 3]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 1], [0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 0], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 2], [0, 2], [0, 0], [0, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 1], [0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 0], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 2], [0, 2], [0, 0], [0, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 1], [0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 0], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 2], [0, 2], [0, 0], [0, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 1], [0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 0], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 2], [0, 2], [0, 0], [0, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 2]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[1, 0]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 0]], [[1, 1]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": []}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 0]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[1, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 0]], [[1, 1], [1, 2]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 0], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 2]]}, {"patt": [1, 0, 2], "pos": [[1, 2], [1, 2], [1, 3]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 3]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 1]], [[1, 0], [1, 2], [1, 3]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 2]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 1]], [[1, 0], [1, 2]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 3]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 3]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 1], [0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 2], [0, 2], [0, 3]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 2], [0, 2], [0, 0], [0, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 3]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[0, 4]]}, {"patt": [0], "pos": [[1, 2]]}, {"patt": [0, 1], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 4]]}, {"patt": [0, 1], "pos": [[1, 1], [1, 4]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 3]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 4]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 1], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 1], [1, 3], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 1]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 1], [1, 0], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 3], [1, 3], [1, 4]]}, {"patt": [1, 2, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [2, 1, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 3], [1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 3], [1, 3], [1, 0], [1, 3]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[1, 0]]}], [{"patt": [0], "pos": [[1, 4]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 2]], [[1, 0], [1, 1], [1, 3], [1, 4]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 2]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [1, 0, 2], "pos": [[1, 2], [1, 2], [1, 3]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 2], [1, 2], [1, 0], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 3]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 2]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 0]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 0]]}], "ignore_parent": false, "include_empty": true, "indices": [0, 0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 2]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 0]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 1]], [[1, 0], [1, 2]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[0, 4]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 3]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 4]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 3]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 3]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 4]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 2]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [1, 0, 2], "pos": [[1, 2], [1, 2], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 2], [1, 2], [1, 4]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 2], [1, 2], [1, 0], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 3]]}], [{"patt": [0], "pos": [[1, 4]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 0]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 0]]}], [{"patt": [0], "pos": [[1, 3]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 1], [0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 0], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 2], [0, 2], [0, 0], [0, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 0]]}], "ignore_parent": false, "include_empty": true, "indices": [0, 0, 0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 3]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 3]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[0, 3]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[0, 4]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 3]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 4]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 3]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 3]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 4]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 2]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [1, 0, 2], "pos": [[1, 2], [1, 2], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 2], [1, 2], [1, 4]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 2], [1, 2], [1, 0], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 3]]}], [{"patt": [0], "pos": [[1, 4]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 1]], [[1, 0], [1, 2], [1, 3], [1, 4]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 0]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 0]]}], [{"patt": [0], "pos": [[1, 3]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 1]], [[1, 0], [1, 2], [1, 3]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 3]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 3]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[0, 3]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 3]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 3]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[0, 3]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 3]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 3]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[0, 3]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 3]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 3]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[0, 3]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 3]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 3]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[0, 3]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[0, 4]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 3]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 4]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 0], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 3]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 3]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 4]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 2]]}, {"patt": [1, 0, 2], "pos": [[1, 2], [1, 2], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 2], [1, 2], [1, 4]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 3]]}], [{"patt": [0], "pos": [[1, 4]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 1]], [[1, 0], [1, 2], [1, 3], [1, 4]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 