Av(14352, 14523, 14532, 15423, 15432, 41352, 41523, 41532)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 112, 563, 2934, 15619, 84460, 462722, 2563948, 14348171, 80991571, 460649216, ...
Implicit Equation for the Generating Function
\(\displaystyle x^{5} \left(2 x -3\right) F \left(x \right)^{8}-x^{4} \left(4 x^{2}-6 x -5\right) F \left(x \right)^{7}+x^{3} \left(x +1\right) \left(2 x^{2}-7 x -2\right) F \left(x \right)^{6}+x^{2} \left(2 x^{3}+8 x^{2}-4 x +1\right) F \left(x \right)^{5}-x^{2} \left(4 x^{2}-8 x -3\right) F \left(x \right)^{4}-x \left(3 x^{2}+4 x +2\right) F \left(x \right)^{3}+3 x^{2} F \left(x \right)^{2}+\left(x +1\right) F \! \left(x \right)-1 = 0\)
Recurrence
\(\displaystyle a(0) = 1\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a(3) = 6\)
\(\displaystyle a(4) = 24\)
\(\displaystyle a(5) = 112\)
\(\displaystyle a(6) = 563\)
\(\displaystyle a(7) = 2934\)
\(\displaystyle a(8) = 15619\)
\(\displaystyle a(9) = 84460\)
\(\displaystyle a(10) = 462722\)
\(\displaystyle a(11) = 2563948\)
\(\displaystyle a(12) = 14348171\)
\(\displaystyle a(13) = 80991571\)
\(\displaystyle a(14) = 460649216\)
\(\displaystyle a(15) = 2637480103\)
\(\displaystyle a(16) = 15190065380\)
\(\displaystyle a(17) = 87942253527\)
\(\displaystyle a(18) = 511519742179\)
\(\displaystyle a(19) = 2987782686734\)
\(\displaystyle a(20) = 17517876881013\)
\(\displaystyle a(21) = 103064198902171\)
\(\displaystyle a(22) = 608269470048854\)
\(\displaystyle a(23) = 3600232645158518\)
\(\displaystyle a(24) = 21365348168840401\)
\(\displaystyle a(25) = 127099714686125008\)
\(\displaystyle a(26) = 757800301002196454\)
\(\displaystyle a(27) = 4527616184034010088\)
\(\displaystyle a(28) = 27103510014257434671\)
\(\displaystyle a(29) = 162541956715586815241\)
\(\displaystyle a(30) = 976422889471600791100\)
\(\displaystyle a(31) = 5874844092881608400759\)
\(\displaystyle a(32) = 35399600888174000700663\)
\(\displaystyle a(33) = 213602089296379089572748\)
\(\displaystyle a(34) = 1290572988429465711397486\)
\(\displaystyle a(35) = 7807237578708962581762004\)
\(\displaystyle a(36) = 47284676461706968517043006\)
\(\displaystyle a(37) = 286697871338486050346067245\)
\(\displaystyle a(38) = 1740141135668365176487277184\)
\(\displaystyle a(39) = 10572489950797241848340546600\)
\(\displaystyle a(40) = 64295629440591412958225609540\)
\(\displaystyle a(41) = 391360599892239633008122681570\)
\(\displaystyle a(42) = 2384216816650685591729366794934\)
\(\displaystyle a(43) = 14536845883951265956208548054375\)
\(\displaystyle a(44) = 88702197139343150735456606339650\)
\(\displaystyle a(45) = 541655726041213294454041092661554\)
\(\displaystyle a(46) = 3309962370810968609886620542356114\)
\(\displaystyle a(47) = 20240461232573537026962291343121135\)
\(\displaystyle a(48) = 123852013311134011885957437228233297\)
\(\displaystyle a(49) = 758332186636982300702899395689314702\)
\(\displaystyle a(50) = 4645995501571241958895199183300930202\)
\(\displaystyle a(51) = 28480703708712678768378149370916379870\)
\(\displaystyle a(52) = 174689027584467422192463661566061498599\)
\(\displaystyle a(53) = 1072048436165256832003833895019497717526\)
\(\displaystyle a(54) = 6582463316807939701785958484597255880423\)
\(\displaystyle a(55) = 40437062959764778121595103101480359271732\)
\(\displaystyle a(56) = 248530771741561388306603995298733617406714\)
\(\displaystyle a(57) = 1528209284666744683829094171622208966172779\)
\(\displaystyle a(58) = 9401143248226610210051469657926559576121552\)
\(\displaystyle a(59) = 57858490246515631120136233245961579588807317\)
\(\displaystyle a(60) = 356234404993680363641651999631483305850067327\)
\(\displaystyle a(61) = 2194224274079004892108049206875974266870767648\)
\(\displaystyle a(62) = 13520629058317911469908837620080309772871817327\)
\(\displaystyle a(63) = 83344724685152138121024355460443118513228863505\)
\(\displaystyle a(64) = 513948412033967641099225047175837563873722665315\)
\(\displaystyle a(65) = 3170415839449207633476639960088983892770513379633\)
\(\displaystyle a(66) = 19564264882637909571789678897434653678532492074662\)
\(\displaystyle a(67) = 120769416686230712845820799768132811218373933475682\)
\(\displaystyle a(68) = 745748269084667406254009827225959935979610766565935\)
\(\displaystyle a(69) = 4606438705384611248470628285399521422812626998151924\)
\(\displaystyle a(70) = 28462443255847501729227259062788306001971154185518837\)
\(\displaystyle a(71) = 175917539985825855723967637620304409685814540449409338\)
\(\displaystyle a(72) = 1087608504159267042085359035580779982153814339149305346\)
\(\displaystyle a(73) = 6726034352132587854096934695698901698245381040541205678\)
\(\displaystyle a(74) = 41606893423454519173596873578163219709501032976735000047\)
\(\displaystyle a(75) = 257447122976936447751638997008047594297562664691755101349\)
\(\displaystyle a(76) = 1593398057665120213134395094727825375512416582267324631830\)
\(\displaystyle a(77) = 9864409112453406223351144517092400906998191843972131426160\)
\(\displaystyle a(78) = 61083736602017196372119820060405350651788849277353343580598\)
\(\displaystyle a(79) = 378342497595762892215730390845393848525533835231946402394607\)
\(\displaystyle a(80) = 2343943031740987804712213906943406998067776097584826887101484\)
\(\displaystyle a(81) = 14524756277592842159164046930380114883933017163036010496191931\)
\(\displaystyle a(82) = 90026031027335375742065135456507030354347663873922091323020761\)
\(\displaystyle a(83) = 558113416363292798786638718859071937605725407304060665110508925\)
\(\displaystyle a(84) = 3460745582296106608015598306898619950437750171763009071466415000\)
\(\displaystyle a(85) = 21463846729790498635502681993912020408473580923556241339815546591\)
\(\displaystyle a(86) = 133147806652318662274407207335616016254697911835728570587580566876\)
\(\displaystyle a(87) = 826127384683505795573479189327273455509642565848557911216355657967\)
\(\displaystyle a(88) = 5126779079123744164194548123879707899603132246225587401851676198348\)
\(\displaystyle a(89) = 31821809887120190937794933967209470073030758176565140309629772869503\)
\(\displaystyle a(90) = 197554081629167665523915483777200633601678047832030273883661737426513\)
\(\displaystyle a(91) = 1226665702141544264029125992623902102098374644419011922901692666377921\)
\(\displaystyle a(92) = 7618049834368747111124056447729861831306977840301131705161410391460818\)
\(\displaystyle a(93) = 47319168958237797814964826499092141180153759272052379963504852575309300\)
\(\displaystyle a(94) = 293971016881123118735214182788714882624633119856141246269104251402448589\)
\(\displaystyle a(95) = 1826604282937804201961554913275922524818546867129496655178448510594405727\)
\(\displaystyle a(96) = 11351558002586812345869928786878266328462745949072106970582143667602461282\)
\(\displaystyle a(97) = 70556342049972210009622097426608886423664155570989203976567435013512453143\)
