Av(14352, 14523, 14532, 15423, 15432, 41352, 41523, 41532, 43152)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 111, 547, 2763, 14136, 73095, 381979, 2016726, 10748797, 57773635, 312832005, ...
Implicit Equation for the Generating Function
\(\displaystyle x^{6} \left(x^{2}-5 x +1\right) F \left(x \right)^{5}-x^{3} \left(x^{5}-6 x^{4}-8 x^{3}+6 x^{2}-4 x +1\right) F \left(x \right)^{4}-x^{2} \left(x^{6}-3 x^{5}+15 x^{4}+5 x^{3}-17 x^{2}+13 x -3\right) F \left(x \right)^{3}+x \left(x^{6}-3 x^{5}+11 x^{4}+2 x^{3}-19 x^{2}+16 x -4\right) F \left(x \right)^{2}+\left(3 x +1\right) \left(x^{2}+x -1\right) \left(x -1\right)^{3} F \! \left(x \right)-\left(x^{2}+x -1\right) \left(x -1\right)^{3} = 0\)
Recurrence
\(\displaystyle a(0) = 1\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a(3) = 6\)
\(\displaystyle a(4) = 24\)
\(\displaystyle a(5) = 111\)
\(\displaystyle a(6) = 547\)
\(\displaystyle a(7) = 2763\)
\(\displaystyle a(8) = 14136\)
\(\displaystyle a(9) = 73095\)
\(\displaystyle a(10) = 381979\)
\(\displaystyle a(11) = 2016726\)
\(\displaystyle a(12) = 10748797\)
\(\displaystyle a(13) = 57773635\)
\(\displaystyle a(14) = 312832005\)
\(\displaystyle a(15) = 1704943887\)
\(\displaystyle a(16) = 9345301332\)
\(\displaystyle a(17) = 51485226705\)
\(\displaystyle a(18) = 284934205545\)
\(\displaystyle a(19) = 1583365758827\)
\(\displaystyle a(20) = 8831267596639\)
\(\displaystyle a(21) = 49422355171295\)
\(\displaystyle a(22) = 277430934929097\)
\(\displaystyle a(23) = 1561729128884587\)
\(\displaystyle a(24) = 8814092494856060\)
\(\displaystyle a(25) = 49863596330059678\)
\(\displaystyle a(26) = 282713410211634108\)
\(\displaystyle a(27) = 1606190529798914622\)
\(\displaystyle a(28) = 9142684714692688359\)
\(\displaystyle a(29) = 52133977403548017045\)
\(\displaystyle a(30) = 297774992553723072381\)
\(\displaystyle a(31) = 1703453880096747753300\)
\(\displaystyle a(32) = 9759016163313880404275\)
\(\displaystyle a(33) = 55985758798192874914613\)
\(\displaystyle a(34) = 321595968254669013943962\)
\(\displaystyle a(35) = 1849582143995832444646784\)
\(\displaystyle a(36) = 10649708801964472021456211\)
\(\displaystyle a(37) = 61386984554239297103941437\)
\(\displaystyle a(38) = 354213221958638158594777291\)
\(\displaystyle a(39) = 2045881302914775833618683039\)
\(\displaystyle a(40) = 11827753535223978135506945457\)
\(\displaystyle a(41) = 68440118157342301796189782001\)
\(\displaystyle a(42) = 396358104114384319823425717033\)
\(\displaystyle a(43) = 2297292757353122201149847606764\)
\(\displaystyle a(44) = 13325416445375359100970552990367\)
\(\displaystyle a(45) = 77351075414710052845045507464628\)
\(\displaystyle a(46) = 449323630905732096724122808418289\)
\(\displaystyle a(47) = 2611840117178392598629959811735023\)
\(\displaystyle a(48) = 15192044542832994871553591521857584\)
\(\displaystyle a(49) = 88421277597701781554724645033037251\)
\(\displaystyle a(50) = 514941104502036542402855420752429111\)
\(\displaystyle a(51) = 3000602458376078895180467454274411443\)
\(\displaystyle a(52) = 17494437157246452668525170388279242408\)
\(\displaystyle a(53) = 102052376187220480325189755641781843434\)
\(\displaystyle a(54) = 595620193496097479518876967727772456069\)
\(\displaystyle a(55) = 3478009959300069523902797881486201105282\)
\(\displaystyle a(56) = 20318878853297277090684004933931166659348\)
\(\displaystyle a(57) = 118759665103604467302433237709787647228419\)
\(\displaystyle a(58) = 694435080696395604967386562487281331796547\)
\(\displaystyle a(59) = 4062387142867036121287445171317199852783982\)
\(\displaystyle a(60) = 23774520252107190517434120165783910805559526\)
\(\displaystyle a(61) = 139192917599487406399610517797537649319045588\)
\(\displaystyle a(62) = 815251949170680541251403116703129290357707337\)
\(\displaystyle a(63) = 4776728500032637956234829368622464147652032227\)
\(\displaystyle a(64) = 27998076316176086079224938446989407122125255640\)
\(\displaystyle a(65) = 164164747983407206095663586356621241756989692758\)
\(\displaystyle a(66) = 962899723510559831534730056260650871313121007082\)
\(\displaystyle a(67) = 5649724128182467751348362082000925685413487844203\)
\(\displaystyle a(68) = 33159976490667495390836325268811375840675436280805\)
\(\displaystyle a(69) = 194687437817124989476136226815661248709839422919052\)
\(\displaystyle a(70) = 1143390324738929950322931547896866997614933240427062\)
\(\displaystyle a(71) = 6717075816659932439106369307230371351837059821129959\)
\(\displaystyle a(72) = 39472222617567065893526581733286224684984881391421357\)
\(\displaystyle a(73) = 232019823272962770825863481261504684660238221245542941\)
\(\displaystyle a(74) = 1364198297214212644742677659023579795102577564022720982\)
\(\displaystyle a(75) = 8023163976560805681089290596909567938932218393608130164\)
\(\displaystyle a(76) = 47198322475460265120179812708020196792133548549296070054\)
\(\displaystyle a(77) = 277726473983378035070476877129627008896669375140180679871\)
\(\displaystyle a(78) = 1634613282893347090249460410398653518137333323437971040982\)
\(\displaystyle a(79) = 9623146607230625338888950471228549580181446113498762123721\)
\(\displaystyle a(80) = 56665787086514085393543079716837675961635122334458021509512\)
\(\displaystyle a(81) = 333752093093277083527561974959816424529823676158362597476533\)
\(\displaystyle a(82) = 1966182902088539667474721708041591861087820245756243239299100\)
\(\displaystyle a(83) = 11585595422906354701552706949110066485846709572820029741332871\)
\(\displaystyle a(84) = 68281820583920195716674908121632264852566074756212735494322826\)
\(\displaystyle a(85) = 402514896912853805225130613723153382750275276302796590058900777\)
\(\displaystyle a(86) = 2373268492146718090659006842551730443119646772551017696434767422\)
\(\displaystyle a(87) = 13995803193486585735548207021418243105651002296073171243894174573\)
\(\displaystyle a(88) = 82553002748208111686190451279827158322823540672545083286580420104\)
\(\displaystyle a(89) = 487023748175581387568847085803204554029905705223156911970286508349\)
\(\displaystyle a(90) = 2873742181913597878885820225829150720087677246774723594622964427768\)
\(\displaystyle a(91) = 16959932140768122313298595622428446526239889871153074910279394396226\)
\(\displaystyle a(92) = 100109976975920128367715335990842546787928118246285937852050867307400\)
\(\displaystyle a(93) = 591025081210527384840099194188097609331056654766749558149271207603696\)
\(\displaystyle a(94) = 3489861299859557549510267368699270904354461084742314768699135999250716\)
\(\displaystyle a(95) = 20610217976554244237729987476792416031429103551822125512260855820780851\)
\(\displaystyle a(96) = 121738422764917085919508974274460521253591615229989246890532927724119353\)
\(\displaystyle a(97) = 719187242877578868631483549721349142954758436995086133745601822072614011\)
\(\displaystyle a(98) = 4249365555301484886938556270611079217306640531085838909817128568187860490\)
\(\displaystyle a(99) = 25111500401922845557428216957747716781956832159458010957796541493372077926\)
\(\displaystyle a(100) = 148417926770149328535475382750415019391830447256059789873847717513190288890\)
\(\displaystyle a(101) = 877331868738583230522001077606678756966449447424485753531936272332338954420\)
\(\displaystyle a(102) = 5186854322723271223508213828855432676145744205844180251594540054161077838288\)
\(\displaystyle a(103) = 30669421741871654964612430862780125538082534098719557308834860438493431798525\)
\(\displaystyle a(104) = 181370788739489372218977327170762445552327308369477924817575025264537734772899\)
\(\displaystyle a(105) = 1072724430539464144514934660124135560810258476261739927287999108105958431157766\)
\(\displaystyle a(106) = 6345516358915953075780834022291794766014791397528855434508239119939778603928231\)
\(\displaystyle a(107) = 37540724797900507786461778329480436121644688859003689801058705317271765793226638\)
\(\displaystyle a(108) = 222123331601767273520301421265230700469965722309695631573858564879283477847460226\)
\(\displaystyle a(109) = 1314439268221565570017546915378422208118671513566441925570577671560087764350935731\)
\(\displaystyle a(110) = 7779303223377488510258824202128495107994674670597401907062006375914288520377091309\)
\(\displaystyle a(111) = 46046193921935680999682021800450468084084072195569284201866983385269917694982278883\)
\(\displaystyle a(112) = 272582958216851737355786745065903195484876276768831496508475481142131375110126362460\)
\(\displaystyle a(113) = 1613818433688716620061632856490910953472140358281205155170228498018197827112717663484\)
\(\displaystyle a(114) = 9555661605716007553367409380109379263768616527322823224979008942152335491695213447749\)
\(\displaystyle a(115) = 56586926020530394000789852695988523146765703598578916536762588189001779534472909084456\)
\(\displaystyle a(116) = 335135048224029388361226847991928283154172553632258578465107299073798788736068272857423\)
\(\displaystyle a(117) = 1985048747617334744991558665723554136478275336942211524087559340580521941933057218258004\)
\(\displaystyle a(118) = 11758970021178296122193649569403287687040276362756374983987477227969053078562689888774294\)
\(\displaystyle a(119) = 69664798632295935920658679812638751124219360842589463696366682706965546277629733037867567\)
\(\displaystyle a(120) = 412764864435902417075954267862044148642181073803807104621382634966847231048897612960384932\)
\(\displaystyle a(121) = 2445887887504342121343691438384615778509415888342413146776223647102353540945031884246732557\)
\(\displaystyle a(122) = 14494863604271765219011705162248488363619852588649339408782792523940445186629206550082987096\)
\(\displaystyle a(123) = 85908230452832928609510715008159360947392353419376264200038979929560825896198364833662672887\)
\(\displaystyle a(124) = 509210999403696914666814655385862115341151151032907784183774243339974781264835570473441924638\)
\(\displaystyle a(125) = 3018578443443693966415327726580900436025545946137571580261998916084420617567608904675870378079\)
\(\displaystyle a(126) = 17895679150394004657361966812042438794858784137385365000335868253030511314946599764054018787755\)
\(\displaystyle a(127) = 106104618478796948315869507107207639503912737697050974242683464330739421755794780329640653296293\)
\(\displaystyle a(128) = 629158615328619067266800298245506838037552127949738880206532365545973215526766750122968103833998\)
\(\displaystyle a(129) = 3730999152583448532129257898424074873674187131702354155256210168400735689659433816268189228931116\)
\(\displaystyle a(130) = 22127313840598029733610969633177210351659933861501901856857705305568690169014776224730411680946331\)
\(\displaystyle a(131) = 131241201505008543167038244270428442167307630986495612568890688392943068384520917818948849052875276\)
\(\displaystyle a(132) = 778482911093603030902580941006242727701463480382880540525241849753405989134190662020766327990757673\)
\(\displaystyle a(133) = 4618115530880340630161989672852606204926749887818848542231042608308049441122440553689305244122377454\)
\(\displaystyle a(134) = 27397868679216403011216747504059897484551166870042984674969957344979599482358170708566823340196215544\)
\(\displaystyle a(135) = 162556562592600393207051180917015877050285087922073650020271921973405731086365782699121398632530259276\)
\(\displaystyle a(136) = 964556011540670020778420591698688080604827638080868669454700977377046634777528628169737612697126317130\)
\(\displaystyle a(137) = 5723808594024555881688355577943984006104117440857917511552108409094233215325637998129259666555367495577\)
\(\displaystyle a(138) = 33968545949669923019805948966667226450708993322321046572089010401794476046488854038746646755179078312387\)
\(\displaystyle a(139) = 201605569426810981906070973998697391043133552408770481419678819896290046518429822025708452576273927221750\)
\(\displaystyle a(140) = 1196633971986049972566351404504304272881374505641866402397135563942770639923258946324056382822972797947657\)
\(\displaystyle a(141) = 7103181228062016919612798568402317420761875499904120997722448477868357261407768430493566030013984343922178\)
\(\displaystyle a(142) = 42167394500793660523749620713585733264941922813187330504671791789638880676744922346230725550931731365104096\)
\(\displaystyle a(143) = 250341294333247301679467545094681167194699838867502822692116146252007321742952174795028957310383843362471940\)
\(\displaystyle a(144) = 1486345023138899536741499724811092978998666803731309307123673555564876921529343252760436071279354887757617226\)
\(\displaystyle a(145) = 8825468215041887677247114745288404079858265801592261601855134814669228771549203331006248243876253179339890890\)
\(\displaystyle a(146) = 52406654463211971019382280241709251524275851259053490199238981197413870480016340063976099939254924850657754721\)
\(\displaystyle a(147) = 311218397201521795651565228930867094943463949833690676365361946665253221698795106614525876272396827327116356993\)
\(\displaystyle a(148) = 1848305799286991249258572788232269550967870118429643889160824151998880217283178048093542460556874859206888419749\)
\(\displaystyle a(149) = 10977709439738963111787947770870955073003099316345018667811063915023697360967236849334689974951478255118000746721\)
\(\displaystyle a{\left(n + 150 \right)} = \frac{278337545024 n \left(n + 1\right) \left(n + 2\right) \left(n + 3\right) a{\left(n \right)}}{12493 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{198912 \left(n + 1\right) \left(n + 2\right) \left(n + 3\right) \left(423624884 n + 1606661391\right) a{\left(n + 1 \right)}}{62465 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{224 \left(n + 2\right) \left(n + 3\right) \left(10494300021479 n^{2} + 91039345069319 n + 195162024006072\right) a{\left(n + 2 \right)}}{62465 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{32 \left(n + 3\right) \left(3758283797139653 n^{3} + 55962020907505593 n^{2} + 272662805567696938 n + 435910378983463896\right) a{\left(n + 3 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(4999 n^{2} + 1499559 n + 112436041\right) a{\left(n + 149 \right)}}{31 \left(n + 151\right) \left(n + 153\right)} - \frac{\left(463891964 n^{3} + 206896992126 n^{2} + 30756844682755 n + 1523982549316164\right) a{\left(n + 148 \right)}}{37479 \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(45404817705 n^{4} + 26837671553878 n^{3} + 5948463937646073 n^{2} + 585960326599150976 n + 21644562918435528072\right) a{\left(n + 147 \right)}}{74958 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(798939042848 n^{4} + 469122415443012 n^{3} + 103294265071806085 n^{2} + 10108111004329084125 n + 370920994124966151282\right) a{\left(n + 146 \right)}}{37479 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(107946793807077 n^{4} + 62967234765697331 n^{3} + 13773284907863680668 n^{2} + 1338951244758332883814 n + 48810153722000581694700\right) a{\left(n + 145 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(4666497158271491 n^{4} + 2704145806848176050 n^{3} + 587608329988930469413 n^{2} + 56748033166397791420586 n + 2055098196118434375209460\right) a{\left(n + 144 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{16 \left(29002772719163877 n^{4} + 664914357434694254 n^{3} + 5547732395570922191 n^{2} + 20078050062593882718 n + 26678309963653662120\right) a{\left(n + 4 \right)}}{62465 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(41457687380926186 n^{4} + 23866075046630131933 n^{3} + 5152007940894282412643 n^{2} + 494285573185876436196140 n + 17782757375623707829941168\right) a{\left(n + 143 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{32 \left(350654584515153557 n^{4} + 10521580943626839108 n^{3} + 111511990147278520117 n^{2} + 504775870093154017182 n + 832119591491875201896\right) a{\left(n + 5 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(1234281767999569311 n^{4} + 705881114943610960186 n^{3} + 151380316484163176469507 n^{2} + 14428266438468594357773876 n + 515679266174968341987846456\right) a{\left(n + 142 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{8 \left(2281258867936378659 n^{4} - 348361557477688006448 n^{3} - 8705810610447740878161 n^{2} - 67967128138293758822426 n - 174149696503922693314104\right) a{\left(n + 7 \right)}}{62465 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{8 \left(6909629267174874643 