Av(14352, 14532, 41352, 41532, 43152, 43512, 45132, 45312)
View Raw Data
Generating Function
\(\displaystyle \frac{4 x -5+\sqrt{8 x^{2}-8 x +1}}{4 x -4}\)
Counting Sequence
1, 1, 2, 6, 24, 112, 568, 3032, 16768, 95200, 551616, 3248704, 19389824, 117021824, 712934784, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -2\right) F \left(x \right)^{2}+\left(-4 x +5\right) F \! \left(x \right)+x -3 = 0\)
Recurrence
\(\displaystyle a(0) = 1\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a{\left(n + 3 \right)} = \frac{8 n a{\left(n \right)}}{n + 3} + \frac{3 \left(3 n + 5\right) a{\left(n + 2 \right)}}{n + 3} - \frac{4 \left(4 n + 3\right) a{\left(n + 1 \right)}}{n + 3}, \quad n \geq 3\)

This specification was found using the strategy pack "Point And Col Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 29 rules.

Finding the specification took 248 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 29 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\ F_{7}\! \left(x , y\right) &= F_{8}\! \left(x , y\right)\\ F_{8}\! \left(x , y\right) &= F_{27}\! \left(x \right) F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right)+F_{17}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{11}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y\right)\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{15}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= x y\\ F_{15}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{16}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)\\ F_{17}\! \left(x , y\right) &= F_{18}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{19}\! \left(x , y\right) F_{28}\! \left(x , y\right)\\ F_{20}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{19}\! \left(x , y\right)\\ F_{20}\! \left(x , y\right) &= F_{21}\! \left(x , y\right)\\ F_{22}\! \left(x , y\right) &= F_{21}\! \left(x , y\right)+F_{4}\! \left(x \right)\\ F_{22}\! \left(x , y\right) &= F_{23}\! \left(x , y\right)+F_{24}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{7}\! \left(x , y\right)\\ F_{24}\! \left(x , y\right) &= F_{25}\! \left(x , y\right)\\ F_{25}\! \left(x , y\right) &= F_{26}\! \left(x , y\right) F_{27}\! \left(x \right)\\ F_{26}\! \left(x , y\right) &= -\frac{-y F_{9}\! \left(x , y\right)+F_{9}\! \left(x , 1\right)}{y -1}\\ F_{27}\! \left(x \right) &= x\\ F_{28}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{12}\! \left(x , y\right)\\ \end{align*}\)