\(\displaystyle a(98) = 438616342196597410983526688735103408576968563469634508376412788938893090990\)
\(\displaystyle a(99) = 2727095551113326920641117395808952389490493862122168731933013532502359102187\)
\(\displaystyle a(100) = 16958262872546251302828478554142530805932535704580454337904050757605395997759\)
\(\displaystyle a(101) = 105469415843090622984267185577971903170636984992183811238005488289934308561507\)
\(\displaystyle a(102) = 656046515026099436107660614310244512418219361675783808952265234130467827108392\)
\(\displaystyle a(103) = 4081355466000059508735082028935829001752564131288783462125627527166467580157302\)
\(\displaystyle a(104) = 25394210944194843874108291477000299485102062533861781253876707149303809343777810\)
\(\displaystyle a(105) = 158024486520419936917053471722959721550025970508214285358977641949484682607343433\)
\(\displaystyle a(106) = 983495323252415785487786319150359692044881605451161784476482912567592506586074735\)
\(\displaystyle a(107) = 6121775102874136949100236240961103383510983129238397494697469940774593311542374787\)
\(\displaystyle a(108) = 38109964749085000032705168874647074147320617360799768640907203010620270546040603754\)
\(\displaystyle a(109) = 237276540179582581232029062816724867335960933523221614158591892658964549570177329639\)
\(\displaystyle a(110) = 1477491986411401429898183116003716689233732072321466498464977666229907077987856726839\)
\(\displaystyle a(111) = 9201286931109213485315162665816266982165892356682182907125302610640262626182769024515\)
\(\displaystyle a(112) = 57309177376255095919058206523686845027769778021097163094232498980483828033521445446977\)
\(\displaystyle a(113) = 356985860760504104734048328223572857675656709374177413837529663366864849199557080313645\)
\(\displaystyle a(114) = 2223966284547373184719106682719105471207528387746609265169158464456680787017730471991401\)
\(\displaystyle a(115) = 13856541683020386072289321270396154440002056219698936855487697881491850193507396210397464\)
\(\displaystyle a(116) = 86343594577727802156003620784895050021027883822249595980444586791238428790139033676615484\)
\(\displaystyle a(117) = 538087851233038916646578228311722787856737012678912611255102502494892883041488160951420905\)
\(\displaystyle a(118) = 3353692427735004348307059088988471714728042601983685109536095667932570441564674598325097441\)
\(\displaystyle a(119) = 20904484744958746243524531901524697791382797316536928806377317640122422597418374398379992327\)
\(\displaystyle a(120) = 130317017010331074503452355305567371098277714912043866826680441019950404933069826214771367360\)
\(\displaystyle a(121) = 812470253823066569167740662732088861372901767089633249511354962244336538811792256811874928435\)
\(\displaystyle a(122) = 5065913318899171611241127691513342699642519536017348963724195620336102980431794827696993179674\)
\(\displaystyle a(123) = 31590119738517742363058523340984672938802452210250875843170646618491536290490367179564896695864\)
\(\displaystyle a(124) = 197009571564365379240663449414004031972396413287332224782436761005940050438837077867489351452676\)
\(\displaystyle a(125) = 1228754832466958654563191222382101538365294593428262630087512978722566349628269632404275745615362\)
\(\displaystyle a(126) = 7664509131029352301310185549115821212898064714434817360279428138839525688968220830432525874338351\)
\(\displaystyle a(127) = 47812780516702897180534375176172640201950887339612542306638991503336864479875093454954845240324506\)
\(\displaystyle a(128) = 298293349151498009628029779635217469881601303053712085819611976391077286053973325577379856431960178\)
\(\displaystyle a(129) = 1861154547416996484371817580390271627774175609209146009167395965671294295634328996698170732599302833\)
\(\displaystyle a(130) = 11613416443753942597873507924456050491285811945430653632955257037325456526344546332986297704471176871\)
\(\displaystyle a(131) = 72472904395973756866503574320191255740360189882679751361507187230256518999115384187976108816233247544\)
\(\displaystyle a(132) = 452302368135533047176811062696092682362646881269415499775569851739351220527513010794461696233285600544\)
\(\displaystyle a(133) = 2823052939584022237655753152365601443237941701004844631964151653075683683455212892911330357203991503197\)
\(\displaystyle a(134) = 17621610516782196801788214902056994919082958192262940340834426861017511947392830437463355999638959816054\)
\(\displaystyle a(135) = 110003891746212718621135801476603314073143850301993429004741041222909669036764699341644561331045348438676\)
\(\displaystyle a(136) = 686761359878467231677276917886156917594480229018543175960124520556697534173737631029232098781424864274874\)
\(\displaystyle a(137) = 4287839183307883796566451314160086811313860415005340905560294387871190785713742986363104671541811902656856\)
\(\displaystyle a(138) = 26773518970641356112997357527991268151682406394972843332475857302730325095403669234024672752022238046067527\)
\(\displaystyle a(139) = 167188446330360852339574900417181585716964504864262242870419799019721796287813735896148793388070153769282553\)
\(\displaystyle a(140) = 1044095978435849618597980480262544259438345656547179285900248238657660717525880741732051315843912102271623174\)
\(\displaystyle a(141) = 6520898904532556692089308373244395126141841195706504416107038175600387119575823184530002703903161233454756618\)
\(\displaystyle a(142) = 40729298724132808479386328487334052985697621289791472726734870870726021408878618484096785161605288366423259682\)
\(\displaystyle a(143) = 254412453394463453797279556720850050769086371216878051014491587443130386076560916740980949546744134906419163269\)
\(\displaystyle a(144) = 1589283317860821322360539163820536653859620514960280237083474129052368442406662671688241848620034480128148786626\)
\(\displaystyle a(145) = 9928768268603164862607811591447487083295297053522324237788060899592156773371652903179780595625444790176928534004\)
\(\displaystyle a(146) = 62032615166993099902809786113371834154023234656980803774014581545597226179963892247238656851174308430043181093338\)
\(\displaystyle a(147) = 387592224350215996924822492014493816383008526796110835686323812654405263834741959517418976074214898499644155604803\)
\(\displaystyle a(148) = 2421920385888300063136711939861093781732617127960703993013482307471060773946524447018672402211436192018067877483932\)