n^{4} + 309363290978995530474 n^{3} + 4332951145796567847737 n^{2} + 24700459425605174519130 n + 50084175959113867396056\right) a{\left(n + 6 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(31199860879712046023 n^{4} + 17726309569859876104894 n^{3} + 3776641528068354137013565 n^{2} + 357603094709122320184019702 n + 12697514559791972598355740528\right) a{\left(n + 141 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(84483002652246316542 n^{4} + 47686209266058199093403 n^{3} + 10093443780919453719799719 n^{2} + 949500844447547285011980988 n + 33494588141577798893804126430\right) a{\left(n + 140 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(789246605671553827430 n^{4} + 442590583229914886331121 n^{3} + 93071409000416196986477053 n^{2} + 8698440427648942149328867856 n + 304853627635313949483817529550\right) a{\left(n + 139 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{4 \left(1291605610851817764355 n^{4} + 24527651252176049039898 n^{3} + 64319824646584557776201 n^{2} - 1052304678805693222193310 n - 5266952865741453407523504\right) a{\left(n + 8 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{16 \left(4616138962103613295421 n^{4} + 145533358712344236335331 n^{3} + 1651731709170751141251637 n^{2} + 7805656683867699276138705 n + 12269021027902946302950486\right) a{\left(n + 9 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(25565909985155469632203 n^{4} + 14243333659845388316405390 n^{3} + 2975696211602235179796542597 n^{2} + 276298421431017221504159481394 n + 9620440752796466559158413486656\right) a{\left(n + 138 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(180637272774814056851521 n^{4} + 99968883405691310668097958 n^{3} + 20746809626245296318072639011 n^{2} + 1913608690494544622039546861862 n + 66188749278363387527968050322632\right) a{\left(n + 137 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{2 \left(353525376692675709541483 n^{4} + 13665774641725527841320418 n^{3} + 197030218183357505573085593 n^{2} + 1254448160225651125757920514 n + 2972089516594870513868427120\right) a{\left(n + 10 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(1130407129414723143461395 n^{4} + 621160190632287171925913206 n^{3} + 127998511655161060348395019301 n^{2} + 11722632856386831101200525407338 n + 402604174695896956675866797649240\right) a{\left(n + 136 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{2 \left(1570321219866709505383275 n^{4} + 846765903134090093766692908 n^{3} + 171226849725246336689764624841 n^{2} + 15388658225484045870495507357362 n + 518638003811420234795123265946195\right) a{\left(n + 134 \right)}}{62465 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(1629425152399540141450000 n^{4} + 887950487252382051493266315 n^{3} + 181459626869128720411631854043 n^{2} + 16481422403449351362122710064754 n + 561366936174552958218024067157106\right) a{\left(n + 135 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{2 \left(2518488830983260484203457 n^{4} + 111003348892985279265227208 n^{3} + 1834440801714006087591279761 n^{2} + 13472041369859175398644367310 n + 37098427113778402409639155896\right) a{\left(n + 11 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(26431028029821661633846439 n^{4} + 1286506650257045989480586426 n^{3} + 23504204186343880436784284197 n^{2} + 191045934612506023262181861658 n + 582971438985489177996812933256\right) a{\left(n + 12 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{2 \left(45739788771575387084300397 n^{4} + 2411293345811751384377916220 n^{3} + 47740774316060251749410969133 n^{2} + 420773796378512552480646359030 n + 1393156052606750197892845804920\right) a{\left(n + 13 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(186595995081174883330584819 n^{4} + 10156612234394804841874594762 n^{3} + 208118906871804000015048942345 n^{2} + 1904311372266605088440029407530 n + 6571597748890393430805869139048\right) a{\left(n + 14 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(242957337488915114180317561 n^{4} + 129412314420036653206058112942 n^{3} + 25847898899995141100465893360559 n^{2} + 2294380589513500455233951356785618 n + 76367809651091740201523232104504520\right) a{\left(n + 133 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(1778441250392014337115497347 n^{4} + 936666525849827558182290997718 n^{3} + 184965245651866298106173440046813 n^{2} + 16230807553764073225258430086934938 n + 534007945776302112384184814211756816\right) a{\left(n + 132 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(2362672828237145415663636321 n^{4} + 147459249673926836046147799448 n^{3} + 3445431761320738562887325657613 n^{2} + 35723980359952288634947733773090 n + 138697403821942103831277758498952\right) a{\left(n + 15 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(3368031002148411263156722499 n^{4} + 1757868796653687932839209303856 n^{3} + 343976316419295009662616794373844 n^{2} + 29907928643724581510194774284184511 n + 974925234183667945640591422982964378\right) a{\left(n + 131 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{2 \left(4560134920094203708715062111 n^{4} + 300159597887160194714153597823 n^{3} + 7406020404636372570396502160696 n^{2} + 81188111492795356951508454432798 n + 333665013235923046955355701059344\right) a{\left(n + 16 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(34864271315817611033740843357 n^{4} + 2428532691780534443650981183086 n^{3} + 63439945987577095479425184622943 n^{2} + 736636787893786628692827807107826 n + 3208144079540568392745606077777832\right) a{\left(n + 17 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(62481671856337094295907188072 n^{4} + 4605884529928034046256927856156 n^{3} + 127443387643315940771466489218859 n^{2} + 1568871025863639119007927036370711 n + 7250470003653454334883160251911298\right) a{\left(n + 18 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(77111278505248705652367811731 n^{4} + 5929108966475739103754623055158 n^{3} + 170435053970050329631084260204233 n^{2} + 2170492409935422947623834005407374 n + 10330643277619896704741055936595464\right) a{\left(n + 19 \right)}}{124930 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(96082481133730418352968585117 n^{4} + 49763742407771775920929640530166 n^{3} + 9662808047451046358543177776883395 n^{2} + 833678553477037383789773013306137218 n + 26965579929629957399063341697187892128\right) a{\left(n + 130 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(153606186467609596943557349089 n^{4} + 78984784930418809660129815915053 n^{3} + 15226377533940502834655834079432938 n^{2} + 1304221693349288315062103624128232278 n + 41881149575478200712010014269533375938\right) a{\left(n + 129 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{2 \left(615301754792858360595523859881 n^{4} + 50055174450734710302585607039452 n^{3} + 1525470164586454523481478885466399 n^{2} + 20642008614683420117173451630670234 n + 104644491921826978138705548688206486\right) a{\left(n + 20 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(1725383988932212128956291173789 n^{4} + 880881808689854715539372279691320 n^{3} + 168602965319160473762925488661431459 n^{2} + 14338757719636638159757401308231954308 n + 457158788557137457814777574611140186980\right) a{\left(n + 128 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(4221376204049586591384512974501 n^{4} + 361811951524144204799411884892897 n^{3} + 11621742043904200918609594375256663 n^{2} + 165818106602566085301780374820001447 n + 886751237394345825787527758208486810\right) a{\left(n + 21 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(16793115265371771300868393226091 n^{4} + 8512208250045868500097155799854250 n^{3} + 1617568807124679453414937014448552449 n^{2} + 136576367360851889891472086106442986482 n + 4323054766794198753710582439514161953856\right) a{\left(n + 127 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(24441756629241391965161928820883 n^{4} + 2228716332475936901753630142169434 n^{3} + 76188238415537475634925765594455153 n^{2} + 1157353216160667203581048179414881586 n + 6592394383808223650760672541392467688\right) a{\left(n + 22 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(46975534286827757537092711683213 n^{4} + 4209744060815556430935973394550250 n^{3} + 140819588089529510598710117177427891 n^{2} + 2082540001066049017677530395593124286 n + 11479071574374654976753788334939605096\right) a{\left(n + 23 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(53004365734121135648404689407327 n^{4} + 18693475583699817182000178107621450 n^{3} + 2176727528882634757461104214237117085 n^{2} + 81984094743054220534966853489096437210 n - 193362383022771807009986243241773738688\right) a{\left(n + 123 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(69340714595654595865380551313201 n^{4} + 34896698887523354060981051695872026 n^{3} + 6583795962897881685679832512202664915 n^{2} + 551882222224832199158486048873775660298 n + 17342187137597143610892092927849497630752\right) a{\left(n + 126 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(76961545817234991640942512322177 n^{4} + 38467866530207066041799294470053010 n^{3} + 7207541209163404122404290491164213007 n^{2} + 599958930796520901677093999642551061326 n + 18720143462787115878668265678736201465952\right) a{\left(n + 125 \right)}}{249860 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(183720248992933984198328340835603 n^{4} + 8615279938596238834406956756151108878 n^{3} + 939816674618290125214614302143061360387 n^{2} + 34221851647890030921261031578976813635116 n + 415665669093882452769312241319333958906816\right) a{\left(n + 37 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(191892155300382277042306828957108 n^{4} + 21279882635902216033344017795858057 n^{3} + 882340938107264866060108526689726310 n^{2} + 16219168439686093674680314985584616179 n + 111561195324444744074144204715221852394\right) a{\left(n + 26 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(364409239935605296067227384881955 n^{4} + 35128630239186466272085539606473090 n^{3} + 1267880885535938519499260119848665801 n^{2} + 20305394983111386186928756166874237202 n + 121745787699374947447652675345963937240\right) a{\left(n + 24 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(521413261039660430532823606886449 n^{4} + 259371762756709723813642574788166722 n^{3} + 48353128959464014879889226908976673211 n^{2} + 4003733324938215356785710310422267755114 n + 124236358699320034937403610907536365403968\right) a{\left(n + 124 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(716213820867911670128785757509919 n^{4} - 14432552612936039174963521668030454 n^{3} - 5281570418527364726934140254683983237 n^{2} - 200770135579325897476580416017352181396 n - 2239539806501346392039588114988794511876\right) a{\left(n + 30 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(949842909647338935608653849192075 n^{4} + 96522035614119413751558740066151390 n^{3} + 3673737582274872667682353011910939625 n^{2} + 62073419643981151874955792066752213334 n + 392873685342106841461562959850821975248\right) a{\left(n + 25 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(2553331929778264910892868113991055 n^{4} + 285931372769233318571053859134746612 n^{3} + 11985175807216684343125842967566246437 n^{2} + 222852291059613917742050793761249548364 n + 1550832682223313672291065227206712771024\right) a{\left(n + 28 \right)}}{124930 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(3462251944264660751676612427437149 n^{4} + 364189489104789779073418157185744734 n^{3} + 14313164678573329396097341982130662575 n^{2} + 248984725156456342690967600330713394334 n + 1616648389590504372864698477203541181048\right) a{\left(n + 27 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(4355129517195241790479617066948051 n^{4} + 2100901225689626416791708622408215280 n^{3} + 380105653607907038452235233606725965613 n^{2} + 30570164572518628187105762015853893210300 n + 922178393097383514504527920002771186392352\right) a{\left(n + 122 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(13496393519504894051272076135933139 n^{4} + 1595914643849673790225966673090595592 n^{3} + 70652120890807758904898110666586991717 n^{2} + 1387991082984005594264085422638236161948 n + 10210352498528951611451325063891036997164\right) a{\left(n + 29 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(29974992770101942265209385766314155 n^{4} + 14372368205128579924154772254628129540 n^{3} + 2584107388637403506765157135957948697361 n^{2} + 206489579475344891671221330066862228566636 n + 6187445745920128919236303494124699556643900\right) a{\left(n + 121 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(137812259185668152716740110510527201 n^{4} + 16796781959582732177490685872587778398 n^{3} + 765740012027881876862762197075456852067 n^{2} + 15471921461690805778562232065899098703150 n + 116874024006404876873465235288686084507376\right) a{\left(n + 31 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(141816714349350255830976099752592235 n^{4} + 67403303737493503971652757868702213700 n^{3} + 12011700719096869070275315327305126944975 n^{2} + 951233093916717405770562876702208724634398 n + 28245282565451165841576887298606371737495788\right) a{\left(n + 120 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(185453116708662861137886872888716437 n^{4} + 23811367792859673198080910533533313234 n^{3} + 1144471725651704186366201062420864072719 n^{2} + 24404787345847687012650191550024304433086 n + 194803971747968456431429139217146132655972\right) a{\left(n + 32 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(326387233653835801400577682400122139 n^{4} + 42580413283447476363917632240461131596 n^{3} + 2075048597615981969872895274495711599443 n^{2} + 44743108639769897520710371923669738607010 n + 359926902375419389796942372020757603703612\right) a{\left(n + 34 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(366803315702007556433208893138208493 n^{4} + 50115667146259756566768970134076491006 n^{3} + 2561591332773701610076210339948549464707 n^{2} + 58066150446992013802042598297187995741682 n + 492619545252752700445238320484029011465792\right) a{\left(n + 33 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(858934517967322548055168185418900229 n^{4} + 399365323627548461027471765775649730325 n^{3} + 69605322357770427350953364033050119500863 n^{2} + 5389651685603101005459464313064430202257673 n + 156436120536431043750906179478681128524012530\right) a{\left(n + 118 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(1079417918722613087476172817199181971 n^{4} + 507835067957375355155980557454345617678 n^{3} + 89573968974304664715363317434836914333237 n^{2} + 7020280819742598170168024027580793431350946 n + 206279416692470907369053644926593196986535960\right) a{\left(n + 119 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(1289972558264057492939110580464550134 n^{4} + 187499399462604347853016932646613812645 n^{3} + 10204266320270047982672174794497791575643 n^{2} + 246448872137661093506445398113200331506302 n + 2228753266071795554347773179678480781194694\right) a{\left(n + 36 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(2272723625936865952776112980652847881 n^{4} + 1636022632728056117059446573373593004707 n^{3} + 382705337212816885844449501288105147503824 n^{2} + 36935229899017740807807103240404204510530580 n + 1276960318871674996323642305183392765587978450\right) a{\left(n + 114 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{2 \left(2407157821036603677427199043328270303 n^{4} + 1079641977025048100482336294543618689618 n^{3} + 181310163230940238260841670890173439874747 n^{2} + 13510533132309500507775607788552765281531100 n + 376871838119687050005593208776519179162930632\right) a{\left(n + 116 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(3171383236576411528323593485429818725 n^{4} + 441883121875301103315911438393943101090 n^{3} + 23052573740898676638636807025124312545423 n^{2} + 533636829883060474976359589618865207561562 n + 4624581294397001158010640252268705501258920\right) a{\left(n + 35 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(9122154336219529559468810499985984141 n^{4} + 4179911442647612669986064052735730020954 n^{3} + 717745768350371907229580115199856189689427 