2]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 3]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 0]]}], [{"patt": [0], "pos": [[1, 3]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 1]], [[1, 0], [1, 2], [1, 3]]], "strategy_class": "FactorStrategy", "workable": true}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 3]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 4]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 3]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 4]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 4], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 4], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 4], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 4], [0, 4]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 1], [0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 2], [0, 2], [0, 3]]}, {"patt": [1, 0, 2], "pos": [[0, 2], [0, 2], [0, 4]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 2], [0, 2], [0, 0], [0, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 3]]}], [{"patt": [0], "pos": [[0, 4]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[0, 4]]}, {"patt": [0], "pos": [[0, 5]]}, {"patt": [0], "pos": [[1, 2]]}, {"patt": [0, 1], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 4]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 5]]}, {"patt": [0, 1], "pos": [[1, 1], [1, 4]]}, {"patt": [0, 1], "pos": [[1, 1], [1, 5]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 3]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 4]]}, {"patt": [1, 0], "pos": [[1, 5], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 5], [1, 3]]}, {"patt": [1, 0], "pos": [[1, 5], [1, 4]]}, {"patt": [1, 0], "pos": [[1, 5], [1, 5]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 1], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 1], [1, 3], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 1]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 1], [1, 0], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 3], [1, 3], [1, 4]]}, {"patt": [1, 0, 2], "pos": [[1, 3], [1, 3], [1, 5]]}, {"patt": [1, 2, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [2, 1, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 3], [1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 3], [1, 3], [1, 0], [1, 3]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[1, 0]]}], [{"patt": [0], "pos": [[1, 4]]}], [{"patt": [0], "pos": [[1, 5]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.factor", "ignore_parent": true, "partition": [[[0, 2]], [[1, 0], [1, 1], [1, 3], [1, 4], [1, 5]]], "strategy_class": "FactorStrategy", "workable": true}}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 2]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 2], [1, 2], [1, 0], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": false, "include_empty": true, "indices": [0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 0], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 2]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": false, "include_empty": true, "indices": [0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[1, 0]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": false, "include_empty": true, "indices": [0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 0]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[1, 2]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}], "ignore_parent": false, "include_empty": true, "indices": [0, 0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 0], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 2]]}, {"patt": [1, 0, 2], "pos": [[1, 2], [1, 2], [1, 3]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 3]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 0]]}], "ignore_parent": false, "include_empty": true, "indices": [0, 0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 2]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 2]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 0]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}], "ignore_parent": false, "include_empty": true, "indices": [0, 0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[0, 4]]}, {"patt": [0], "pos": [[1, 2]]}, {"patt": [0, 1], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 4]]}, {"patt": [0, 1], "pos": [[1, 1], [1, 4]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 3]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 4]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 1], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 1], [1, 3], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 1]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 1], [1, 0], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 3], [1, 3], [1, 4]]}, {"patt": [1, 2, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [2, 1, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 3], [1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 3], [1, 3], [1, 0], [1, 3]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[1, 0]]}], [{"patt": [0], "pos": [[1, 4]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 1]]}], "ignore_parent": false, "include_empty": true, "indices": [0, 0, 0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 2]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 3]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 3]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 1], [0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 2], [0, 2], [0, 3]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 2], [0, 2], [0, 0], [0, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 3]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 3]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 3]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 1], [0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 2], [0, 2], [0, 3]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 2], [0, 2], [0, 0], [0, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 3]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[1, 0]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[1, 2]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}], "ignore_parent": false, "include_empty": true, "indices": [0, 0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 0]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 0]]}], [{"patt": [0], "pos": [[1, 3]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 1]]}], "ignore_parent": false, "include_empty": true, "indices": [0, 0, 0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[0, 4]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 3]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 4]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 0], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 3]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 0]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 3]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 4]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 2], [1, 2]]}, {"patt": [1, 0, 2], "pos": [[1, 2], [1, 2], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 2], [1, 2], [1, 4]]}, {"patt": [1, 2, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [2, 1, 0], "pos": [[1, 2], [1, 2], [1, 2]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 2], [1, 2], [1, 2], [1, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 3]]}], [{"patt": [0], "pos": [[1, 4]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}], "ignore_parent": false, "include_empty": true, "indices": [0, 0, 0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 2, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0], "pos": [[0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 