\(\displaystyle a{\left(n + 149 \right)} = - \frac{846908893496047069252550656 n \left(n + 1\right) \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(2 n + 3\right) a{\left(n \right)}}{1434274163448762957805623339 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{129922760704 \left(n + 1\right) \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(189910280526200482622 n^{2} + 1103799257231768918265 n + 1587331569107868593940\right) a{\left(n + 1 \right)}}{70279434008989384932475543611 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{2952790016 \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(938774896663795797367282 n^{3} + 11688317168824143097272631 n^{2} + 47010152738427416392267977 n + 61820462309965498752692058\right) a{\left(n + 2 \right)}}{70279434008989384932475543611 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{738197504 \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(228293205452825952756049172 n^{4} + 4650140510217231489854688117 n^{3} + 34982177014114156384123779403 n^{2} + 115121876047540495750818989160 n + 139867160817030071271669819612\right) a{\left(n + 3 \right)}}{70279434008989384932475543611 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{16777216 \left(n + 4\right) \left(n + 5\right) \left(368456950408076336001737169172 n^{5} + 10738145208352959662311492371431 n^{4} + 123925408955442151655325010075046 n^{3} + 707416196485343464667019585817681 n^{2} + 1995402574266322768323035948824974 n + 2221850101883105618349641243874000\right) a{\left(n + 4 \right)}}{70279434008989384932475543611 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{4194304 \left(n + 5\right) \left(32582637340303407882062740393474 n^{6} + 1248024919799680945308507539649251 n^{5} + 19708619381982082368340183284586232 n^{4} + 164090157294339812401080928698123085 n^{3} + 758600664947859399788611196278324326 n^{2} + 1842637878463495524979693470404622624 n + 1831772810336938646262523793366110848\right) a{\left(n + 5 \right)}}{70279434008989384932475543611 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(63093421917653686134889690 n^{2} + 18298305319390502815479372987 n + 1326298466036934207871186982120\right) a{\left(n + 148 \right)}}{400635116288088376055424 \left(n + 150\right) \left(2 n + 299\right)} - \frac{\left(597304726687416573748229865558508 n^{4} + 344069614891412284685603536834052956 n^{3} + 74304109207492960946234121649872417749 n^{2} + 7129819404446170797486863118643042395857 n + 256480225834428419293908911286419533116060\right) a{\left(n + 147 \right)}}{53576132830973482353139740672 \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(2809274616091274918404426179132735856 n^{5} + 1978386331479360669614412163926483948784 n^{4} + 556788831618429000513736293502032999908714 n^{3} + 78274153163332754669450128532076045931470185 n^{2} + 5496273137380674067960410508757817124627252671 n + 154206004124355874213900963563155615795124643440\right) a{\left(n + 146 \right)}}{15429926255320362917704245313536 \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(452735945924415174527689125428421941968 n^{6} + 426737143578817775471432252516927869360368 n^{5} + 166437438169538117265505104135395161820522290 n^{4} + 34416730834092991324170219773859027069859284645 n^{3} + 3982827263100702806149963922916998182312130347822 n^{2} + 244723864371484635502908306533362785941598913411947 n + 6240885979158743569178855311146508018837578148019760\right) a{\left(n + 145 \right)}}{370318230127688710024901887524864 \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{1048576 \left(1664016469997366162054831312419294 n^{7} + 79736823828492171071693531341728739 n^{6} + 1621064310917611277623606366488372697 n^{5} + 18123405909420271034461369068904070585 n^{4} + 120305973514297668431721464545373289181 n^{3} + 473976751837676599250374343630495647956 n^{2} + 1025556199641387744204884363412242301468 n + 939343296795405449887772051945948097120\right) a{\left(n + 6 \right)}}{70279434008989384932475543611 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{262144 \left(17931678967509586268878031399269304 n^{7} + 1131784354478525885699783803153958771 n^{6} + 30838290974943129842270027256757171045 n^{5} + 469696854616121643763622158871190112565 n^{4} + 4312234903162213601214594712988533757751 n^{3} + 23823305935529644896882161001406787582024 n^{2} + 73207329299319547094021920079795444536860 n + 96377105784090839543312003704231893024480\right) a{\left(n + 7 \right)}}{10039919144141340704639363373 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{131072 \left(17669979533995283727433928238970476799 n^{7} + 1304685248811782340110648525725987547752 n^{6} + 41083982641478100734062468418373056846196 n^{5} + 715282247171143083120172151835730329480210 n^{4} + 7436323962501774376437669343876395914414501 n^{3} + 46165552502326798403783246440627851010675478 n^{2} + 158464176402612964464556944843815203369199544 n + 232001001810460850205552523446957843969921600\right) a{\left(n + 8 \right)}}{70279434008989384932475543611 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{65536 \left(5359933607592009816660782949395144508065 n^{7} + 427100075854837177724002987372115201719029 n^{6} + 14530548072507258302684799950611660317034727 n^{5} + 273624834703367847471065464271978057431674795 n^{4} + 3080351251319812192937922081762852347313736040 n^{3} + 20731776346341082025243586000641758167721064376 n^{2} + 77242538633983520693381099124809092437610748808 n + 122904723411943261976188029401705949853036338720\right) a{\left(n + 9 \right)}}{210838302026968154797426630833 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{32768 \left(353441210728717463145901485375017702630359 n^{7} + 30328169061260020468730274134490852357617526 n^{6} + 1112261901389167431741952649313022539149388232 n^{5} + 22600533151386747670208321434694676446858458710 n^{4} + 274800099327030384354545176435307812882738507261 n^{3} + 1999455021358934492389458761366089697426691795924 n^{2} + 8060970834563710973014120883781211543821537183588 n + 13891407209599876082563252851280612626194710252800\right) a{\left(n + 10 \right)}}{210838302026968154797426630833 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{16384 \left(17044295076710711051394731329932133732809152 n^{7} + 1573494659796663654703206866247751994984751015 n^{6} + 62116224462198295571839794171899370456561366329 n^{5} + 1359307136126575386064366137734035663729130266365 n^{4} + 17809000380696956690131277773845166695313112436443 n^{3} + 139695331970572157409011141251696926116027455733820 n^{2} + 607477468836351989613461308529645118665548371064956 n + 1129764101104369256020125364315019286034466730030000\right) a{\left(n + 11 \right)}}{210838302026968154797426630833 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(110497962876661362141204643683599215418437528 n^{7} + 112051883691963023733421313485698413118032465272 n^{6} + 48688068895188953187464822904553097783538648910024 n^{5} + 11750864892356121608227496400714438196131064536683245 n^{4} + 1701319301282940068476074942034916222330791694706059062 n^{3} + 147764988863143755386394233797825307986691776362925977403 n^{2} + 7128598937625495796562837594008175123141941704655284077706 n + 147360254156977963888197537982651253470194120563341003113120\right) a{\left(n + 144 \right)}}{884319933544920639539465707409375232 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{2048 \left(860304297719520114178909896932712654830849816 n^{7} + 85273922035644453208265544214175931585667737285 n^{6} + 