n^{2} + 54737434974156253042964702592816292590412470 n + 1564270213604529110118556000764136470274440000\right) a{\left(n + 117 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(9689487372101784433009909087108410967 n^{4} + 1469738375212441382505224320605680957278 n^{3} + 83544444393284710632858617071914468786779 n^{2} + 2109154151888461183982582131745754287087840 n + 19953293508945050542729487529699304766977752\right) a{\left(n + 38 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(14489202981529325247882212661789562007 n^{4} + 2269275105542829694698487116797717195750 n^{3} + 133149230645864967461188386565903211203633 n^{2} + 3468861033609917108953809318863477026899738 n + 33856915697657121968729958703639365077341512\right) a{\left(n + 39 \right)}}{249860 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(17956801084750083751807184155015232588 n^{4} + 8579563868532780897807041339576285750588 n^{3} + 1532589067068362206591788005650483324735097 n^{2} + 121342267169098285934898627792966104135096955 n + 3593661733907371418158007238387815103493273360\right) a{\left(n + 113 \right)}}{62465 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(25818837100247781187160219314604511755 n^{4} + 4116789542418160745602607514227540121146 n^{3} + 245452852886041804102736148939790672110217 n^{2} + 6485361561805085525860929107173984490393218 n + 64068735869359077782779542109402890440856960\right) a{\left(n + 40 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(26549958002548513715475949756863977001 n^{4} + 11315918663685699600570159313292382821138 n^{3} + 1796121404372976494423083586244562775407527 n^{2} + 125672079548402656604183544509437598480809006 n + 3265081234645794992373032778506820030894235344\right) a{\left(n + 115 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(80873457323448181431014379881378545129 n^{4} + 13724027318104969197842375002327229916610 n^{3} + 871663775099674584002563083518744250838299 n^{2} + 24555868280517758005843190089176800938868202 n + 258863127612985255477480999819690276688726736\right) a{\left(n + 43 \right)}}{249860 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(95526964845329616472761455252685039655 n^{4} + 15930525210002363527560314315031068878010 n^{3} + 996717278826857695865520205059004407307133 n^{2} + 27728190131474323589089436134430097434151898 n + 289385190468499769855710885314458129061259032\right) a{\left(n + 41 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(220537689683650874690236472583653001701 n^{4} + 40724129779868229134610715739423482432686 n^{3} + 2819561263687754632546941830766750205066831 n^{2} + 86740879862110952808006367373423244736325394 n + 1000373783618110866178440392213217700754397216\right) a{\left(n + 44 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(222628210592528254152363777723899695982 n^{4} + 102358859304804247002461632152217175828628 n^{3} + 17630727576485287547801556855704690811023161 n^{2} + 1348380396355415761143776528803637744765167443 n + 38634584850792671948097353390457584651549927196\right) a{\left(n + 112 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(281541643516828945154059228846960497643 n^{4} + 47757230031458725130388862312985410135942 n^{3} + 3037128982057022171099398097879114886312125 n^{2} + 85822777774878752293098900966741873763788218 n + 909227987718211327694093249602133182975345560\right) a{\left(n + 42 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(399407632199993457119054986539046596208 n^{4} + 73486838616346603534451593401412602834329 n^{3} + 5070987134952495176014073361900934275407315 n^{2} + 155540101065218860450472807691204444397526662 n + 1789222713660232274298833449058008048036624542\right) a{\left(n + 45 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(1031657589485689873675609523952026213145 n^{4} + 208455437641954801540869499882726062504796 n^{3} + 15758269810273435040311524440719818319086123 n^{2} + 528287969536790627435652510946319826404587304 n + 6627811652765276042805667107177369893042632956\right) a{\left(n + 47 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(1568066343655187952076636924900722510667 n^{4} + 286742867618477896153445463239586621319054 n^{3} + 19648258766123100763214832638526174265316453 n^{2} + 597907026292425553693555057432696167026182730 n + 6817474183762768918972690424422851685270316424\right) a{\left(n + 46 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(2526144509684372452406208559861864484275 n^{4} + 1134530422741474840316648132795807916731174 n^{3} + 190937109737864182895085015573418504434375341 n^{2} + 14271287243069026516813702809267795616610719546 n + 399709004043504643430711125838331002711501199072\right) a{\left(n + 111 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(2734564822070153004878152098708496391783 n^{4} + 1199852889808087620211490665559809673793658 n^{3} + 197219144190205582354116083134776539808549625 n^{2} + 14391814668969881327728975459946445535553671070 n + 393384285544939832423130413367084208109690021448\right) a{\left(n + 110 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(4409096155413460550248305105918456689813 n^{4} + 956709717864777976494274089068784196414960 n^{3} + 77560276396494023198104592069266297020430705 n^{2} + 2785314582933053558467314770970616020118635950 n + 37396849924082609749578938283830846937316315056\right) a{\left(n + 50 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{2 \left(5152642311731009495734866822242979256453 n^{4} + 1094664591165947044781359741735290822972881 n^{3} + 87175730412599350578699052575633950088870392 n^{2} + 3084274931491126243074587461866153871934216761 n + 40903606019392613889848274241519252247951690181\right) a{\left(n + 51 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(5222803460992582498859683480584805913753 n^{4} + 1813411064624439179046045498690145462249870 n^{3} + 218810677217621959466692815197025113818160875 n^{2} + 10119095080478824430554843649544910593550797398 n + 114471241045828177581471616674644661757461311568\right) a{\left(n + 108 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(8454772211068780598372361045074985013233 n^{4} + 1678900870873301445163283157807640034106730 n^{3} + 125013126407095148830956727844924372064483615 n^{2} + 4136813975561687566000913992130364512038764326 n + 51328348270053018036203838616118219719662581448\right) a{\left(n + 48 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(8510569261285923069942750252692926980895 n^{4} + 3601821906066844034389073573060840245229542 n^{3} + 569891283831350248856407189882861359254876429 n^{2} + 39939601389141786960784311397549800215927046038 n + 1045664621973426101469254147135162793616123591920\right) a{\left(n + 109 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(8944583430369305009409452635895723575481 n^{4} + 1768884870402421069984541458556096989303214 n^{3} + 131187712579968867134766597289259140775065627 n^{2} + 4324341965277759728284884397650081483485685886 n + 53454846614198840406334566315356928497673031608\right) a{\left(n + 49 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(9976274825176763716007083673998011464635 n^{4} + 2708558130180920734030238368105292087287694 n^{3} + 268125059143725974117596455768355788601012145 n^{2} + 11557402923209679024224419129158579550311532678 n + 183929144921466969209930071917640745568843449028\right) a{\left(n + 56 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(23204444181830362369491060280481472940239 n^{4} + 11251768035907445860395675931175987205902098 n^{3} + 2025418376065016649760365295345637138668773501 n^{2} + 160693343767103239144472360459400321562226047250 n + 4747447701189209470239706191995433280803003333624\right) a{\left(n + 107 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(27120466273280507704306701724439303292241 n^{4} + 6281203601628036816724741110350548422491782 n^{3} + 542875572170217604921536134465386682814025775 n^{2} + 20764344639873818032718975292393870249150400274 n + 296705803021892241481242618530962495859345453640\right) a{\left(n + 53 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(48235908461400472796774505663198641840319 n^{4} + 10270939071740311441631611757430879325972342 n^{3} + 820242496535748149238856120230847443285512697 n^{2} + 29116462182633179655669363974548734310966922234 n + 387613817211934301126292629899873241954139210120\right) a{\left(n + 52 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(118605663310094444701744464519693272209573 n^{4} + 53578182819360417400406966342786244476803898 n^{3} + 9058118905771652038563434929570551876973271651 n^{2} + 679376532851239583574308987407695299321583594046 n + 19075677698756626507445245449204686793350423707488\right) a{\left(n + 106 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(119057778170323868103396215265718386922103 n^{4} + 27061253429313962040736598902841745704115700 n^{3} + 2306359460455066467623479388083563727855363483 n^{2} + 87351187088667114014679995272780102363023134594 n + 1240439913317300657892851774682514380472587705384\right) a{\left(n + 55 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(175382550179536600509355524152827097087429 n^{4} + 39545170921140309068626714468769359599381350 n^{3} + 3341759042144900451333355626938369429450023723 n^{2} + 125435201523507915670826974823884344474038103346 n + 1764583440718492728340721507187558095804545932576\right) a{\left(n + 54 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(202647178410457177198893138115066448127271 n^{4} + 48182994392312173650422976227108217748358542 n^{3} + 4293285277797247831121095485200465226316569249 n^{2} + 169911356040495700276198536009898132513519950970 n + 2520071508349199283491367190307773131973996671872\right) a{\left(n + 57 \right)}}{249860 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(211553737093642853637422841170686093407827 n^{4} + 91448650223649234416725298839823043793685210 n^{3} + 14816321421563742751609473640796679278463528544 n^{2} + 1066361137209492809774673238865482682238531762913 n + 28766729225653637970522893719804173255275638627572\right) a{\left(n + 104 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(284892436947195951134880336362286388592683 n^{4} + 121314710052670362877570194817185834064936686 n^{3} + 19365248343610163362898313254324420873120471121 n^{2} + 1373409524891142018710767056823173422295348422598 n + 36514228101685547733802648931296125731219285287096\right) a{\left(n + 103 \right)}}{124930 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(356337210116131989060080219386958987123813 n^{4} + 156808550614183947473318579108415512907325166 n^{3} + 25853997424517615397436679897955497674088286151 n^{2} + 1892956746154707549742441194688639303769006874526 n + 51932636949098192750567344819305299052336592065096\right) a{\left(n + 105 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(370327617397908988916592575653857590620791 n^{4} + 89724771088679005408043539145572131331123262 n^{3} + 8155906351280434620840016190109610218221935401 n^{2} + 329623025898376878401653923266822103265053648898 n + 4997230964738930124974194621649067739016747395704\right) a{\left(n + 59 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(637806025597793537695678561401027697183847 n^{4} + 256520392816858634067904317192926923614950243 n^{3} + 38677474936621058035266393689655649333718513585 n^{2} + 2591090687786613555577731606164052459197837644675 n + 65074112306441782697855224183909427088868665516006\right) a{\left(n + 99 \right)}}{62465 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(978462755945539427566348954427659418838125 n^{4} + 292426349903838740962382338164236273205316186 n^{3} + 29454678472331823379199352760503905529703598683 n^{2} + 1031761936617309594565459310647811780996701550534 n + 3208883827172837383251563966794384347190847203728\right) a{\left(n + 96 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(1003820365096936810769068160558093808117071 n^{4} + 283544766932442879434687322244583854172878464 n^{3} + 29971318438216853605365711666137181433999411117 n^{2} + 1405186516244127180611240823756628902900380013744 n + 24657942106832398410418758285519469794749465992860\right) a{\left(n + 66 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(1007226867468175017834571724904282230624063 n^{4} + 242296520240612314722661806354190534549875254 n^{3} + 21850464488796816327171230025321338634427618657 n^{2} + 875484669525695698205366990855152310990910336298 n + 13149818727147407896041447608659514960240673072720\right) a{\left(n + 58 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(1138141713515640133700515578384992324895227 n^{4} + 287673749195390947820901214428060143344392234 n^{3} + 27255681808235918282867792700008446371157469685 n^{2} + 1147237309641031109497690006571673133270743688582 n + 18101019421632846257384191367352732980209114591360\right) a{\left(n + 61 \right)}}{249860 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(1269817870036004795887982100400752578856443 n^{4} + 516774550048625736634138281131723642226884925 n^{3} + 78711449568803757125649595098818839189610936638 n^{2} + 5318636910771341614142148649156720869277562249340 n + 134541938606085330201732675092324888314926557506872\right) a{\left(n + 95 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(1326617641107480846077529400344218464080397 n^{4} + 341108229773404186407622161973572523471912648 n^{3} + 32881106886955254690951100593607155311316709457 n^{2} + 1408267907623595459505191863787534816649717540938 n + 22610708068809920040572329346098150573210919037096\right) a{\left(n + 62 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(1524771910054877617564355376095671883149944 n^{4} + 543197530832456648271755786096266575726259117 n^{3} + 72593570280233516540359584267893720115448508049 n^{2} + 4313350241219944551995588410287397717753368112874 n + 96144061634941377485201478578248909047630465485394\right) a{\left(n + 86 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(1549638902141915527462271259223179762592209 n^{4} + 386159977834404779544103644009829555232808238 n^{3} + 36062687612220978419618473152209462121938607375 n^{2} + 1495893353295087184136362105758578173626281945162 n + 23255153570210351805117229823582877227635405487208\right) a{\left(n + 60 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(1885765751959018036866298914411176697687722 n^{4} + 744578967942181016271039938859701944327852376 n^{3} + 110189029523118815142493473770240781827177103601 n^{2} + 7243536453425945507083619531931250454465379430345 n + 178465763652749289624002988606632874772702928627832\right) a{\left(n + 98 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(2147747584574310830798093885409543411096131 n^{4} + 566917965752773508168448230098963846304192370 n^{3} + 56094616018764108201018937087444353189796451065 n^{2} + 2465899744921122829618531348701171065692683836130 n + 40634939539372102526082541510762714847519123127774\right) a{\left(n + 64 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(2175035074780229795824232912195821470273031 n^{4} + 562595541785494052599883896252002311442359030 n^{3} + 54539104305647279498224453838378896372573964009 n^{2} + 2348573268421303258655274918901051486366409951194 n + 37906509412637657900500850590624721998807849580280\right) a{\left(n + 63 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(2326001801781815353254640499541967911908049 n^{4} + 818720303455919787799761364497171998324173370 n^{3} + 107244102491348153426455084306832483967372802947 n^{2} + 6188054321927685677160076777134193391437755035410 n + 132481672222236665417264311158244773569887764364848\right) a{\left(n + 91 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(2734661927427413545264826845881039214648035 n^{4} + 976927054539917180600709312969017521296245790 n^{3} + 130896241825512677103498311098419570866251939627 n^{2} + 7796210859482635864188923938050141750436993898476 n + 174158122849315252744646286286522071994915506325414\right) a{\left(n + 88 \right)}}{62465 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(2943272388949989282844097264993620324960234 n^{4} + 1101841410112016069671167074857978424927737787 n^{3} + 154591336574950887277202684892951660225049073234 