3]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 3]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[0, 3]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 3]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 3]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[0, 3]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 0]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[1, 1]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 1]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 2]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 3]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[1, 2], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 2]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 3]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[1, 0]]}], [{"patt": [0], "pos": [[1, 3]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 1]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 2]]}], "ignore_parent": false, "include_empty": true, "indices": [0, 0, 0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 1]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[0, 4]]}, {"patt": [0], "pos": [[0, 5]]}, {"patt": [0], "pos": [[1, 2]]}, {"patt": [0, 1], "pos": [[0, 2], [0, 2]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 4]]}, {"patt": [0, 1], "pos": [[1, 0], [1, 5]]}, {"patt": [0, 1], "pos": [[1, 1], [1, 4]]}, {"patt": [0, 1], "pos": [[1, 1], [1, 5]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[1, 1], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 3], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 3]]}, {"patt": [1, 0], "pos": [[1, 4], [1, 4]]}, {"patt": [1, 0], "pos": [[1, 5], [1, 1]]}, {"patt": [1, 0], "pos": [[1, 5], [1, 3]]}, {"patt": [1, 0], "pos": [[1, 5], [1, 4]]}, {"patt": [1, 0], "pos": [[1, 5], [1, 5]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 1], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 0]]}, {"patt": [0, 2, 1], "pos": [[1, 0], [1, 3], [1, 3]]}, {"patt": [0, 2, 1], "pos": [[1, 1], [1, 3], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 1]]}, {"patt": [1, 0, 2], "pos": [[1, 0], [1, 0], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 1], [1, 0], [1, 3]]}, {"patt": [1, 0, 2], "pos": [[1, 3], [1, 3], [1, 4]]}, {"patt": [1, 0, 2], "pos": [[1, 3], [1, 3], [1, 5]]}, {"patt": [1, 2, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [2, 1, 0], "pos": [[1, 3], [1, 3], [1, 3]]}, {"patt": [0, 2, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[1, 3], [1, 3], [1, 3], [1, 3]]}, {"patt": [2, 0, 3, 1], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 0], [1, 0], [1, 0], [1, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[1, 3], [1, 3], [1, 0], [1, 3]]}], "requirements": [[{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[1, 0]]}], [{"patt": [0], "pos": [[1, 4]]}], [{"patt": [0], "pos": [[1, 5]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 3]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 3]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[0, 3]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_placement", "direction": 2, "gps": [{"patt": [0], "pos": [[0, 0]]}, {"patt": [0], "pos": [[0, 2]]}, {"patt": [0], "pos": [[0, 3]]}, {"patt": [0], "pos": [[0, 1]]}], "ignore_parent": false, "include_empty": true, "indices": [0, 0, 0, 0], "own_col": true, "own_row": true, "strategy_class": "RequirementPlacementStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "rule_class": "EquivalencePathRule", "rules": [{"class_module": "comb_spec_searcher.strategies.rule", "original_rule": {"children": [{"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 2]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 3]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 1], [0, 3]]}, {"patt": [1, 2, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [2, 1, 0], "pos": [[0, 1], [0, 1], [0, 1]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 1], [0, 1], [0, 1], [0, 1]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 1], [0, 1], [0, 0], [0, 1]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 2]]}], [{"patt": [0], "pos": [[0, 3]]}]]}, {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 3]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 4]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 3]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 4]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 4], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 4], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 4], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 4], [0, 4]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 1], [0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 2], [0, 2], [0, 3]]}, {"patt": [1, 0, 2], "pos": [[0, 2], [0, 2], [0, 4]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 2], [0, 2], [0, 0], [0, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 1]]}], [{"patt": [0], "pos": [[0, 3]]}], [{"patt": [0], "pos": [[0, 4]]}]]}], "class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 3]]}, {"patt": [0, 1], "pos": [[0, 0], [0, 4]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 3]]}, {"patt": [0, 1], "pos": [[0, 1], [0, 4]]}, {"patt": [1, 0], "pos": [[0, 1], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 2], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 3], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 4], [0, 1]]}, {"patt": [1, 0], "pos": [[0, 4], [0, 2]]}, {"patt": [1, 0], "pos": [[0, 4], [0, 3]]}, {"patt": [1, 0], "pos": [[0, 4], [0, 4]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 1], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 0]]}, {"patt": [0, 2, 1], "pos": [[0, 0], [0, 2], [0, 2]]}, {"patt": [0, 2, 1], "pos": [[0, 1], [0, 2], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 1]]}, {"patt": [1, 0, 2], "pos": [[0, 0], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 1], [0, 0], [0, 2]]}, {"patt": [1, 0, 2], "pos": [[0, 2], [0, 2], [0, 3]]}, {"patt": [1, 0, 2], "pos": [[0, 2], [0, 2], [0, 4]]}, {"patt": [1, 2, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [2, 1, 0], "pos": [[0, 2], [0, 2], [0, 2]]}, {"patt": [0, 2, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [0, 3, 2, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [1, 0, 3, 2], "pos": [[0, 2], [0, 2], [0, 2], [0, 2]]}, {"patt": [2, 0, 3, 1], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 0], [0, 0], [0, 0], [0, 0]]}, {"patt": [2, 1, 0, 3], "pos": [[0, 2], [0, 2], [0, 0], [0, 2]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}], [{"patt": [0], "pos": [[0, 3]]}], [{"patt": [0], "pos": [[0, 4]]}]]}, "rule_class": "Rule", "strategy": {"class_module": "tilings.strategies.requirement_insertion", "gps": [{"patt": [0], "pos": [[0, 1]]}], "ignore_parent": true, "strategy_class": "RequirementInsertionStrategy"}}, "rule_class": "EquivalenceRule"}]}, {"class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0], "pos": [[0, 0]]}], "requirements": []}, "rule_class": "VerificationRule", "strategy": {"class_module": "tilings.strategies.verification", "strategy_class": "BasicVerificationStrategy"}}, {"class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [0, 1], "pos": [[0, 0], [0, 0]]}, {"patt": [1, 0], "pos": [[0, 0], [0, 0]]}], "requirements": [[{"patt": [0], "pos": [[0, 0]]}]]}, "rule_class": "VerificationRule", "strategy": {"class_module": "tilings.strategies.verification", "strategy_class": "BasicVerificationStrategy"}}, {"class_module": "comb_spec_searcher.strategies.rule", "comb_class": {"assumptions": [], "class_module": "tilings.tiling", "comb_class": "Tiling", "obstructions": [{"patt": [], "pos": []}], "requirements": []}, "rule_class": "VerificationRule", "strategy": {"class_module": "comb_spec_searcher.strategies.strategy", "strategy_class": "EmptyStrategy"}}]}