3615087541255882170952066670783881801875073321531 n^{5} + 84974440908046950472437007447281671563324379693325 n^{4} + 1196105419115661827043344203585805592027807028947989 n^{3} + 10082781238017360197120253256287398903282603771143470 n^{2} + 47131661205533081106936354303437390671698847992235864 n + 94248748424652964970694330560985299050561200067434240\right) a{\left(n + 12 \right)}}{70279434008989384932475543611 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(4784990860077471685342229370567621853800787972 n^{7} + 4765517746647294966103027201080824604718845059776 n^{6} + 2033721667888266154444315805225525213965084307001649 n^{5} + 482090203782595045342137759905888264354129602344095455 n^{4} + 68555579412493203488804838109325821003885138765863062233 n^{3} + 5848352534919957996849693510500530836899861201698201899649 n^{2} + 277124700561539984531611243548993413919143308841437405423986 n + 5626806947545467848098666331288556120774563185465527460204320\right) a{\left(n + 143 \right)}}{1768639867089841279078931414818750464 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(43987595589947462043827640046767677702209080457 n^{7} + 42583875420338396390922752015813665042970104708119 n^{6} + 17651743745604062738162518501968025215611608123166668 n^{5} + 4061032345136504078529732510093312931772488746556448085 n^{4} + 559999451340789286720017645827439623561145539996967843883 n^{3} + 46281817409491192270768200763535517090513535485408368803536 n^{2} + 2122497605367342634279460132698620002662340822375079988704372 n + 41663537959931865044023428199340825183281213422527644045245360\right) a{\left(n + 142 \right)}}{1768639867089841279078931414818750464 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{512 \left(160319851713077832525282130514268712980144854936 n^{7} + 17021032650208724322966822493664664741583420494011 n^{6} + 772894326266661415621975880947031983996463752196891 n^{5} + 19459528581207744351792823926401370370268750768076605 n^{4} + 293412926797659867178278198428894652490451797579436729 n^{3} + 2649655895403783050519139025536923780709193665806275304 n^{2} + 13269787461329148692749216985141984807278181167799405364 n + 28432807478649813038226343456598862787245040061317231680\right) a{\left(n + 13 \right)}}{210838302026968154797426630833 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(1085896215954465046219126290333616897753044357503 n^{7} + 1164140193763749846042118380267581197981338391692616 n^{6} + 531573230959025585207724766847682262004083199956529102 n^{5} + 134135876675191694547823164080668540974184064196137648920 n^{4} + 20215230682236823742488056708302308970486916180013765321607 n^{3} + 1820589998472213811146881723212905779613396813009251579513104 n^{2} + 90766614611149975408204134378502843144341892222622100601387788 n + 1933246573802667308389503003615005941527674194421318805744654000\right) a{\left(n + 141 \right)}}{7074559468359365116315725659275001856 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{256 \left(4208804877848015173254936553074961893460083371981 n^{7} + 477458092767823916213507086272819877216788031353172 n^{6} + 23162145446735974503611635936142627431587296474019548 n^{5} + 622944687706387560228790521192699105112448423190657940 n^{4} + 10032735701853058610611681910865301123777483871944579859 n^{3} + 96767655888797328654514976860934284669462348327590290968 n^{2} + 517600288145711603098125019527028890604922813871249612612 n + 1184511807371659444514559266715473911126147918028612249280\right) a{\left(n + 14 \right)}}{210838302026968154797426630833 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(65133991019777868626485796064303627383836835980371 n^{7} + 65000217297351375848528616953739448818444271478411519 n^{6} + 27789643270766045305023826041984777295715509790498870433 n^{5} + 6598165511351195180437062553709179052778708393167755795385 n^{4} + 939648951351054262052798523170025379164827162136105885813564 n^{3} + 80263164149579208811342516587173486910686119359781935127115696 n^{2} + 3807650489724338703160185507500575190052146283707286653988869592 n + 77390767222682762779808396368939669753683676081037771181852180960\right) a{\left(n + 140 \right)}}{7074559468359365116315725659275001856 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{128 \left(95324866529030795871244536331053090629189764089577 n^{7} + 11527566851728495757469499987037570875435631180431595 n^{6} + 595950761215853609244986265795558718449185727575469973 n^{5} + 17076814961816744090201659674218927592562857386001707495 n^{4} + 292966612975063787194512363651190483552100347773046239958 n^{3} + 3009554484765668923140941988743328883628687740872455035790 n^{2} + 17142953834914856518474700018645398763363657072044807512972 n + 41774175044973767947520956702360043280518050763527055801280\right) a{\left(n + 15 \right)}}{210838302026968154797426630833 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(171899000963724640685606549876967383750139323525801 n^{7} + 168341803949036987234023283132090780779066444707790992 n^{6} + 70643700669594894387570126793660491505290315998109740060 n^{5} + 16467351276843401850712050466717482191566708736781592890330 n^{4} + 2302864215225982754574159886627009753770577395384807331789619 n^{3} + 193200753086304428741676439963522574222272319360176647148314318 n^{2} + 9003741784728150702141000434198516635611417391998761732015937120 n + 179807683448369957850595955464068462424676537005025684012941630560\right) a{\left(n + 139 \right)}}{1010651352622766445187960808467857408 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{64 \left(1886275081740690889895149349835466468584337103121507 n^{7} + 242620086864487327167697851051516695757968196251588992 n^{6} + 13335410993811273843554665074553962036863563183730807826 n^{5} + 406120836726582059883168427046166865302549843132700219210 n^{4} + 7402670986413455309177017231863818743531197935254428774243 n^{3} + 80776372249677725322214641512128930608085349750734646035438 n^{2} + 488637589786903104710494497932577667890603925747907175609504 n + 1264300771995375894234075290770100912144287041514379945111040\right) a{\left(n + 16 \right)}}{210838302026968154797426630833 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(1939672630750871997651853398584262543633894355496049 n^{7} + 1865986264517444747165525181186550926765765803387400383 n^{6} + 769196607438230086517966897087616915714563962518396026553 n^{5} + 176124422643612839467923037287761649334735323040365053557415 n^{4} + 24192400157269464234401277348853221888270673066724577904279926 n^{3} + 1993496869233458344295580632645288225809876839576522055850548682 n^{2} + 91244287219222161203255029470176427847611845811292806545018427312 n + 1789555154397540177899797469472609109470555902321670257189132882400\right) a{\left(n + 138 \right)}}{1010651352622766445187960808467857408 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{32 \left(32757840510300067440218085573384176548925766186825005 