Av(14352, 14532, 41352, 41532, 43152, 43512, 45132, 45312)
Generating Function
\(\displaystyle \frac{4 x -5+\sqrt{8 x^{2}-8 x +1}}{4 x -4}\)
Counting Sequence
1, 1, 2, 6, 24, 112, 568, 3032, 16768, 95200, 551616, 3248704, 19389824, 117021824, 712934784, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -2\right) F \left(x
\right)^{2}+\left(-4 x +5\right) F \! \left(x \right)+x -3 = 0\)
Recurrence
\(\displaystyle a(0) = 1\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a{\left(n + 3 \right)} = \frac{8 n a{\left(n \right)}}{n + 3} + \frac{3 \left(3 n + 5\right) a{\left(n + 2 \right)}}{n + 3} - \frac{4 \left(4 n + 3\right) a{\left(n + 1 \right)}}{n + 3}, \quad n \geq 3\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a{\left(n + 3 \right)} = \frac{8 n a{\left(n \right)}}{n + 3} + \frac{3 \left(3 n + 5\right) a{\left(n + 2 \right)}}{n + 3} - \frac{4 \left(4 n + 3\right) a{\left(n + 1 \right)}}{n + 3}, \quad n \geq 3\)
This specification was found using the strategy pack "Point And Col Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 29 rules.
Finding the specification took 248 seconds.
Copy 29 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\
F_{7}\! \left(x , y\right) &= F_{8}\! \left(x , y\right)\\
F_{8}\! \left(x , y\right) &= F_{27}\! \left(x \right) F_{9}\! \left(x , y\right)\\
F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right)+F_{17}\! \left(x , y\right)\\
F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{4}\! \left(x \right)\\
F_{11}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y\right)\\
F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)\\
F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{15}\! \left(x , y\right)\\
F_{14}\! \left(x , y\right) &= x y\\
F_{15}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{16}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)\\
F_{17}\! \left(x , y\right) &= F_{18}\! \left(x , y\right)\\
F_{18}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{19}\! \left(x , y\right) F_{28}\! \left(x , y\right)\\
F_{20}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{19}\! \left(x , y\right)\\
F_{20}\! \left(x , y\right) &= F_{21}\! \left(x , y\right)\\
F_{22}\! \left(x , y\right) &= F_{21}\! \left(x , y\right)+F_{4}\! \left(x \right)\\
F_{22}\! \left(x , y\right) &= F_{23}\! \left(x , y\right)+F_{24}\! \left(x , y\right)\\
F_{23}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{7}\! \left(x , y\right)\\
F_{24}\! \left(x , y\right) &= F_{25}\! \left(x , y\right)\\
F_{25}\! \left(x , y\right) &= F_{26}\! \left(x , y\right) F_{27}\! \left(x \right)\\
F_{26}\! \left(x , y\right) &= -\frac{-y F_{9}\! \left(x , y\right)+F_{9}\! \left(x , 1\right)}{y -1}\\
F_{27}\! \left(x \right) &= x\\
F_{28}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{12}\! \left(x , y\right)\\
\end{align*}\)