n^{2} + 9634087034401595622899894384659078737641337314821 n + 225011453103666103683650574412287521506357664263026\right) a{\left(n + 92 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(3018050501583905881503003658577156539661735 n^{4} + 1267369871977456053562832811276389400443964230 n^{3} + 199523196683159643989851377791406318949542408961 n^{2} + 13956773967826321559021857767091907972744299106338 n + 366011158324462172726734681320820892911620437691744\right) a{\left(n + 102 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(3136302799743193202905203624080914494174427 n^{4} + 1161530595687401236963985524017317297260154079 n^{3} + 161441507853045129260086420987686675629257097732 n^{2} + 9980328289984972132636440999973449815508061284180 n + 231536651658023545403982759577785718715391991144290\right) a{\left(n + 90 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(4700907194146364169981556655163449961826915 n^{4} + 1947174362093265502362381259512130202193592502 n^{3} + 302383417929149022605814804988135167417496693445 n^{2} + 20865488561107112560722614990308408806341364913234 n + 539798455797564796447688604091953534080962383450024\right) a{\left(n + 101 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(5148518840918952631388612383387042533683741 n^{4} + 1383727617338256382938970608412453337437361758 n^{3} + 139406609446519789554281987588767379553697462459 n^{2} + 6239733564968501620152350728138931858349028364834 n + 104691607740242636399495015772802538074010576171160\right) a{\left(n + 65 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(5398990249122801906225491531844692313358649 n^{4} + 2070079402286178479976733262947874129361947562 n^{3} + 297158405295474659541116567443744505905163246827 n^{2} + 18925605997126689806434338940339861732463004285042 n + 451156607628277040716781328734634611732243610648240\right) a{\left(n + 97 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(5754388408708156035898752695294581461566276 n^{4} + 1699003907411551737163639553106638793497548797 n^{3} + 188051040480438665996308754075678265258812757886 n^{2} + 9247698145912938866786344160970615171671356821873 n + 170485058580600448195758874809674520339335765997264\right) a{\left(n + 74 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(6444476321922179726125966356361207593649321 n^{4} + 2631981598297592843550149642296348264755061326 n^{3} + 403002596322846084667737738612448613586414024143 n^{2} + 27418855386804795122131542424975872966567815582466 n + 699393408311518634602366652905794662406200761756680\right) a{\left(n + 100 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(6515609819305075738785001853844557779347281 n^{4} + 1859819935757688513352973595521295200261582962 n^{3} + 198980033863864063780256222997713074586598389927 n^{2} + 9457106480490033127866545102394770170990965059958 n + 168473756219531123673208228842625608694193851879880\right) a{\left(n + 69 \right)}}{249860 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(7052944756631848832721420849407409772713343 n^{4} + 1946252876962821056052330112663111642168340338 n^{3} + 201156478684708091474049746819788039307312712665 n^{2} + 9228850509094074194354159427496343547200030900990 n + 158576619267074758206548494111199368142565879501216\right) a{\left(n + 70 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(8976632269180939882236511062855666614062897 n^{4} + 2714380901546617628866648591411321484964253922 n^{3} + 307592843811768513268016368248781234647593346579 n^{2} + 15481824501397109908262124863134093011800931392714 n + 292030453765696494818254100036345933924367309070712\right) a{\left(n + 73 \right)}}{249860 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(11025109041789961459958743572237303448396213 n^{4} + 4308788394112423836938271201149994550549978714 n^{3} + 631237024078493276954422263915380491990091269667 n^{2} + 41084972133275326359207309790707348842299990208486 n + 1002403757615016772928362788650832571113679081924272\right) a{\left(n + 94 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(12816007924007458912669589718557348268646985 n^{4} + 4090784241542877677922108549901163579169622090 n^{3} + 489631570040478277075073997605691744533915146367 n^{2} + 26045299155643075901840700596123604863845334766838 n + 519519725087704833775221088396266422689354734716324\right) a{\left(n + 79 \right)}}{124930 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(12821481971512922811373588381553061958092593 n^{4} + 3582175188620510095496655787621396524993343110 n^{3} + 375189289137849657846792952839130202755163568091 n^{2} + 17459696865259841192643412525527441071321109168882 n + 304593588904454120806376968896547476264011655997536\right) a{\left(n + 68 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(13574886937241115156656918638654831384650937 n^{4} + 4927039403541461363668582213747126084673061390 n^{3} + 670849902357830759794449093539535428820957670463 n^{2} + 40610460461313945110847926132749719688942052290614 n + 922220652088575273193625675705988728414197996500900\right) a{\left(n + 89 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(13903116853620682123283777691830643928021315 n^{4} + 3808069613136587044097265276199201543330292094 n^{3} + 391022017507748508283479702537946721844553263941 n^{2} + 17839884312773798390593448343841840444270726300386 n + 305137461624399437090675189392732888610048473391040\right) a{\left(n + 67 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(14187029241091476303824302457368037951347959 n^{4} + 5421607567544290378071139963614723072410856826 n^{3} + 776733819357869170617784123768127156834756249913 n^{2} + 49443540965032535896381602876789771484339130397662 n + 1179922689607339782010186635126125742739141822625208\right) a{\left(n + 93 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(15027675067930076596321919469235155753564481 n^{4} + 4857885574533149570421661436630711947242666014 n^{3} + 588624677471771309739047629207567404656234264195 n^{2} + 31684496181794905064842573625056941058838210814334 n + 639265470134833987731949148009061773019939302950272\right) a{\left(n + 82 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(16810364314681915478834077382524181547458955 n^{4} + 5114331171140164790924184731707019331824901112 n^{3} + 583408932160056543276548180109279372420735949926 n^{2} + 29574522472350108205186057922097951465129517480331 n + 562132008643835781567229709098441824123429447164382\right) a{\left(n + 75 \right)}}{187395 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(16917085982837129232622238189303774908178267 n^{4} + 4987167964296614013242625061530361235955969234 n^{3} + 551184309849795312232647617910761632254779771625 n^{2} + 27067077218560476255288787352694747408785777741170 n + 498313094540020156210903733280682764978488229144872\right) a{\left(n + 72 \right)}}{249860 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(19447638097945251543547159492447283742465983 n^{4} + 5623488631460672563612677794863343924352366396 n^{3} + 609658803556239612671450294957673582377272649167 n^{2} + 29369632417267871502890497188385475802366492882438 n + 530465129784987554240082541725012632032534554181176\right) a{\left(n + 71 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(21946296205450597311075617089885736188002989 n^{4} + 7710688819325553096239774522912716607457593422 n^{3} + 1015874633689072925420765442571457443136127459979 n^{2} + 59481836552919753129726560791870339074055328960858 n + 1305978060847157453611616444583698973888323071986600\right) a{\left(n + 87 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(24482746638338137509126643229718955036261175 n^{4} + 7586502178092736781469886856825739897557678298 n^{3} + 881389897245803244110489057373899379691749349241 n^{2} + 45501606172239208325219870744057877638800272780270 n + 880708582656921367383477400792092490426844937929912\right) a{\left(n + 76 \right)}}{249860 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(29698520474177230173394550038311861362896109 n^{4} + 9224286064522895878156220091749904447386820910 n^{3} + 1074162375667418886443564886314837856174627421903 n^{2} + 55582311894390243760822898248797268417665536632622 n + 1078328190781200704880350886228113400840748005560232\right) a{\left(n + 78 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(33386134383019085769304612000536483834624693 n^{4} + 10609883026716409301396762988472135630201845682 n^{3} + 1263651610224244998542599432384197694281978615483 n^{2} + 66851241053032870417956530260484982116845191227726 n + 1325492044808671233159124539420599628437264744240424\right) a{\left(n + 77 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(40207526063484251643015848829345964355648715 n^{4} + 13052008796592943231654533144362394103599743072 n^{3} + 1588709644589905554976105727764159064538334427901 n^{2} + 85940195041310697820938481834361296492408070629756 n + 1743202254114706152794686325116194827819476026891732\right) a{\left(n + 80 \right)}}{374790 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(40948833576325753508933723898122068090445753 n^{4} + 14128166046517884331446605369334579160930597702 n^{3} + 1828240074787000332053058243753381866164466558323 n^{2} + 105165326932668467085866548240667762543836458529766 n + 2268924565254253765997125643744775773405198584686720\right) a{\left(n + 85 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(41083859694186375341254121750939835531364533 n^{4} + 13598273172889863620352276516541130653495886018 n^{3} + 1687469552592244789798335246819497221519282141203 n^{2} + 93050027156384087043735914569130939798281119939166 n + 1923718879662029947610318899288744663587832010390544\right) a{\left(n + 81 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} + \frac{\left(55919575598076246126309263748650325424574741 n^{4} + 18706083153296563797812890805665321032391950038 n^{3} + 2346695042395156594010276296680139848483013363435 n^{2} + 130849869269268814659816992501449073818789479297106 n + 2736203680990659428921289912625720899516147731895768\right) a{\left(n + 83 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)} - \frac{\left(63484090352259739492766929774116961116750815 n^{4} + 21573046581154930118526490125490939899089645454 n^{3} + 2749344546724608221178335372742497828739825362941 n^{2} + 155742106067338205677583969235571908884837631036822 n + 3308702706487571360859247900372167039180329051207304\right) a{\left(n + 84 \right)}}{749580 \left(n + 149\right) \left(n + 150\right) \left(n + 151\right) \left(n + 153\right)}, \quad n \geq 150\)

This specification was found using the strategy pack "Point Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 345 rules.

Finding the specification took 62050 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 345 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{18}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{258}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{13}\! \left(x \right) &= \frac{F_{14}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= \frac{F_{17}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{17}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{18}\! \left(x \right) &= x\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{0}\! \left(x \right) F_{12}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{0}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{27}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{26}\! \left(x \right) &= 0\\ F_{27}\! \left(x \right) &= F_{18}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{18}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{18}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{34}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{18}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{39}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{18}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= x^{2}\\ F_{45}\! \left(x \right) &= 2 F_{26}\! \left(x \right)+F_{46}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{18}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{18}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{49}\! \left(x \right) &= x^{2}\\ F_{50}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{51}\! \left(x \right)+F_{61}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{18}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{18}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{57}\! \left(x \right) &= 3 F_{26}\! \left(x \right)+F_{58}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{18}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{18}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{18}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{44}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{56}\! \left(x \right)+F_{61}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{18}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{68}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{18}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{18}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{18}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{46}\! \left(x \right)+F_{47}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= 0\\ F_{79}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{58}\! \left(x \right)+F_{59}\! \left(x \right)+F_{80}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{80}\! \left(x \right) &= 0\\ F_{81}\! \left(x \right) &= 0\\ F_{82}\! \left(x \right) &= F_{18}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{158}\! \left(x \right)+F_{160}\! \left(x \right)+F_{26}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{18}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{26}\! \left(x \right)+F_{89}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{18}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{18}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{95}\! \left(x \right) &= 3 F_{26}\! \left(x \right)+F_{96}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{18}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{18}\! \left(x \right) F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{92}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{18}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{115}\! \left(x \right)+F_{120}\! \left(x \right)+F_{140}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{108}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{111}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{18}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{111}\! \left(x \right) &= 4 F_{26}\! \left(x \right)+F_{112}\! \left(x \right)+F_{113}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{104}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{108}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{116}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{150}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{119}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{26}\! \left(x \right)+F_{94}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{115}\! \left(x \right)+F_{120}\! \left(x \right)+F_{140}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{121}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{131}\! \left(x \right)\\ F_{122}\! \left(x \right) &= 2 F_{26}\! \left(x \right)+F_{123}\! \left(x \right)+F_{129}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{128}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{128}\! \left(x \right)\\ F_{131}\! \left(x \right) &= 3 F_{26}\! \left(x \right)+F_{132}\! \left(x \right)+F_{138}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{135}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{137}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{133}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{139}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{137}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{141}\! \left(x \right) &= 2 F_{26}\! \left(x \right)+F_{142}\! \left(x \right)+F_{148}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{144}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{147}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{141}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{149}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{147}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)+F_{154}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)+F_{153}\! \left(x \right)+F_{26}\! \left(x \right)+F_{96}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{152}\! \left(x \right) &= 0\\ F_{153}\! \left(x \right) &= 0\\ F_{154}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{113}\! \left(x \right)+F_{155}\! \left(x \right)+F_{156}\! \left(x \right)+F_{157}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{155}\! \left(x \right) &= 0\\ F_{156}\! \left(x \right) &= 0\\ F_{157}\! \left(x \right) &= 0\\ F_{158}\! \left(x \right) &= F_{159}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{133}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{143}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{163}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{232}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{0}\! \left(x \right) F_{165}\! \left(x \right)\\ F_{165}\! \left(x \right) &= \frac{F_{166}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{166}\! \left(x \right) &= F_{167}\! \left(x \right)\\ F_{167}\! \left(x \right) &= -F_{168}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{174}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{171}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)+F_{173}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{169}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{175}\! \left(x \right)+F_{228}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{176}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{177}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{193}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)+F_{189}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{18}\! \left(x \right) F_{180}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)+F_{182}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{178}\! \left(x \right)\\ F_{182}\! \left(x \right) &= F_{183}\! \left(x \right)+F_{185}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{184}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{169}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{185}\! \left(x \right) &= 2 F_{26}\! \left(x \right)+F_{186}\! \left(x \right)+F_{187}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{178}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{187}\! \left(x \right) &= F_{18}\! \left(x \right) F_{188}\! \left(x \right)\\ F_{188}\! \left(x \right) &= F_{182}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{18}\! \left(x \right) F_{190}\! \left(x \right)\\ F_{190}\! \left(x \right) &= F_{191}\! \left(x \right)+F_{192}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{183}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{102}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)+F_{204}\! \left(x \right)+F_{209}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{18}\! \left(x \right) F_{195}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{196}\! \left(x \right)+F_{197}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{174}\! \left(x \right)+F_{193}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{198}\! \left(x \right)+F_{200}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{174}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{200}\! \left(x \right) &= 3 F_{26}\! \left(x \right)+F_{201}\! \left(x \right)+F_{202}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{18}\! \left(x \right) F_{193}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{18}\! \left(x \right) F_{203}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{197}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{18}\! \left(x \right) F_{205}\! \left(x \right)\\ F_{205}\! \left(x \right) &= F_{206}\! \left(x \right)+F_{222}\! \left(x \right)\\ F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)+F_{208}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{184}\! \left(x \right)+F_{189}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{199}\! \left(x \right)+F_{204}\! \left(x \right)+F_{209}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{18}\! \left(x \right) F_{210}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{211}\! \left(x \right)+F_{221}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{212}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{212}\! \left(x \right) &= 2 F_{26}\! \left(x \right)+F_{213}\! \left(x \right)+F_{219}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{18}\! \left(x \right) F_{214}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{215}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{18}\! \left(x \right) F_{216}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{217}\! \left(x \right)+F_{218}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{214}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{183}\! \left(x \right)+F_{212}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{18}\! \left(x \right) F_{220}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{218}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{141}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{223}\! \left(x \right)+F_{225}\! \left(x \right)\\ F_{223}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{187}\! \left(x \right)+F_{224}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{224}\! \left(x \right) &= 0\\ F_{225}\! \left(x \right) &= F_{201}\! \left(x \right)+F_{202}\! \left(x \right)+F_{226}\! \left(x \right)+F_{227}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{226}\! \left(x \right) &= 0\\ F_{227}\! \left(x \right) &= 0\\ F_{228}\! \left(x \right) &= F_{18}\! \left(x \right) F_{229}\! \left(x \right)\\ F_{229}\! \left(x \right) &= F_{230}\! \left(x \right)+F_{231}\! \left(x \right)\\ F_{230}\! \left(x \right) &= F_{214}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{231}\! \left(x \right) &= F_{143}\! \left(x \right)\\ F_{232}\! \left(x \right) &= F_{233}\! \left(x \right)\\ F_{233}\! \left(x \right) &= F_{234}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{234}\! \left(x \right) &= F_{235}\! \left(x \right)+F_{250}\! \left(x \right)\\ F_{235}\! \left(x \right) &= F_{236}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{236}\! \left(x \right) &= F_{237}\! \left(x \right)\\ F_{237}\! \left(x \right) &= F_{18}\! \left(x \right) F_{238}\! \left(x \right)\\ F_{238}\! \left(x \right) &= F_{239}\! \left(x \right)+F_{244}\! \left(x \right)\\ F_{239}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{240}\! \left(x \right)\\ F_{240}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{241}\! \left(x \right)\\ F_{241}\! \left(x \right) &= F_{242}\! \left(x \right)\\ F_{242}\! \left(x \right) &= F_{18}\! \left(x \right) F_{243}\! \left(x \right)\\ F_{243}\! \left(x \right) &= F_{244}\! \left(x \right)+F_{249}\! \left(x \right)\\ F_{244}\! \left(x \right) &= F_{245}\! \left(x \right)\\ F_{245}\! \left(x \right) &= F_{18}\! \left(x \right) F_{246}\! \left(x \right)\\ F_{246}\! \left(x \right) &= F_{238}\! \left(x \right)+F_{247}\! \left(x \right)\\ F_{247}\! \left(x \right) &= F_{248}\! \left(x \right)\\ F_{248}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{5}\! \left(x \right)\\ F_{249}\! \left(x \right) &= F_{16}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{250}\! \left(x \right) &= F_{251}\! \left(x \right) F_{256}\! \left(x \right)\\ F_{251}\! \left(x \right) &= -F_{255}\! \left(x \right)+F_{252}\! \left(x \right)\\ F_{252}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{253}\! \left(x \right)\\ F_{253}\! \left(x \right) &= F_{254}\! \left(x \right)\\ F_{254}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right) F_{252}\! \left(x \right)\\ F_{255}\! \left(x \right) &= F_{0}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{256}\! \left(x \right) &= F_{257}\! \left(x \right)\\ F_{257}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{18}\! \left(x \right)\\ F_{258}\! \left(x \right) &= F_{259}\! \left(x \right)+F_{263}\! \left(x \right)\\ F_{259}\! \left(x \right) &= F_{2}\! \left(x \right) F_{260}\! \left(x \right)\\ F_{260}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{261}\! \left(x \right)\\ F_{261}\! \left(x \right) &= F_{262}\! \left(x \right)\\ F_{262}\! \left(x \right) &= F_{13}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{263}\! \left(x \right) &= F_{264}\! \left(x \right)\\ F_{264}\! \left(x \right) &= F_{18}\! \left(x \right) F_{265}\! \left(x \right)\\ F_{265}\! \left(x \right) &= F_{266}\! \left(x \right)+F_{332}\! \left(x \right)\\ F_{266}\! \left(x \right) &= F_{267}\! \left(x \right)+F_{268}\! \left(x \right)\\ F_{267}\! \left(x \right) &= F_{12}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{268}\! \left(x \right) &= F_{269}\! \left(x \right)\\ F_{269}\! \left(x \right) &= F_{0}\! \left(x \right) F_{270}\! \left(x \right)\\ F_{270}\! \left(x \right) &= F_{271}\! \left(x \right)+F_{328}\! \left(x \right)\\ F_{271}\! \left(x \right) &= F_{260}\! \left(x \right) F_{272}\! \left(x \right)\\ F_{272}\! \left(x \right) &= -F_{325}\! \left(x \right)+F_{273}\! \left(x \right)\\ F_{273}\! \left(x \right) &= F_{274}\! \left(x \right)\\ F_{274}\! \left(x \right) &= F_{18}\! \left(x \right) F_{275}\! \left(x \right)\\ F_{275}\! \left(x \right) &= F_{276}\! \left(x \right)+F_{320}\! \left(x \right)\\ F_{276}\! \left(x \right) &= F_{277}\! \left(x \right)+F_{278}\! \left(x \right)\\ F_{277}\! \left(x \right) &= F_{0}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{278}\! \left(x \right) &= F_{279}\! \left(x \right)+F_{292}\! \left(x \right)\\ F_{279}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{280}\! \left(x \right)\\ F_{280}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{281}\! \left(x \right)+F_{282}\! \left(x \right)\\ F_{281}\! \left(x \right) &= F_{18}\! \left(x \right) F_{279}\! \left(x \right)\\ F_{282}\! \left(x \right) &= F_{18}\! \left(x \right) F_{283}\! \left(x \right)\\ F_{283}\! \left(x \right) &= F_{284}\! \left(x \right)+F_{288}\! \left(x \right)\\ F_{284}\! \left(x \right) &= F_{285}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{285}\! \left(x \right) &= F_{286}\! \left(x \right)\\ F_{286}\! \left(x \right) &= F_{18}\! \left(x \right) F_{287}\! \left(x \right)\\ F_{287}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{285}\! \left(x \right)\\ F_{288}\! \left(x \right) &= F_{289}\! \left(x \right)\\ F_{289}\! \left(x \right) &= F_{290}\! \left(x \right)\\ F_{290}\! \left(x \right) &= F_{18}\! \left(x \right) F_{291}\! \left(x \right)\\ F_{291}\! \left(x \right) &= F_{289}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{292}\! \left(x \right) &= F_{293}\! \left(x \right)\\ F_{293}\! \left(x \right) &= F_{18}\! \left(x \right) F_{294}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{294}\! \left(x \right) &= F_{295}\! \left(x \right)+F_{297}\! \left(x \right)\\ F_{295}\! \left(x \right) &= F_{2}\! \left(x \right) F_{296}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{296}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{297}\! \left(x \right) &= F_{298}\! \left(x \right)+F_{315}\! \left(x \right)\\ F_{298}\! \left(x \right) &= F_{299}\! \left(x , 1\right)\\ F_{299}\! \left(x , y\right) &= F_{300}\! \left(x , y\right)\\ F_{300}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{301}\! \left(x , y\right)\\ F_{301}\! \left(x , y\right) &= F_{276}\! \left(x \right)+F_{302}\! \left(x , y\right)\\ F_{302}\! \left(x , y\right) &= F_{303}\! \left(x , y\right)\\ F_{303}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{304}\! \left(x , y\right)\\ F_{304}\! \left(x , y\right) &= F_{305}\! \left(x , y\right)+F_{311}\! \left(x , y\right)\\ F_{305}\! \left(x , y\right) &= F_{306}\! \left(x , y\right) F_{31}\! \left(x \right)\\ F_{306}\! \left(x , y\right) &= F_{307}\! \left(x , y\right)\\ F_{307}\! \left(x , y\right) &= F_{308}\! \left(x , y\right)^{2} F_{310}\! \left(x , y\right)\\ F_{308}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{309}\! \left(x , y\right)\\ F_{309}\! \left(x , y\right) &= F_{308}\! \left(x , y\right) F_{310}\! \left(x , y\right)\\ F_{310}\! \left(x , y\right) &= y x\\ F_{311}\! \left(x , y\right) &= F_{24}\! \left(x \right) F_{312}\! \left(x , y\right)\\ F_{312}\! \left(x , y\right) &= F_{313}\! \left(x , y\right)\\ F_{313}\! \left(x , y\right) &= F_{308}\! \left(x , y\right) F_{310}\! \left(x , y\right) F_{314}\! \left(x , y\right)\\ F_{314}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{310}\! \left(x , y\right)\\ F_{315}\! \left(x \right) &= F_{316}\! \left(x \right)\\ F_{316}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right) F_{317}\! \left(x \right)\\ F_{317}\! \left(x \right) &= F_{318}\! \left(x \right)+F_{319}\! \left(x \right)\\ F_{318}\! \left(x \right) &= F_{29}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{319}\! \left(x \right) &= F_{18}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{320}\! \left(x \right) &= F_{321}\! \left(x \right)\\ F_{321}\! \left(x \right) &= F_{0}\! \left(x \right) F_{29}\! \left(x \right) F_{322}\! \left(x \right)\\ F_{322}\! \left(x \right) &= F_{323}\! \left(x \right)+F_{324}\! \left(x \right)\\ F_{323}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{324}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{325}\! \left(x \right) &= F_{29}\! \left(x \right) F_{326}\! \left(x \right)\\ F_{326}\! \left(x \right) &= F_{327}\! \left(x \right)\\ F_{327}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right) F_{322}\! \left(x \right)\\ F_{328}\! \left(x \right) &= F_{326}\! \left(x \right) F_{329}\! \left(x \right)\\ F_{329}\! \left(x \right) &= F_{330}\! \left(x \right)\\ F_{330}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right) F_{331}\! \left(x \right)\\ F_{331}\! \left(x \right) &= F_{260}\! \left(x \right)+F_{329}\! \left(x \right)\\ F_{332}\! \left(x \right) &= F_{333}\! \left(x \right)+F_{334}\! \left(x \right)\\ F_{333}\! \left(x \right) &= F_{2}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{334}\! \left(x \right) &= F_{335}\! \left(x \right)\\ F_{335}\! \left(x \right) &= F_{0}\! \left(x \right) F_{336}\! \left(x \right)\\ F_{336}\! \left(x \right) &= F_{337}\! \left(x \right)\\ F_{337}\! \left(x \right) &= F_{18}\! \left(x \right) F_{331}\! \left(x \right) F_{338}\! \left(x \right)\\ F_{338}\! \left(x \right) &= F_{339}\! \left(x \right)+F_{340}\! \left(x \right)\\ F_{339}\! \left(x \right) &= F_{0}\! \left(x \right) F_{326}\! \left(x \right)\\ F_{340}\! \left(x \right) &= F_{341}\! \left(x \right)\\ F_{341}\! \left(x \right) &= F_{0}\! \left(x \right) F_{29}\! \left(x \right) F_{342}\! \left(x \right)\\ F_{342}\! \left(x \right) &= F_{343}\! \left(x \right)\\ F_{343}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right) F_{344}\! \left(x \right)\\ F_{344}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{342}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 712 rules.