n^{7} + 4472853136371551754936800222357198991052926848105926678 n^{6} + 260830447357627936018264142644824053107750697434017561878 n^{5} + 8423383562024036794001074548771880354482374832406320059920 n^{4} + 162748373029758501954375415275948940147394208380701952587925 n^{3} + 1881713683757581519188411831536792106300358924989670303648762 n^{2} + 12057672413729253604724547786740153677579032459223787363916792 n + 33038458732061739843046489940039242935312406034301735253155120\right) a{\left(n + 17 \right)}}{210838302026968154797426630833 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(49982754644612322995330626650150957258736465009229259 n^{7} + 46263659829530687893603346389625791985928841778118676152 n^{6} + 18321459341149700115663219152907592860538364889571566406874 n^{5} + 4023704472165917697949277332598503699412303167709266225291700 n^{4} + 529170134485382180017440835030451575490738854318051179067007271 n^{3} + 41666984803847604678555841634702593335940659311089111782882356908 n^{2} + 1818468316342069198004583587829531825880394446664463735503120005756 n + 33925936892629102975955835597700949046536944311862301785099727737920\right) a{\left(n + 137 \right)}}{4716372978906243410877150439516667904 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{32 \left(248421976162148401748975788808520343686167667290152017 n^{7} + 35962325429279163337854425083043644347843955950460021826 n^{6} + 2221497282299112636613362160146663520806719197900144170402 n^{5} + 75943899722928571474855182850358708032588003217414699490740 n^{4} + 1552326407905127693559190848760677319887020829180830821235553 n^{3} + 18978385745578674292741773684002068097298051156487204779131174 n^{2} + 128534308652483334871940453919278004571657140642872270352260208 n + 372101786621774605042835795575193019472352645350427584965323280\right) a{\left(n + 18 \right)}}{210838302026968154797426630833 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{16 \left(461856797333739662445418615236138873203676865366735006 n^{7} + 70900670676917115199582766743215201388837583704379101573 n^{6} + 4638183942919834272945883631622479507208915869535109364707 n^{5} + 167730509180407113215740438646392282299371021656861904953825 n^{4} + 3623401954674500391251211223086942797933716682493130554556459 n^{3} + 46780773108762006795345347722088485012566125897914455392707642 n^{2} + 334358754517526459058657658405847565396279485206581628866446868 n + 1020922409791153545576826977005683099679262474368422662726423120\right) a{\left(n + 19 \right)}}{30119757432424022113918090119 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(1367949423096127805424558199060233912393702673731026666 n^{7} + 1391462213271322020270269607010249997792158504134040989637 n^{6} + 604270940251140016429402240628625768225788239653465519492461 n^{5} + 145291437283147465781164645437885036350640196518117516621333955 n^{4} + 20896588161379062291859355336774390502543879897023848534756424729 n^{3} + 1798330521486294294022519180494441858450419685339145174879802191408 n^{2} + 85765248690812241092871077833657758024803951360586166957812796149984 n + 1749015973005797457555538830519857013884831137900423667961711823186200\right) a{\left(n + 136 \right)}}{14149118936718730232631451318550003712 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{8 \left(34620083501108831649185095964173262310622737842762784545 n^{7} + 5659230673596144303430564633662636273041150661317372278900 n^{6} + 393174847527978738468573727443230863303948337153394366873002 n^{5} + 15068172053558349284926108132634768774801397001570249558088800 n^{4} + 344373752075038351535110007398045184691282972524915063749393085 n^{3} + 4697123394514138974475678411188198194367886026590526389308615600 n^{2} + 35425493346979958181399294886404873916826225048593433918435515548 n + 114025453027979633049603247455808926125639413420889312609864374800\right) a{\left(n + 20 \right)}}{210838302026968154797426630833 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(101439676721541797044188327523975709585494333073356232479 n^{7} + 98118909588669201262873182973449534034073942105250540521514 n^{6} + 40654659115180502558762993408741742613301101373687083399339540 n^{5} + 9353900279983796169383000637681148151161982997317594173813012350 n^{4} + 1290716925400636413233923796583163667481319480342394267415580423081 n^{3} + 106814940707117773241488907056573217132703981441903492790710155773056 n^{2} + 4908835188748639196434139799041311234140368488112277165591535222343820 n + 96643394361265347829549265122141160087833729337170306630108814591256480\right) a{\left(n + 135 \right)}}{28298237873437460465262902637100007424 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{4 \left(271621685396150495886452478007848685569135242653531277161 n^{7} + 48181452904016254582124025380805877076219080622035268179541 n^{6} + 3604335887563163365440452154980680823175772698724764602004133 n^{5} + 147885325673976806712956248736358801637150699080367764208468235 n^{4} + 3602617569083775477541862717808788806908937771547413751331908734 n^{3} + 52198152007068308435443711803552301002796839564906281485992698984 n^{2} + 417045027569961572010755519429928229121450520598593704232627122052 n + 1418866016842669653470582543526372142519888563050765573465361185880\right) a{\left(n + 21 \right)}}{210838302026968154797426630833 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{2 \left(782657059949607394395492969148443926934781735989178028585 n^{7} + 183478504009484048257080914356519628210988050863161975008062 n^{6} + 16617508951678354469757898486299985722376782550875995344214582 n^{5} + 787991570753412952138560332774524545156175292382077926938643480 n^{4} + 21570479917305643182898990186075571940440606548198292523703323365 n^{3} + 344744684967931812779503831572773776047089515501129856961273293278 n^{2} + 2999130482419756730967174753345387636354400560142575081597395533848 n + 11005137384496347602684102602078656909025467159674767422519664449840\right) a{\left(n + 22 \right)}}{210838302026968154797426630833 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(1628086014527087739913959437716501295114585559661762418697 n^{7} + 1549832969744306265382255997795345630910734008745690678435423 n^{6} + 632152828318377247363971498227512832655685888944272141263911819 n^{5} + 143217177591482646124176456633084537994682425766623781580898819835 n^{4} + 19463886620599346985204390172832022786959897056483211632841786570928 n^{3} + 1586818364778441890082853205219326350112203508761705973433403584332982 n^{2} + 71856491588560719259052445786240939166416454116914475495882405857857836 n + 1394258466574077889984667730534652911173113669414843635783998165179718880\right) a{\left(n + 134 \right)}}{28298237873437460465262902637100007424 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(20512337511392951642412685272495689705704421633565830831029 n^{7} + 3086758975768416900632291257885992219848841377383307828122823 n^{6} + 197459586539419012977151019520068723147572777814947533147768205 n^{5} + 6956681236814345043084098480906421713457798181686165265365718505 n^{4} + 145709064231250249282205414013156140443082526456285150324464617786 n^{3} + 1813856543672047093664861930877185416527932773170363838910581550792 n^{2} + 12427159146841358378595259446237098894726691480169101245173592521740 n + 36179546513553867888888264413996261047100208353809078985221272757440\right) a{\left(n + 23 \right)}}{210838302026968154797426630833 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(23722837122894786752305269161780617090040649470210756924745 n^{7} + 4147156545397318145384574779385666761590329692968609867228636 n^{6} + 311854685216874654199355215352807666967841949872864668131848366 n^{5} + 13079896400633180247844951401435445786421072329997003228540804920 n^{4} + 330548295383009533007882337584904807970802511846323216789977394185 n^{3} + 5034092325534733114712409670900065155858951685184716116246378226304 n^{2} + 42784398628943871115821175837458393169604687188810656660024834085204 n + 156544072558919711606971080715540101103109376662903035058491161204480\right) a{\left(n + 24 \right)}}{20079838288282681409278726746 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(37312165228447500062047260321941806364048343570948716698131 n^{7} + 35113579079944087599686363245006096034557436981629384270094848 n^{6} + 14160016008916084001548436506469590962928338940388323409907690324 n^{5} + 3171913942700866530068950908708033064164192490651851138518745763390 n^{4} + 426257969668290986859873324886514452849751297389691784368468929635969 n^{3} + 34365112673482902711043937774605140762326889017192574282607044593892802 n^{2} + 1538983905740213324986474045804228496493021341798506281990602264218070136 n + 29533694966645738483504448801489559488834581166315551574324409668856851840\right) a{\left(n + 133 \right)}}{56596475746874920930525805274200014848 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(335979410849645069948715872934971065078471956324727882300672 n^{7} + 313058313010658076358808152903659360189587902084999271789016557 n^{6} + 125001701255105322807729740320050992137599228064280552891369131447 n^{5} + 27726133589124052223006919631532102257510005392038229204094245327615 n^{4} + 3689516575048777801881038883682787816747746746094904431105618752520813 n^{3} + 294548409888239209710983558717978644211674394226411285907047310397970668 n^{2} + 13062535737713276847971084539743298197209060345674569410772354464067983508 n + 248243501163398157147255148764118339347795168554110288957570824906316342800\right) a{\left(n + 132 \right)}}{56596475746874920930525805274200014848 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(4912336819401231035785695194634693975721289752306288771969363 n^{7} + 4535393334337937678522418691973071615534874888046247760453881606 n^{6} + 1794428558960314474361322374952612479598635713432417590164408917708 n^{5} + 394390278280755120331444672489039175491484749827370078489291241079850 n^{4} + 52004261110276907196446604628891717662024147575415184540131073122158077 n^{3} + 4114001876032339501910884202412580532980160871593085321021400672893256144 n^{2} + 180792008759609545246136286801739928349832592753775375008427909879045567732 n + 3404701147017193643311291631296842900759960762402421386816153266906101727760\right) a{\left(n + 131 \right)}}{113192951493749841861051610548400029696 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(7015944420752910806725483104053559925577100138791696324210567 n^{7} + 1317601683600627102638732679638276923729425679425833256309094371 n^{6} + 106331353098594083731653329953808604260035217780968787513461166939 n^{5} + 4779623918073075718243013165179851351840344338456587546650441124345 n^{4} + 129229981868487734584862056953343097782345275104617718089857701207258 n^{3} + 2101437245295199218520313588273019445347103924256619321991859960208324 n^{2} + 19026805432539227152295166132037170054700112126974706344014660727691916 n + 73983679165440632943869173646365682176015732266353631689928707950918440\right) a{\left(n + 25 \right)}}{843353208107872619189706523332 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(29491818705850389833939636504039696892228908277920577977171253 n^{7} + 26992950769982140047607558471072749061693045804029341201268730709 n^{6} + 10587320455612988456840524180902631337948786356167859745978628589671 n^{5} + 2306816191342738502121107587418018149552808591853069429075440825640635 n^{4} + 301546977115578395993252560717198849203954652028974567739447149231791012 n^{3} + 23648961916701556125443381928652378434345099954790856875643466333488198216 n^{2} + 1030292641923099500490303356111148306250780556905180243966371855554172933624 n + 19235181925008870147151232881035351690155764317118017538698333319312159392000\right) a{\left(n + 130 \right)}}{113192951493749841861051610548400029696 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(74717246276125985906633626390452572346731777337264913547034167 n^{7} + 14917172210145271140560704884634671918351540940995443312187828570 n^{6} + 1277901899065662822292798508772166418036595613127921378396519954426 n^{5} + 60883062358689652142252491095076498879312525198918928902647928399740 n^{4} + 1741984364940358211286690465574633579213693221542697954718579712632403 n^{3} + 29928014513339413898955186600375655857982354637775994473076992207963870 n^{2} + 285832675526206600068430070801544226778594694889948763550441565652290824 n + 1170528510275448537028531458464962691004162215861326050916396293222150000\right) a{\left(n + 26 \right)}}{1686706416215745238379413046664 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(90233402430217851191850330467278476070594237021393166104282595 n^{7} + 19219212525540164710897717263536805909817819562500641826178394537 n^{6} + 1752066963169482366714476545004417059001631842883168732391171597475 n^{5} + 88618400618179451737839237793417907121798289036602323025506335981515 n^{4} + 2685868171042014261236454843322100921624657109014023159749355526740070 n^{3} + 48779582397914608875364364628074935688923439987218219736065391787122028 n^{2} + 491546938077923787713987225953368417591974675380575801739747052767706580 n + 2120145985275608394652531561438458026734435638640264260532660692762201840\right) a{\left(n + 27 \right)}}{481916118918784353822689441904 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{5 \left(121001876298106502838913188865189484044252609402479219901575483 n^{7} + 108994274686144111623147357347703505527797578841189210610034697075 n^{6} + 42073068733943020870613618076437821771443762921286059431579781364107 n^{5} + 9021904955148519553920488790582544939465180413407719099103692278567779 n^{4} + 1160673225128541364591326028606513835002002614747649853441825824091636662 n^{3} + 89585907878360766585306542526699211448505000709846807184364319892170845026 n^{2} + 