Finding the specification took 36608 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 712 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{19}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{472}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{456}\! \left(x \right)\\ F_{12}\! \left(x \right) &= \frac{F_{13}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= -F_{454}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= \frac{F_{16}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{19}\! \left(x \right) &= x\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{19}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= \frac{F_{23}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{452}\! \left(x \right)\\ F_{25}\! \left(x \right) &= -F_{437}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{166}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{0}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{32}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{31}\! \left(x \right) &= 0\\ F_{32}\! \left(x \right) &= F_{19}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{19}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{19}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{39}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{19}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{44}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{19}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= x^{2}\\ F_{50}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{51}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{19}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{19}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{54}\! \left(x \right) &= x^{2}\\ F_{55}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{56}\! \left(x \right)+F_{66}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{19}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{19}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{62}\! \left(x \right) &= 3 F_{31}\! \left(x \right)+F_{63}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{19}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{19}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{19}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{49}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{61}\! \left(x \right)+F_{66}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{19}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{73}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{19}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{19}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{19}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{51}\! \left(x \right)+F_{52}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= 0\\ F_{84}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{63}\! \left(x \right)+F_{64}\! \left(x \right)+F_{85}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{85}\! \left(x \right) &= 0\\ F_{86}\! \left(x \right) &= 0\\ F_{87}\! \left(x \right) &= F_{19}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{165}\! \left(x \right)+F_{31}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{19}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{106}\! \left(x \right)+F_{31}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{19}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{19}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{100}\! \left(x \right) &= 3 F_{31}\! \left(x \right)+F_{101}\! \left(x \right)+F_{102}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{19}\! \left(x \right) F_{93}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{97}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{19}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{120}\! \left(x \right)+F_{125}\! \left(x \right)+F_{145}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{113}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{116}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{19}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{116}\! \left(x \right) &= 4 F_{31}\! \left(x \right)+F_{117}\! \left(x \right)+F_{118}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{109}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{113}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{121}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{155}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{124}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{106}\! \left(x \right)+F_{31}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{120}\! \left(x \right)+F_{125}\! \left(x \right)+F_{145}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{136}\! \left(x \right)\\ F_{127}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{128}\! \left(x \right)+F_{134}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{131}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{133}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{135}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{133}\! \left(x \right)\\ F_{136}\! \left(x \right) &= 3 F_{31}\! \left(x \right)+F_{137}\! \left(x \right)+F_{143}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{138}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{140}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)+F_{142}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{144}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{142}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{146}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{147}\! \left(x \right)+F_{153}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{148}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{150}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)+F_{152}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{146}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{154}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{152}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{159}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{102}\! \left(x \right)+F_{157}\! \left(x \right)+F_{158}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{157}\! \left(x \right) &= 0\\ F_{158}\! \left(x \right) &= 0\\ F_{159}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{118}\! \left(x \right)+F_{160}\! \left(x \right)+F_{161}\! \left(x \right)+F_{162}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{160}\! \left(x \right) &= 0\\ F_{161}\! \left(x \right) &= 0\\ F_{162}\! \left(x \right) &= 0\\ F_{163}\! \left(x \right) &= F_{164}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{138}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{148}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{167}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{168}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{435}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{0}\! \left(x \right) F_{170}\! \left(x \right)\\ F_{170}\! \left(x \right) &= \frac{F_{171}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{173}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)+F_{433}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{175}\! \left(x \right)+F_{252}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{176}\! \left(x \right)+F_{250}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{248}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{180}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{176}\! \left(x \right)+F_{181}\! \left(x \right)\\ F_{181}\! \left(x \right) &= -F_{184}\! \left(x \right)+F_{182}\! \left(x \right)\\ F_{182}\! \left(x \right) &= \frac{F_{183}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{183}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{185}\! \left(x \right)+F_{248}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{187}\! \left(x \right)+F_{244}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{187}\! \left(x \right) &= F_{188}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{188}\! \left(x \right) &= F_{185}\! \left(x \right)+F_{189}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{190}\! \left(x \right)+F_{210}\! \left(x \right)\\ F_{190}\! \left(x \right) &= F_{191}\! \left(x \right)+F_{196}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{19}\! \left(x \right) F_{192}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{193}\! \left(x \right)+F_{194}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{190}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{195}\! \left(x \right)+F_{207}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{196}\! \left(x \right)+F_{31}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{19}\! \left(x \right) F_{197}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{198}\! \left(x \right)+F_{200}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{199}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{201}\! \left(x \right)+F_{202}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{108}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{203}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{19}\! \left(x \right) F_{204}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)\\ F_{205}\! \left(x \right) &= F_{19}\! \left(x \right) F_{206}\! \left(x \right)\\ F_{206}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{208}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{19}\! \left(x \right) F_{209}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{194}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{211}\! \left(x \right)+F_{217}\! \left(x \right)+F_{230}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{19}\! \left(x \right) F_{212}\! \left(x \right)\\ F_{212}\! \left(x \right) &= F_{213}\! \left(x \right)+F_{214}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{210}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{215}\! \left(x \right)+F_{243}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)+F_{217}\! \left(x \right)+F_{230}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{186}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{19}\! \left(x \right) F_{218}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{219}\! \left(x \right)+F_{220}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{195}\! \left(x \right)+F_{215}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{221}\! \left(x \right)+F_{224}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{208}\! \left(x \right)+F_{222}\! \left(x \right)+F_{223}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{19}\! \left(x \right) F_{190}\! \left(x \right)\\ F_{223}\! \left(x \right) &= 0\\ F_{224}\! \left(x \right) &= F_{225}\! \left(x \right)+F_{226}\! \left(x \right)+F_{228}\! \left(x \right)+F_{229}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{225}\! \left(x \right) &= F_{19}\! \left(x \right) F_{210}\! \left(x \right)\\ F_{226}\! \left(x \right) &= F_{19}\! \left(x \right) F_{227}\! \left(x \right)\\ F_{227}\! \left(x \right) &= F_{214}\! \left(x \right)\\ F_{228}\! \left(x \right) &= 0\\ F_{229}\! \left(x \right) &= 0\\ F_{230}\! \left(x \right) &= F_{19}\! \left(x \right) F_{231}\! \left(x \right)\\ F_{231}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{232}\! \left(x \right)\\ F_{232}\! \left(x \right) &= F_{233}\! \left(x \right)+F_{238}\! \left(x \right)\\ F_{233}\! \left(x \right) &= F_{234}\! \left(x \right)\\ F_{234}\! \left(x \right) &= F_{19}\! \left(x \right) F_{235}\! \left(x \right)\\ F_{235}\! \left(x \right) &= F_{236}\! \left(x \right)\\ F_{236}\! \left(x \right) &= F_{19}\! \left(x \right) F_{237}\! \left(x \right)\\ F_{237}\! \left(x \right) &= F_{235}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{238}\! \left(x \right) &= F_{239}\! \left(x \right)\\ F_{239}\! \left(x \right) &= F_{19}\! \left(x \right) F_{240}\! \left(x \right)\\ F_{240}\! \left(x \right) &= F_{241}\! \left(x \right)\\ F_{241}\! \left(x \right) &= F_{19}\! \left(x \right) F_{242}\! \left(x \right)\\ F_{242}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{240}\! \left(x \right)\\ F_{243}\! \left(x \right) &= F_{226}\! \left(x \right)\\ F_{244}\! \left(x \right) &= F_{19}\! \left(x \right) F_{245}\! \left(x \right)\\ F_{245}\! \left(x \right) &= F_{246}\! \left(x \right)+F_{247}\! \left(x \right)\\ F_{246}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{247}\! \left(x \right) &= F_{235}\! \left(x \right)+F_{240}\! \left(x \right)\\ F_{248}\! \left(x \right) &= F_{249}\! \left(x \right)\\ F_{249}\! \left(x \right) &= F_{175}\! \left(x \right) F_{19}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{250}\! \left(x \right) &= F_{251}\! \left(x \right)\\ F_{251}\! \left(x \right) &= F_{174}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{252}\! \left(x \right) &= F_{253}\! \left(x \right)+F_{432}\! \left(x \right)\\ F_{253}\! \left(x \right) &= F_{254}\! \left(x \right)\\ F_{254}\! \left(x \right) &= F_{19}\! \left(x \right) F_{255}\! \left(x \right)\\ F_{255}\! \left(x \right) &= F_{256}\! \left(x \right)+F_{387}\! \left(x \right)\\ F_{256}\! \left(x \right) &= \frac{F_{257}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{257}\! \left(x \right) &= F_{258}\! \left(x \right)\\ F_{258}\! \left(x \right) &= F_{259}\! \left(x \right)+F_{283}\! \left(x \right)\\ F_{259}\! \left(x \right) &= F_{2}\! \left(x \right) F_{260}\! \left(x \right)\\ F_{260}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{261}\! \left(x \right)\\ F_{261}\! \left(x \right) &= F_{262}\! \left(x \right)\\ F_{262}\! \left(x \right) &= F_{19}\! \left(x \right) F_{263}\! \left(x \right)\\ F_{263}\! \left(x \right) &= F_{260}\! \left(x \right)+F_{264}\! \left(x \right)\\ F_{264}\! \left(x \right) &= F_{265}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{265}\! \left(x \right) &= F_{266}\! \left(x \right)+F_{276}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{266}\! \left(x \right) &= F_{19}\! \left(x \right) F_{267}\! \left(x \right)\\ F_{267}\! \left(x \right) &= F_{268}\! \left(x \right)+F_{269}\! \left(x \right)\\ F_{268}\! \left(x \right) &= F_{261}\! \left(x \right)+F_{265}\! \left(x \right)\\ F_{269}\! \left(x \right) &= F_{270}\! \left(x \right)+F_{272}\! \left(x \right)\\ F_{270}\! \left(x \right) &= F_{271}\! \left(x \right)\\ F_{271}\! \left(x \right) &= F_{19}\! \left(x \right) F_{261}\! \left(x \right)\\ F_{272}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{273}\! \left(x \right)+F_{274}\! \left(x \right)\\ F_{273}\! \left(x \right) &= F_{19}\! \left(x \right) F_{265}\! \left(x \right)\\ F_{274}\! \left(x \right) &= F_{19}\! \left(x \right) F_{275}\! \left(x \right)\\ F_{275}\! \left(x \right) &= F_{269}\! \left(x \right)\\ F_{276}\! \left(x \right) &= F_{19}\! \left(x \right) F_{277}\! \left(x \right)\\ F_{277}\! \left(x \right) &= F_{278}\! \left(x \right)+F_{280}\! \left(x \right)\\ F_{278}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{279}\! \left(x \right)\\ F_{279}\! \left(x \right) &= F_{271}\! \left(x \right)+F_{276}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{280}\! \left(x \right) &= F_{281}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{281}\! \left(x \right) &= F_{273}\! \left(x \right)+F_{274}\! \left(x \right)+F_{282}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{282}\! \left(x \right) &= 0\\ F_{283}\! \left(x \right) &= F_{284}\! \left(x \right)\\ F_{284}\! \left(x \right) &= F_{19}\! \left(x \right) F_{285}\! \left(x \right)\\ F_{285}\! \left(x \right) &= F_{286}\! \left(x \right)+F_{289}\! \left(x \right)\\ F_{286}\! \left(x \right) &= F_{2}\! \left(x \right) F_{287}\! \left(x \right)\\ F_{287}\! \left(x \right) &= \frac{F_{288}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{288}\! \left(x \right) &= F_{177}\! \left(x \right)\\ F_{289}\! \left(x \right) &= F_{290}\! \left(x \right)\\ F_{290}\! \left(x \right) &= F_{291}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{291}\! \left(x \right) &= F_{292}\! \left(x \right)+F_{379}\! \left(x \right)\\ F_{292}\! \left(x \right) &= F_{293}\! \left(x \right)+F_{376}\! \left(x \right)\\ F_{293}\! \left(x \right) &= F_{294}\! \left(x \right)\\ F_{294}\! \left(x \right) &= F_{19}\! \left(x \right) F_{295}\! \left(x \right)\\ F_{295}\! \left(x \right) &= F_{296}\! \left(x \right)+F_{307}\! \left(x \right)\\ F_{296}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{297}\! \left(x \right)\\ F_{297}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{298}\! \left(x \right)\\ F_{298}\! \left(x \right) &= F_{299}\! \left(x \right)\\ F_{299}\! \left(x \right) &= F_{19}\! \left(x \right) F_{300}\! \left(x \right)\\ F_{300}\! \left(x \right) &= F_{301}\! \left(x \right)+F_{306}\! \left(x \right)\\ F_{301}\! \left(x \right) &= F_{302}\! \left(x \right)\\ F_{302}\! \left(x \right) &= F_{19}\! \left(x \right) F_{303}\! \left(x \right)\\ F_{303}\! \left(x \right) &= F_{295}\! \left(x \right)+F_{304}\! \left(x \right)\\ F_{304}\! \left(x \right) &= F_{305}\! \left(x \right)\\ F_{305}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{177}\! \left(x \right)\\ F_{306}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{307}\! \left(x \right) &= F_{308}\! \left(x \right)\\ F_{308}\! \left(x \right) &= F_{19}\! \left(x \right) F_{309}\! \left(x \right)\\ F_{309}\! \left(x \right) &= F_{295}\! \left(x \right)+F_{310}\! \left(x \right)\\ F_{310}\! \left(x \right) &= F_{311}\! \left(x \right)\\ F_{311}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{312}\! \left(x \right)\\ F_{312}\! \left(x \right) &= F_{313}\! \left(x \right)+F_{318}\! \left(x \right)\\ F_{313}\! \left(x \right) &= F_{314}\! \left(x \right)\\ F_{314}\! \left(x \right) &= F_{19}\! \left(x \right) F_{315}\! \left(x \right)\\ F_{315}\! \left(x \right) &= F_{316}\! \left(x \right)+F_{317}\! \left(x \right)\\ F_{316}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{313}\! \left(x \right)\\ F_{317}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{318}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{319}\! \left(x \right)+F_{372}\! \left(x \right)\\ F_{319}\! \left(x \right) &= F_{19}\! \left(x \right) F_{320}\! \left(x \right)\\ F_{320}\! \left(x \right) &= F_{312}\! \left(x \right)+F_{321}\! \left(x \right)\\ F_{321}\! \left(x \right) &= F_{322}\! \left(x \right)+F_{337}\! \left(x \right)\\ F_{322}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{323}\! \left(x \right)+F_{333}\! \left(x \right)\\ F_{323}\! \left(x \right) &= F_{19}\! \left(x \right) F_{324}\! \left(x \right)\\ F_{324}\! \left(x \right) &= F_{325}\! \left(x \right)+F_{326}\! \left(x \right)\\ F_{325}\! \left(x \right) &= F_{313}\! \left(x \right)+F_{322}\! \left(x \right)\\ F_{326}\! \left(x \right) &= F_{327}\! \left(x \right)+F_{329}\! \left(x \right)\\ F_{327}\! \left(x \right) &= F_{328}\! \left(x \right)\\ F_{328}\! \left(x \right) &= F_{19}\! \left(x \right) F_{313}\! \left(x \right)\\ F_{329}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{330}\! \left(x \right)+F_{331}\! \left(x \right)\\ F_{330}\! \left(x \right) &= F_{19}\! \left(x \right) F_{322}\! \left(x \right)\\ F_{331}\! \left(x \right) &= F_{19}\! \left(x \right) F_{332}\! \left(x \right)\\ F_{332}\! \left(x \right) &= F_{326}\! \left(x \right)\\ F_{333}\! \left(x \right) &= F_{19}\! \left(x \right) F_{334}\! \left(x \right)\\ F_{334}\! \left(x \right) &= F_{335}\! \left(x \right)+F_{336}\! \left(x \right)\\ F_{335}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{327}\! \left(x \right)\\ F_{336}\! \left(x \right) &= F_{107}\! \left(x \right)\\ F_{337}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{338}\! \left(x \right)+F_{348}\! \left(x \right)+F_{353}\! \left(x \right)\\ F_{338}\! \left(x \right) &= F_{19}\! \left(x \right) F_{339}\! \left(x \right)\\ F_{339}\! \left(x \right) &= F_{340}\! \left(x \right)+F_{341}\! \left(x \right)\\ F_{340}\! \left(x \right) &= F_{318}\! \left(x \right)+F_{337}\! \left(x \right)\\ F_{341}\! \left(x \right) &= F_{342}\! \left(x \right)+F_{344}\! \left(x \right)\\ F_{342}\! \left(x \right) &= F_{343}\! \left(x \right)\\ F_{343}\! \left(x \right) &= F_{19}\! \left(x \right) F_{318}\! \left(x \right)\\ F_{344}\! \left(x \right) &= 3 F_{31}\! \left(x \right)+F_{345}\! \left(x \right)+F_{346}\! \left(x \right)\\ F_{345}\! \left(x \right) &= F_{19}\! \left(x \right) F_{337}\! \left(x \right)\\ F_{346}\! \left(x \right) &= F_{19}\! \left(x \right) F_{347}\! \left(x \right)\\ F_{347}\! \left(x \right) &= F_{341}\! \left(x \right)\\ F_{348}\! \left(x \right) &= F_{19}\! \left(x \right) F_{349}\! \left(x \right)\\ F_{349}\! \left(x \right) &= F_{350}\! \left(x \right)+F_{366}\! \left(x \right)\\ F_{350}\! \left(x \right) &= F_{351}\! \left(x \right)+F_{352}\! \left(x \right)\\ F_{351}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{328}\! \left(x \right)+F_{333}\! \left(x \right)\\ F_{352}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{343}\! \left(x \right)+F_{348}\! \left(x \right)+F_{353}\! \left(x \right)\\ F_{353}\! \left(x \right) &= F_{19}\! \left(x \right) F_{354}\! \left(x \right)\\ F_{354}\! \left(x \right) &= F_{355}\! \left(x \right)+F_{365}\! \left(x \right)\\ F_{355}\! \left(x \right) &= F_{356}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{356}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{357}\! \left(x \right)+F_{363}\! \left(x \right)\\ F_{357}\! \left(x \right) &= F_{19}\! \left(x \right) F_{358}\! \left(x \right)\\ F_{358}\! \left(x \right) &= F_{359}\! \left(x \right)\\ F_{359}\! \left(x \right) &= F_{19}\! \left(x \right) F_{360}\! \left(x \right)\\ F_{360}\! \left(x \right) &= F_{361}\! \left(x \right)+F_{362}\! \left(x \right)\\ F_{361}\! \left(x \right) &= F_{313}\! \left(x \right)+F_{358}\! \left(x \right)\\ F_{362}\! \left(x \right) &= F_{327}\! \left(x \right)+F_{356}\! \left(x \right)\\ F_{363}\! \left(x \right) &= F_{19}\! \left(x \right) F_{364}\! \left(x \right)\\ F_{364}\! \left(x \right) &= F_{362}\! \left(x \right)\\ F_{365}\! \left(x \right) &= F_{146}\! \left(x \right)\\ F_{366}\! \left(x \right) &= F_{367}\! \left(x \right)+F_{369}\! \left(x \right)\\ F_{367}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{330}\! \left(x \right)+F_{331}\! \left(x \right)+F_{368}\! \left(x \right)\\ F_{368}\! \left(x \right) &= 0\\ F_{369}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{345}\! \left(x \right)+F_{346}\! \left(x \right)+F_{370}\! \left(x \right)+F_{371}\! \left(x \right)\\ F_{370}\! \left(x \right) &= 0\\ F_{371}\! \left(x \right) &= 0\\ F_{372}\! \left(x \right) &= F_{19}\! \left(x \right) F_{373}\! \left(x \right)\\ F_{373}\! \left(x \right) &= F_{374}\! \left(x \right)+F_{375}\! \left(x \right)\\ F_{374}\! \left(x \right) &= F_{358}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{375}\! \left(x \right) &= F_{148}\! \left(x \right)\\ F_{376}\! \left(x \right) &= F_{177}\! \left(x \right) F_{377}\! \left(x \right)\\ F_{377}\! \left(x \right) &= F_{378}\! \left(x \right)\\ F_{378}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{19}\! \left(x \right)\\ F_{379}\! \left(x \right) &= F_{380}\! \left(x \right)\\ F_{380}\! \left(x \right) &= F_{19}\! \left(x \right) F_{381}\! \left(x \right)\\ F_{381}\! \left(x \right) &= F_{291}\! \left(x \right)+F_{382}\! \left(x \right)\\ F_{382}\! \left(x \right) &= F_{2}\! \left(x \right) F_{377}\! \left(x \right) F_{383}\! \left(x \right)\\ F_{383}\! \left(x \right) &= F_{384}\! \left(x \right)+F_{385}\! \left(x \right)\\ F_{384}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{260}\! \left(x \right)\\ F_{385}\! \left(x \right) &= F_{386}\! \left(x \right)\\ F_{386}\! \left(x \right) &= F_{0}\! \left(x \right) F_{19}\! \left(x \right) F_{383}\! \left(x \right)\\ F_{387}\! \left(x \right) &= F_{388}\! \left(x \right)\\ F_{388}\! \left(x \right) &= F_{389}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{389}\! \left(x \right) &= F_{250}\! \left(x \right)+F_{390}\! \left(x \right)\\ F_{390}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{391}\! \left(x \right)\\ F_{391}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{392}\! \left(x \right)+F_{430}\! \left(x \right)\\ F_{392}\! \left(x \right) &= F_{19}\! \left(x \right) F_{393}\! \left(x \right)\\ F_{393}\! \left(x \right) &= F_{390}\! \left(x \right)+F_{394}\! \left(x \right)\\ F_{394}\! \left(x \right) &= F_{395}\! \left(x \right)+F_{406}\! \left(x \right)\\ F_{395}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{396}\! \left(x \right)+F_{404}\! \left(x \right)\\ F_{396}\! \left(x \right) &= F_{19}\! \left(x \right) F_{397}\! \left(x \right)\\ F_{397}\! \left(x \right) &= F_{398}\! \left(x \right)+F_{399}\! \left(x \right)\\ F_{398}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{395}\! \left(x \right)\\ F_{399}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{400}\! \left(x \right)\\ F_{400}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{401}\! \left(x \right)+F_{402}\! \left(x \right)\\ F_{401}\! \left(x \right) &= F_{19}\! \left(x \right) F_{395}\! \left(x \right)\\ F_{402}\! \left(x \right) &= F_{19}\! \left(x \right) F_{403}\! \left(x \right)\\ F_{403}\! \left(x \right) &= F_{399}\! \left(x \right)\\ F_{404}\! \left(x \right) &= F_{19}\! \left(x \right) F_{405}\! \left(x \right)\\ F_{405}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{406}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{407}\! \left(x \right)+F_{417}\! \left(x \right)+F_{422}\! \left(x \right)\\ F_{407}\! \left(x \right) &= F_{19}\! \left(x \right) F_{408}\! \left(x \right)\\ F_{408}\! \left(x \right) &= F_{409}\! \left(x \right)+F_{410}\! \left(x \right)\\ F_{409}\! \left(x \right) &= F_{391}\! \left(x \right)+F_{406}\! \left(x \right)\\ F_{410}\! \left(x \right) &= F_{411}\! \left(x \right)+F_{413}\! \left(x \right)\\ F_{411}\! \left(x \right) &= F_{412}\! \left(x \right)\\ F_{412}\! \left(x \right) &= F_{19}\! \left(x \right) F_{391}\! \left(x \right)\\ F_{413}\! \left(x \right) &= 3 F_{31}\! \left(x \right)+F_{414}\! \left(x \right)+F_{415}\! \left(x \right)\\ F_{414}\! \left(x \right) &= F_{19}\! \left(x \right) F_{406}\! \left(x \right)\\ F_{415}\! \left(x \right) &= F_{19}\! \left(x \right) F_{416}\! \left(x \right)\\ F_{416}\! \left(x \right) &= F_{410}\! \left(x \right)\\ F_{417}\! \left(x \right) &= F_{19}\! \left(x \right) F_{418}\! \left(x \right)\\ F_{418}\! \left(x \right) &= F_{419}\! \left(x \right)+F_{424}\! \left(x \right)\\ F_{419}\! \left(x \right) &= F_{420}\! \left(x \right)+F_{421}\! \left(x \right)\\ F_{420}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{31}\! \left(x \right)+F_{404}\! \left(x \right)\\ F_{421}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{412}\! \left(x \right)+F_{417}\! \left(x \right)+F_{422}\! \left(x \right)\\ F_{422}\! \left(x \right) &= F_{19}\! \left(x \right) F_{423}\! \left(x \right)\\ F_{423}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{424}\! \left(x \right) &= F_{425}\! \left(x \right)+F_{427}\! \left(x \right)\\ F_{425}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{401}\! \left(x \right)+F_{402}\! \left(x \right)+F_{426}\! \left(x \right)\\ F_{426}\! \left(x \right) &= 0\\ F_{427}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{414}\! \left(x \right)+F_{415}\! \left(x \right)+F_{428}\! \left(x \right)+F_{429}\! \left(x \right)\\ F_{428}\! \left(x \right) &= 0\\ F_{429}\! \left(x \right) &= 0\\ F_{430}\! \left(x \right) &= F_{19}\! \left(x \right) F_{431}\! \left(x \right)\\ F_{431}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{432}\! \left(x \right) &= -F_{258}\! \left(x \right)+F_{181}\! \left(x \right)\\ F_{433}\! \left(x \right) &= F_{166}\! \left(x \right)+F_{434}\! \left(x \right)\\ F_{434}\! \left(x \right) &= F_{2}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{435}\! \left(x \right) &= F_{436}\! \left(x \right)\\ F_{436}\! \left(x \right) &= F_{29}\! \left(x \right) F_{291}\! \left(x \right)\\ F_{437}\! \left(x \right) &= F_{438}\! \left(x \right)\\ F_{438}\! \left(x \right) &= F_{0}\! \left(x \right) F_{19}\! \left(x \right) F_{439}\! \left(x \right)\\ F_{439}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{440}\! \left(x \right)\\ F_{440}\! \left(x \right) &= F_{441}\! \left(x \right)\\ F_{441}\! \left(x \right) &= F_{19}\! \left(x \right) F_{442}\! \left(x \right) F_{444}\! \left(x \right)\\ F_{442}\! \left(x \right) &= F_{181}\! \left(x \right)+F_{443}\! \left(x \right)\\ F_{443}\! \left(x \right) &= F_{184}\! \left(x \right)+F_{384}\! \left(x \right)\\ F_{444}\! \left(x \right) &= F_{315}\! \left(x \right)+F_{445}\! \left(x \right)\\ F_{445}\! \left(x \right) &= F_{446}\! \left(x \right)+F_{448}\! \left(x \right)\\ F_{446}\! \left(x \right) &= F_{447}\! \left(x \right)\\ F_{447}\! \left(x \right) &= F_{19}\! \left(x \right) F_{36}\! \left(x \right) F_{383}\! \left(x \right)\\ F_{448}\! \left(x \right) &= F_{449}\! \left(x \right)\\ F_{449}\! \left(x \right) &= F_{19}\! \left(x \right) F_{450}\! \left(x \right)\\ F_{450}\! \left(x \right) &= F_{445}\! \left(x \right)+F_{451}\! \left(x \right)\\ F_{451}\! \left(x \right) &= F_{2}\! \left(x \right) F_{444}\! \left(x \right)\\ F_{452}\! \left(x \right) &= F_{453}\! \left(x \right)\\ F_{453}\! \left(x \right) &= F_{0}\! \left(x \right) F_{19}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{454}\! \left(x \right) &= F_{455}\! \left(x \right)\\ F_{455}\! \left(x \right) &= F_{0}\! \left(x \right) F_{15}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{456}\! \left(x \right) &= F_{457}\! \left(x \right)+F_{609}\! \left(x \right)\\ F_{457}\! \left(x \right) &= -F_{669}\! \left(x \right)+F_{458}\! \left(x \right)\\ F_{458}\! \left(x \right) &= F_{459}\! \left(x \right)\\ F_{459}\! \left(x \right) &= F_{19}\! \left(x \right) F_{460}\! \left(x \right)\\ F_{460}\! \left(x \right) &= \frac{F_{461}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{461}\! \left(x \right) &= F_{462}\! \left(x \right)\\ F_{462}\! \left(x \right) &= F_{463}\! \left(x \right)+F_{663}\! \left(x \right)\\ F_{463}\! \left(x \right) &= F_{464}\! \left(x \right)\\ F_{464}\! \left(x \right) &= F_{19}\! \left(x \right) F_{36}\! \left(x \right) F_{465}\! \left(x \right)\\ F_{465}\! \left(x \right) &= \frac{F_{466}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{466}\! \left(x \right) &= F_{467}\! \left(x \right)\\ F_{467}\! \left(x \right) &= -F_{661}\! \left(x \right)+F_{468}\! \left(x \right)\\ F_{468}\! \left(x \right) &= -F_{587}\! \left(x \right)+F_{469}\! \left(x \right)\\ F_{469}\! \left(x \right) &= \frac{F_{470}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{470}\! \left(x \right) &= F_{471}\! \left(x \right)\\ F_{471}\! \left(x \right) &= -F_{306}\! \left(x \right)+F_{472}\! \left(x \right)\\ F_{472}\! \left(x \right) &= F_{473}\! \left(x \right)\\ F_{473}\! \left(x \right) &= F_{19}\! \left(x \right) F_{474}\! \left(x \right)\\ F_{474}\! \left(x \right) &= \frac{F_{475}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{475}\! \left(x \right) &= F_{476}\! \left(x \right)\\ F_{476}\! \left(x \right) &= -F_{586}\! \left(x \right)+F_{477}\! \left(x \right)\\ F_{477}\! \left(x \right) &= \frac{F_{478}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{478}\! \left(x \right) &= F_{479}\! \left(x \right)\\ F_{479}\! \left(x \right) &= F_{19}\! \left(x \right) F_{480}\! \left(x \right)\\ F_{480}\! \left(x \right) &= F_{481}\! \left(x \right)+F_{537}\! \left(x \right)\\ F_{481}\! \left(x \right) &= F_{2}\! \left(x \right) F_{482}\! \left(x \right)\\ F_{482}\! \left(x \right) &= F_{260}\! \left(x \right)+F_{483}\! \left(x \right)\\ F_{483}\! \left(x \right) &= F_{484}\! \left(x \right)\\ F_{484}\! \left(x \right) &= F_{19}\! \left(x \right) F_{485}\! \left(x \right)\\ F_{485}\! \left(x \right) &= F_{486}\! \left(x \right)+F_{495}\! \left(x \right)\\ F_{486}\! \left(x \right) &= F_{482}\! \left(x \right)+F_{487}\! \left(x \right)\\ F_{487}\! \left(x \right) &= -F_{490}\! \left(x \right)+F_{488}\! \left(x \right)\\ F_{488}\! \left(x \right) &= \frac{F_{489}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{489}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{490}\! \left(x \right) &= F_{491}\! \left(x \right)\\ F_{491}\! \left(x \right) &= F_{19}\! \left(x \right) F_{36}\! \left(x \right) F_{492}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{492}\! \left(x \right) &= F_{493}\! \left(x \right)+F_{494}\! \left(x \right)\\ F_{493}\! \left(x \right) &= F_{384}\! \left(x \right)+F_{389}\! \left(x \right)\\ F_{494}\! \left(x \right) &= F_{34}\! \left(x \right) F_{383}\! \left(x \right)\\ F_{495}\! \left(x \right) &= F_{496}\! \left(x \right)\\ F_{496}\! \left(x \right) &= F_{19}\! \left(x \right) F_{497}\! \left(x \right)\\ F_{497}\! \left(x \right) &= F_{498}\! \left(x \right)+F_{499}\! \left(x \right)\\ F_{498}\! \left(x \right) &= F_{263}\! \left(x \right) F_{486}\! \left(x \right)\\ F_{499}\! \left(x \right) &= F_{500}\! \left(x \right)\\ F_{500}\! \left(x \right) &= F_{19}\! \left(x \right) F_{501}\! \left(x \right) F_{513}\! \left(x \right)\\ F_{501}\! \left(x \right) &= F_{486}\! \left(x \right)+F_{502}\! \left(x \right)\\ F_{502}\! \left(x \right) &= F_{503}\! \left(x \right)\\ F_{503}\! \left(x \right) &= F_{19}\! \left(x \right) F_{482}\! \left(x \right) F_{504}\! \left(x \right)\\ F_{504}\! \left(x \right) &= F_{505}\! \left(x \right)+F_{506}\! \left(x \right)\\ F_{505}\! \left(x \right) &= F_{0}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{506}\! \left(x \right) &= F_{507}\! \left(x \right)\\ F_{507}\! \left(x \right) &= F_{19}\! \left(x \right) F_{508}\! \left(x \right)\\ F_{508}\! \left(x \right) &= F_{509}\! \left(x \right)+F_{511}\! \left(x \right)\\ F_{509}\! \left(x \right) &= F_{252}\! \left(x \right)+F_{510}\! \left(x \right)\\ F_{510}\! \left(x \right) &= F_{389}\! \left(x \right)+F_{443}\! \left(x \right)\\ F_{511}\! \left(x \right) &= F_{512}\! \left(x \right)\\ F_{512}\! \left(x \right) &= F_{0}\! \left(x \right) F_{34}\! \left(x \right) F_{383}\! \left(x \right)\\ F_{513}\! \left(x \right) &= F_{514}\! \left(x \right)+F_{515}\! \left(x \right)\\ F_{514}\! \left(x \right) &= F_{263}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{515}\! \left(x \right) &= F_{313}\! \left(x \right)+F_{516}\! \left(x \right)\\ F_{516}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{517}\! \left(x \right)+F_{522}\! \left(x \right)\\ F_{517}\! \left(x \right) &= F_{19}\! \left(x \right) F_{518}\! \left(x \right)\\ F_{518}\! \left(x \right) &= F_{519}\! \left(x \right)+F_{520}\! \left(x \right)\\ F_{519}\! \left(x \right) &= F_{261}\! \left(x \right)+F_{516}\! \left(x \right)\\ F_{520}\! \left(x \right) &= F_{521}\! \left(x \right)+F_{536}\! \left(x \right)\\ F_{521}\! \left(x \right) &= F_{271}\! \left(x \right)+F_{31}\! \left(x \right)+F_{522}\! \left(x \right)\\ F_{522}\! \left(x \right) &= F_{19}\! \left(x \right) F_{523}\! \left(x \right)\\ F_{523}\! \left(x \right) &= F_{524}\! \left(x \right)+F_{525}\! \left(x \right)\\ F_{524}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{521}\! \left(x \right)\\ F_{525}\! \left(x \right) &= F_{526}\! \left(x \right)+F_{531}\! \left(x \right)\\ F_{526}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{328}\! \left(x \right)+F_{527}\! \left(x \right)\\ F_{527}\! \left(x \right) &= F_{19}\! \left(x \right) F_{528}\! \left(x \right)\\ F_{528}\! \left(x \right) &= F_{529}\! \left(x \right)\\ F_{529}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{530}\! \left(x \right)\\ F_{530}\! \left(x \right) &= F_{527}\! \left(x \right)\\ F_{531}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{532}\! \left(x \right)+F_{533}\! \left(x \right)+F_{535}\! \left(x \right)\\ F_{532}\! \left(x \right) &= F_{19}\! \left(x \right) F_{516}\! \left(x \right)\\ F_{533}\! \left(x \right) &= F_{19}\! \left(x \right) F_{534}\! \left(x \right)\\ F_{534}\! \left(x \right) &= F_{520}\! \left(x \right)\\ F_{535}\! \left(x \right) &= 0\\ F_{536}\! \left(x \right) &= F_{533}\! \left(x \right)\\ F_{537}\! \left(x \right) &= F_{538}\! \left(x \right)\\ F_{538}\! \left(x \right) &= F_{19}\! \left(x \right) F_{539}\! \left(x \right)\\ F_{539}\! \left(x \right) &= F_{540}\! \left(x \right)+F_{562}\! \left(x \right)\\ F_{540}\! \left(x \right) &= F_{0}\! \left(x \right) F_{541}\! \left(x \right)\\ F_{541}\! \left(x \right) &= F_{542}\! \left(x \right)+F_{545}\! \left(x \right)\\ F_{542}\! \left(x \right) &= F_{482}\! \left(x \right)+F_{543}\! \left(x \right)\\ F_{543}\! \left(x \right) &= F_{544}\! \left(x \right)\\ F_{544}\! \left(x \right) &= F_{19}\! \left(x \right) F_{501}\! \left(x \right)\\ F_{545}\! \left(x \right) &= F_{546}\! \left(x \right)\\ F_{546}\! \left(x \right) &= F_{19}\! \left(x \right) F_{547}\! \left(x \right)\\ F_{547}\! \left(x \right) &= F_{548}\! \left(x \right)+F_{559}\! \left(x \right)\\ F_{548}\! \left(x \right) &= F_{549}\! \left(x \right)+F_{561}\! \left(x \right)\\ F_{549}\! \left(x \right) &= F_{550}\! \left(x \right)+F_{552}\! \left(x \right)\\ F_{550}\! \left(x \right) &= F_{551}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{551}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{261}\! \left(x \right)\\ F_{552}\! \left(x \right) &= F_{483}\! \left(x \right)+F_{553}\! \left(x \right)\\ F_{553}\! \left(x \right) &= F_{554}\! \left(x \right)\\ F_{554}\! \left(x \right) &= F_{19}\! \left(x \right) F_{36}\! \left(x \right) F_{555}\! \left(x \right)\\ F_{555}\! \left(x \right) &= F_{556}\! \left(x \right)+F_{559}\! \left(x \right)\\ F_{556}\! \left(x \right) &= F_{552}\! \left(x \right)+F_{557}\! \left(x \right)\\ F_{557}\! \left(x \right) &= F_{558}\! \left(x \right)\\ F_{558}\! \left(x \right) &= F_{19}\! \left(x \right) F_{556}\! \left(x \right)\\ F_{559}\! \left(x \right) &= F_{560}\! \left(x \right)\\ F_{560}\! \left(x \right) &= F_{36}\! \left(x \right) F_{543}\! \left(x \right)\\ F_{561}\! \left(x \right) &= F_{390}\! \left(x \right)+F_{557}\! \left(x \right)\\ F_{562}\! \left(x \right) &= F_{563}\! \left(x \right)\\ F_{563}\! \left(x \right) &= F_{19}\! \left(x \right) F_{564}\! \left(x \right)\\ F_{564}\! \left(x \right) &= F_{565}\! \left(x \right)+F_{566}\! \left(x \right)\\ F_{565}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right) F_{541}\! \left(x \right)\\ F_{566}\! \left(x \right) &= F_{567}\! \left(x \right) F_{580}\! \left(x \right)\\ F_{567}\! \left(x \right) &= F_{568}\! \left(x \right)+F_{578}\! \left(x \right)\\ F_{568}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{569}\! \left(x \right)\\ F_{569}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{570}\! \left(x \right)\\ F_{570}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{571}\! \left(x \right)+F_{573}\! \left(x \right)\\ F_{571}\! \left(x \right) &= F_{19}\! \left(x \right) F_{572}\! \left(x \right)\\ F_{572}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{570}\! \left(x \right)\\ F_{573}\! \left(x \right) &= F_{19}\! \left(x \right) F_{574}\! \left(x \right)\\ F_{574}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{575}\! \left(x \right)\\ F_{575}\! \left(x \right) &= F_{576}\! \left(x \right)\\ F_{576}\! \left(x \right) &= F_{19}\! \left(x \right) F_{577}\! \left(x \right)\\ F_{577}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{575}\! \left(x \right)\\ F_{578}\! \left(x \right) &= F_{579}\! \left(x \right)\\ F_{579}\! \left(x \right) &= F_{36} \left(x \right)^{2} F_{34}\! \left(x \right)\\ F_{580}\! \left(x \right) &= F_{581}\! \left(x \right)+F_{584}\! \left(x \right)\\ F_{581}\! \left(x \right) &= F_{582}\! \left(x \right)\\ F_{582}\! \left(x \right) &= F_{19}\! \left(x \right) F_{583}\! \left(x \right)\\ F_{583}\! \left(x \right) &= F_{296}\! \left(x \right)+F_{301}\! \left(x \right)\\ F_{584}\! \left(x \right) &= F_{377}\! \left(x \right) F_{585}\! \left(x \right)\\ F_{585}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{586}\! \left(x \right) &= F_{580}\! \left(x \right)\\ F_{587}\! \left(x \right) &= -F_{655}\! \left(x \right)+F_{588}\! \left(x \right)\\ F_{588}\! \left(x \right) &= F_{589}\! \left(x \right)+F_{591}\! \left(x \right)\\ F_{589}\! \left(x \right) &= F_{590}\! \left(x \right)\\ F_{590}\! \left(x \right) &= F_{295}\! \left(x \right) F_{34}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{591}\! \left(x \right) &= F_{592}\! \left(x \right)\\ F_{592}\! \left(x \right) &= F_{0}\! \left(x \right) F_{593}\! \left(x \right)\\ F_{593}\! \left(x \right) &= F_{594}\! \left(x \right)+F_{606}\! \left(x \right)\\ F_{594}\! \left(x \right) &= F_{0}\! \left(x \right) F_{595}\! \left(x \right)\\ F_{595}\! \left(x \right) &= -F_{596}\! \left(x \right)+F_{541}\! \left(x \right)\\ F_{596}\! \left(x \right) &= -F_{597}\! \left(x \right)+F_{492}\! \left(x \right)\\ F_{597}\! \left(x \right) &= F_{598}\! \left(x \right)+F_{599}\! \left(x \right)\\ F_{598}\! \left(x \right) &= F_{177}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{599}\! \left(x \right) &= F_{600}\! \left(x \right)\\ F_{600}\! \left(x \right) &= F_{19}\! \left(x \right) F_{601}\! \left(x \right)\\ F_{601}\! \left(x \right) &= F_{602}\! \left(x \right)+F_{603}\! \left(x \right)\\ F_{602}\! \left(x \right) &= F_{248}\! \left(x \right)+F_{597}\! \left(x \right)\\ F_{603}\! \left(x \right) &= F_{252}\! \left(x \right)+F_{604}\! \left(x \right)\\ F_{604}\! \left(x \right) &= F_{605}\! \left(x \right)\\ F_{605}\! \left(x \right) &= F_{2}\! \left(x \right) F_{34}\! \left(x \right) F_{383}\! \left(x \right)\\ F_{606}\! \left(x \right) &= F_{607}\! \left(x \right)\\ F_{607}\! \left(x \right) &= F_{19}\! \left(x \right) F_{608}\! \left(x \right)\\ F_{608}\! \left(x \right) &= F_{588}\! \left(x \right)+F_{609}\! \left(x \right)\\ F_{609}\! \left(x \right) &= F_{610}\! \left(x \right)\\ F_{610}\! \left(x \right) &= F_{19}\! \left(x \right) F_{611}\! \left(x \right)\\ F_{611}\! \left(x \right) &= F_{612}\! \left(x \right)+F_{618}\! \left(x \right)\\ F_{612}\! \left(x \right) &= F_{613}\! \left(x \right)\\ F_{613}\! \left(x \right) &= F_{34}\! \left(x \right) F_{36}\! \left(x \right) F_{614}\! \left(x \right)\\ F_{614}\! \left(x \right) &= F_{615}\! \left(x \right)+F_{616}\! \left(x \right)\\ F_{615}\! \left(x \right) &= F_{295}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{616}\! \left(x \right) &= F_{617}\! \left(x \right)\\ F_{617}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{260}\! \left(x \right) F_{446}\! \left(x \right)\\ F_{618}\! \left(x \right) &= F_{619}\! \left(x \right)\\ F_{619}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{620}\! \left(x \right)\\ F_{620}\! \left(x \right) &= F_{621}\! \left(x \right)\\ F_{621}\! \left(x \right) &= F_{19}\! \left(x \right) F_{622}\! \left(x \right)\\ F_{622}\! \left(x \right) &= F_{623}\! \left(x \right)+F_{642}\! \left(x \right)\\ F_{623}\! \left(x \right) &= \frac{F_{624}\! \left(x \right)}{F_{0}\! \left(x \right) F_{19}\! \left(x \right)}\\ F_{624}\! \left(x \right) &= F_{625}\! \left(x \right)\\ F_{625}\! \left(x \right) &= -F_{628}\! \left(x \right)+F_{626}\! \left(x \right)\\ F_{626}\! \left(x \right) &= \frac{F_{627}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{627}\! \left(x \right) &= F_{606}\! \left(x \right)\\ F_{628}\! \left(x \right) &= F_{629}\! \left(x \right)\\ F_{629}\! \left(x \right) &= F_{630}\! \left(x \right)\\ F_{630}\! \left(x \right) &= F_{36} \left(x \right)^{2} F_{19}\! \left(x \right) F_{631}\! \left(x \right)\\ F_{631}\! \left(x \right) &= \frac{F_{632}\! \left(x \right)}{F_{34}\! \left(x \right) F_{36}\! \left(x \right)}\\ F_{632}\! \left(x \right) &= F_{633}\! \left(x \right)\\ F_{633}\! \left(x \right) &= -F_{636}\! \left(x \right)+F_{634}\! \left(x \right)\\ F_{634}\! \left(x \right) &= \frac{F_{635}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{635}\! \left(x \right) &= F_{606}\! \left(x \right)\\ F_{636}\! \left(x \right) &= F_{637}\! \left(x \right)\\ F_{637}\! \left(x \right) &= F_{595}\! \left(x \right) F_{638}\! \left(x \right) F_{639}\! \left(x \right)\\ F_{638}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{446}\! \left(x \right)\\ F_{639}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{640}\! \left(x \right)\\ F_{640}\! \left(x \right) &= F_{641}\! \left(x \right)\\ F_{641}\! \left(x \right) &= F_{19}\! \left(x \right) F_{638}\! \left(x \right) F_{639}\! \left(x \right)\\ F_{642}\! \left(x \right) &= F_{643}\! \left(x \right)\\ F_{643}\! \left(x \right) &= \frac{F_{644}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{644}\! \left(x \right) &= -F_{650}\! \left(x \right)+F_{645}\! \left(x \right)\\ F_{645}\! \left(x \right) &= \frac{F_{646}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{646}\! \left(x \right) &= F_{647}\! \left(x \right)\\ F_{647}\! \left(x \right) &= -F_{648}\! \left(x \right)+F_{629}\! \left(x \right)\\ F_{648}\! \left(x \right) &= F_{649}\! \left(x \right)\\ F_{649}\! \left(x \right) &= F_{36} \left(x \right)^{2} F_{293}\! \left(x \right)\\ F_{650}\! \left(x \right) &= F_{651}\! \left(x \right)\\ F_{651}\! \left(x \right) &= F_{36} \left(x \right)^{2} F_{652}\! \left(x \right)\\ F_{652}\! \left(x \right) &= F_{653}\! \left(x \right)+F_{654}\! \left(x \right)\\ F_{653}\! \left(x \right) &= F_{293}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{654}\! \left(x \right) &= F_{260}\! \left(x \right) F_{377}\! \left(x \right) F_{446}\! \left(x \right)\\ F_{655}\! \left(x \right) &= F_{656}\! \left(x \right)\\ F_{656}\! \left(x \right) &= F_{0}\! \left(x \right) F_{657}\! \left(x \right)\\ F_{657}\! \left(x \right) &= F_{658}\! \left(x \right)+F_{660}\! \left(x \right)\\ F_{658}\! \left(x \right) &= F_{606}\! \left(x \right)+F_{659}\! \left(x \right)\\ F_{659}\! \left(x \right) &= F_{0}\! \left(x \right) F_{483}\! \left(x \right)\\ F_{660}\! \left(x \right) &= F_{0}\! \left(x \right) F_{557}\! \left(x \right)\\ F_{661}\! \left(x \right) &= F_{662}\! \left(x \right)\\ F_{662}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{557}\! \left(x \right)\\ F_{663}\! \left(x \right) &= F_{664}\! \left(x \right)\\ F_{664}\! \left(x \right) &= F_{19}\! \left(x \right) F_{665}\! \left(x \right)\\ F_{665}\! \left(x \right) &= F_{666}\! \left(x \right)+F_{667}\! \left(x \right)\\ F_{666}\! \left(x \right) &= F_{0}\! \left(x \right) F_{168}\! \left(x \right)\\ F_{667}\! \left(x \right) &= F_{668}\! \left(x \right)\\ F_{668}\! \left(x \right) &= F_{29}\! \left(x \right) F_{381}\! \left(x \right)\\ F_{669}\! \left(x \right) &= -F_{678}\! \left(x \right)+F_{670}\! \left(x \right)\\ F_{670}\! \left(x \right) &= \frac{F_{671}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{671}\! \left(x \right) &= F_{672}\! \left(x \right)\\ F_{672}\! \left(x \right) &= -F_{677}\! \left(x \right)+F_{673}\! \left(x \right)\\ F_{673}\! \left(x \right) &= F_{674}\! \left(x \right)\\ F_{674}\! \left(x \right) &= F_{19}\! \left(x \right) F_{675}\! \left(x \right)\\ F_{675}\! \left(x \right) &= \frac{F_{676}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{676}\! \left(x \right) &= F_{658}\! \left(x \right)\\ F_{677}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{283}\! \left(x \right)\\ F_{678}\! \left(x \right) &= F_{679}\! \left(x \right)\\ F_{679}\! \left(x \right) &= F_{19}\! \left(x \right) F_{680}\! \left(x \right)\\ F_{680}\! \left(x \right) &= F_{681}\! \left(x \right)+F_{687}\! \left(x \right)\\ F_{681}\! \left(x \right) &= F_{0}\! \left(x \right) F_{682}\! \left(x \right)\\ F_{682}\! \left(x \right) &= \frac{F_{683}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{683}\! \left(x \right) &= F_{684}\! \left(x \right)\\ F_{684}\! \left(x \right) &= F_{673}\! \left(x \right)+F_{685}\! \left(x \right)\\ F_{685}\! \left(x \right) &= F_{686}\! \left(x \right)\\ F_{686}\! \left(x \right) &= F_{0}\! \left(x \right) F_{174}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{687}\! \left(x \right) &= -F_{692}\! \left(x \right)+F_{688}\! \left(x \right)\\ F_{688}\! \left(x \right) &= \frac{F_{689}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{689}\! \left(x \right) &= F_{690}\! \left(x \right)\\ F_{690}\! \left(x \right) &= \frac{F_{691}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{691}\! \left(x \right) &= F_{672}\! \left(x \right)\\ F_{692}\! \left(x \right) &= F_{0}\! \left(x \right) F_{693}\! \left(x \right)\\ F_{693}\! \left(x \right) &= \frac{F_{694}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{694}\! \left(x \right) &= F_{695}\! \left(x \right)\\ F_{695}\! \left(x \right) &= -F_{700}\! \left(x \right)+F_{696}\! \left(x \right)\\ F_{696}\! \left(x \right) &= F_{697}\! \left(x \right)+F_{698}\! \left(x \right)\\ F_{697}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{442}\! \left(x \right)\\ F_{698}\! \left(x \right) &= F_{699}\! \left(x \right)\\ F_{699}\! \left(x \right) &= F_{19}\! \left(x \right) F_{509}\! \left(x \right) F_{638}\! \left(x \right)\\ F_{700}\! \left(x \right) &= -F_{710}\! \left(x \right)+F_{701}\! \left(x \right)\\ F_{701}\! \left(x \right) &= -F_{620}\! \left(x \right)+F_{702}\! \left(x \right)\\ F_{702}\! \left(x \right) &= F_{703}\! \left(x \right)+F_{708}\! \left(x \right)\\ F_{703}\! \left(x \right) &= F_{704}\! \left(x \right)+F_{707}\! \left(x \right)\\ F_{704}\! \left(x \right) &= \frac{F_{705}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{705}\! \left(x \right) &= F_{706}\! \left(x \right)\\ F_{706}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{707}\! \left(x \right) &= F_{561}\! \left(x \right) F_{638}\! \left(x \right)\\ F_{708}\! \left(x \right) &= F_{709}\! \left(x \right)\\ F_{709}\! \left(x \right) &= F_{36}\! \left(x \right) F_{543}\! \left(x \right) F_{638}\! \left(x \right)\\ F_{710}\! \left(x \right) &= F_{711}\! \left(x \right)\\ F_{711}\! \left(x \right) &= F_{260}\! \left(x \right) F_{34}\! \left(x \right) F_{36}\! \left(x \right) F_{638}\! \left(x \right)\\ \end{align*}\)