3841174594565871328735039531372415703882691202553977683521398723437946297532 n + 70579583375578269695691465612467857689966782119061930677748726315261700056832\right) a{\left(n + 128 \right)}}{113192951493749841861051610548400029696 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(145988046524787921925672522025443828505047041152322417803183403 n^{7} + 132518599256345305934265788694480063118832919127035899781472611212 n^{6} + 51549445177174045424063704334264195557649510853874209162109897695762 n^{5} + 11139434902717514985477530826440973546414994590975705195279805694566160 n^{4} + 1444169569543004981448927698086311505098733610272435289971560210302142447 n^{3} + 112328300012579887500851330910716666429481642298810247568711065719370483108 n^{2} + 4853471613464775197357715930961166385514881701065731441753560997990512578788 n + 89867762709154640579287323754289387035939264030599486273556613397490902691440\right) a{\left(n + 129 \right)}}{113192951493749841861051610548400029696 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(588472518748727451158309187718296377674681468222578016277100211 n^{7} + 136525464910833865720708287204322387810695021683743101552917883586 n^{6} + 13459331122116481123316241484314058568223211195260803049276377423140 n^{5} + 731849921219673211943344540632407429933891109829964676222379803935530 n^{4} + 23728444210602635789857204985113562299947809236820545564496161305180049 n^{3} + 459103243668423992120203616813738154650574327697008748040017143137573464 n^{2} + 4911332975370961920736120997346968147349779629519801111904051029498598460 n + 22421203890525724766131352647256765207788093797245852127102781202085864720\right) a{\left(n + 28 \right)}}{963832237837568707645378883808 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(2285616167585542533611746710921538817986128594407089165807721239 n^{7} + 2044149970983723196864079294272272560280422871620747996050928094688 n^{6} + 783462005233071745746224568046224676900622972189104560607842787948522 n^{5} + 166810768385872452363489763157483621275048375320760631074189789792532290 n^{4} + 21308648052539757201987217128183856932823467591042882688194064340840757391 n^{3} + 1633105889173643685761417513286955272508028057179048580507703520316124617542 n^{2} + 69530707197629344325773661102491130776687249610503619754090425265008243668488 n + 1268643224483315679986782075361375887587022496521853177179830345670990684052160\right) a{\left(n + 127 \right)}}{113192951493749841861051610548400029696 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(5005451983932939586942501458805669874785466258477669343811283887 n^{7} - 592321699070764016075975220970793614813615770789529694609944093649 n^{6} - 222169214999361565548727637160459729476907256413645129204587518691185 n^{5} - 20697088148853765829639944111988378597073138945296642275756191751767410 n^{4} - 946102624156290816231491065461275549946519740412058403753305404588794582 n^{3} - 23619884603392361831683592358629009423079309252148740173428902916905310911 n^{2} - 310119604635070582291865121219583874410701035989532255543714259897009470350 n - 1683261618546167565149711794052527122010409835902524178852733563454143413560\right) a{\left(n + 30 \right)}}{4497883776575320635678434791104 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(5645559833839265020945095400068673420922862068885436246221232365 n^{7} + 1572174142879165245326867717616220089298933624467079096215642988492 n^{6} + 178592677525166503955066143336061046639073363102288601642843500088444 n^{5} + 10903693500871676144083446013839620289006773422913095330541006484180220 n^{4} + 390031314333801765333591783747122071228357870344743959730642604109932095 n^{3} + 8221905893694891738063925716382403053407059979819960230623149339906998848 n^{2} + 94942054402272639197395856460673268632429855656497708867464927741650514056 n + 464555586351915146606748611587768566936620466279445052880373429823590667640\right) a{\left(n + 29 \right)}}{4497883776575320635678434791104 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(8682625281172280348574419264009661355294738794335094459487353046 n^{7} + 7626872450731850999615765549290964525618952155843344724648775963273 n^{6} + 2871237792057963247033069993900973958495478285948957401027998759325775 n^{5} + 600516946879802632255268882100858480670721100729750033169184611911776475 n^{4} + 75359928374961867064185921804424763477333093274946122478894899347975516599 n^{3} + 5674358010432937683910099094245254361454796232036092503952657607280612733852 n^{2} + 237373508917907617502234763092665291356584156814990973343860962596773372394100 n + 4255834591069568112660160804444164567744786493041021750015268249100164745127840\right) a{\left(n + 125 \right)}}{16170421641964263123007372935485718528 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(10050926153675719416148737988880120130774269422689913980263538506 n^{7} + 8918271648558762792305389488768543099953077562142610436515223702807 n^{6} + 3391319746605266821012878498370776560315235740230038208646500426970579 n^{5} + 716433915916597063403637440019083813120387439542455686710745123181982435 n^{4} + 90808877956902819373885790145853360499402100774418371602840586881416863779 n^{3} + 6906005678873587376058362089170709882047381678573264617098105377810410380478 n^{2} + 291776248169667746419624891706727222047250274822556090342225590313798354355576 n + 5283171951814475433411761431135110623849418603989028239992167350410707887998800\right) a{\left(n + 126 \right)}}{113192951493749841861051610548400029696 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(111306641478110404609377731459612708828041739788476143342044933716 n^{7} + 19277311034582373472086154016611621625878526645650313241825777294880 n^{6} + 1265436576726783787711370054512818051774684346859583667555875159506922 n^{5} + 33958603788208645044728198507109078922943693988900681880648709796739915 n^{4} - 62767195394992884544641221512842514308034427234586422059186391833835826 n^{3} - 24783414637718913085766105954666048241660327753776697487699909066160236415 n^{2} - 532394507480709273844273210554330206014494333387724121842174737606222993912 n - 3736722503789418139573563206353642840116677638585650172439039710362149575200\right) a{\left(n + 31 \right)}}{3855328951350274830581515535232 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(200703694062593888637103660566837151439171895714120120821171161576 n^{7} + 174460164085474030431677017028483184974844698536938367223052569241123 n^{6} + 64992184816042581759883623304122741582027701363556923727258409659560791 n^{5} + 13451044249394012692015899434101569871688206034070528430482495231797758860 n^{4} + 1670345986932667947457878182050048198893486336979212525511221480977350716679 n^{3} + 124455557928934314834484190500696179748378887912704999411449529945957097125517 n^{2} + 5151784730131047925652135248629983972757313728988883471565760704593947657458894 n + 91397500263284479012843068056472320947792845799671566027519628577072904791826400\right) a{\left(n + 124 \right)}}{56596475746874920930525805274200014848 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(1502032727587292514045653150485729438769603139574864173766566375627 n^{7} + 306527748333520758127360711009391002216140985097736615115080083271410 n^{6} + 25984295942086522411777129617976261207696691220453773661080456063898546 n^{5} + 1168975163288300912997031224629495979603086929575774609506990135474067935 n^{4} + 29304217123115936463613954399865993194616193552532071076431583058311697223 n^{3} + 382680870945331410216040430903039420584699429516792550111874351308712680885 n^{2} + 1879004464178250546013049492125427572464541327689647536202008234930390627074 n - 2889703926893502652912749767376751028072365447586299806579955994806537918560\right) a{\left(n + 32 \right)}}{7710657902700549661163031070464 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(1929271655937532402905967712939310569922219161456108986726789997019 n^{7} + 1644930025897729753122060046238516621286089008090998843466898623741258 n^{6} + 601039973877775292747180645636947911769609468362486343958365351158159456 n^{5} + 122002003733313005377771715569059043662380880031373386379370212959376031110 n^{4} + 14858109941010380245950989436180927518567500648601698350792587086646241107001 n^{3} + 1085662374278566301036144510278229301450637125501691121763838601878408606858272 n^{2} + 44069542151488074979854304476197004732836054134681790212110641522678216676178524 n + 766641407621943831710053789357623321098757084911180329122490735475650937201590560\right) a{\left(n + 122 \right)}}{21560562189285684164009830580647624704 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(4578479135960525131383521773415887919005610831207171111214456811571 n^{7} + 3940524032015580422390228716488275310449114595872045079194312020288014 n^{6} + 1453450168662898395960937028445731333651195724861522759803193265885968068 n^{5} + 297828043615117542793730409486754500836194451895900577692914958851246158290 n^{4} + 36616402795062034076817113289333727883845076718436117176193579747248124455989 n^{3} + 2701046563924741898612552846177293868717607854718188768859417335096090395276656 n^{2} + 110691104897320474420017975502716945622210409410501937347889898262022731668639252 n + 1944084352215590022774835995440869790508268622703530150976043370579862699946416240\right) a{\left(n + 123 \right)}}{226385902987499683722103221096800059392 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(46835081651372075852188437302365205703390198521010162898348097485561 n^{7} + 40621080384331004944667658191577169332321839096173276960005351741877531 n^{6} + 15082445246083277778378756928739034569929144615422923763782377689031477909 n^{5} + 3108053544918662268286420057753122561495320619912015895988197633947160343725 n^{4} + 383948334559169478770043867169773066579626737833218194904565579626521963706434 n^{3} + 28435960903643733602224933909761920903161684654089733430757122389355554031625784 n^{2} + 1169202608947622275650054114660530617675087708711578799497672406851677446640174256 n + 20590677096249273025119471687747196327614676210559730996251046836382363450718726080\right) a{\left(n + 120 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(119727139853515862151675925191538855990176650116578429518217372515540 n^{7} + 101228643055156411672263801042359841789323081964220630109384709802948001 n^{6} + 36678041661563483775873742163875157313013500707108917479529254938210043797 n^{5} + 7382563492585507119266657370590505225470824144830407219766112509780915893195 n^{4} + 891522951427239972510016048034765539497828181086469487610813249048682587908675 n^{3} + 64592847748240650332959246893136331701221567268468239866674657667067918993531044 n^{2} + 2599809382341360911057899163690519580722223408801142290913166481370701501607285668 n + 44843749195309419525543727628446751460574562255021296778609300585435040657497772480\right) a{\left(n + 121 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(213223844129197108274561508964940348937641103146930053499369103778882 n^{7} + 47076380481982635528046428806951575796711172120239779256502784287210251 n^{6} + 4387216632846584255366342176709072990709000316055183862603845967965211811 n^{5} + 222780397486171897476595117062248970996650573270555000128440505509361432775 n^{4} + 6614853188475263984313748170029919952242987494326128650795554005137820195223 n^{3} + 113660179792704036144010236851916382655777884413490149287501198605449968767214 n^{2} + 1027134645856118256926903304621273766827250577845696233850731840792117985982604 n + 3622612642351866715943894107898441534386525320615209091585210947017494768827400\right) a{\left(n + 33 \right)}}{215898421275615390512564869972992 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(1873472451095251076724532632777501984369306623179994103605050604177867 n^{7} + 437775188495134579517114655905857519442581195461701022544856089135405170 n^{6} + 43434268921856430112885200028015950394028536405418813160408838163826195266 n^{5} + 2367790229700214534715001856871019127321792266808394223591336298221904276500 n^{4} + 76414796907488168688850246082293668722327269271802838902057146588712514344023 n^{3} + 1455056855595539387062897080036822959838214766427833824261274917770722871531390 n^{2} + 15061939301192169895166556523158837821650098262925608870591892568033881930207064 n + 64882494155376615311534043762024348173620457538887152943785173768261057355702320\right) a{\left(n + 34 \right)}}{431796842551230781025129739945984 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(2238911165094583353159631477305555696366604540284618826537947448262819 n^{7} + 1843116032752094905896546486947382295388935420475165555737498707441219058 n^{6} + 650112708615840046558907989875059097670440435510037183833316802222757881456 n^{5} + 127363239093553010820501076971137316202842016587500968036822920742008604783090 n^{4} + 14967093512220544667737254089642905390049315971579979217811393980038506214268761 n^{3} + 1055026064110473753261127494894936847179288186561881302834802365600339034822772172 n^{2} + 41303946762122131362649652739297222014486312737554185481232325018682063764254435524 n + 692806535997495534192585683178935913578480066120262841719047846156077105578734398560\right) a{\left(n + 119 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(15017156414350868187498192564297132591553179053026432225210960324257263 n^{7} + 3679951787410654961992878349496697889386533470173203777743655877535439183 n^{6} + 383999606811638533700737698086331755485456690586440956236197811916561538445 n^{5} + 22100653415320653289164348884577132876792658453101187561749176870040750984905 n^{4} + 756889536967704793169437568562914794573983819463356333944356950705213785263832 n^{3} + 15403290254324372684315413305940290221922267239897038563484418347013392496283272 n^{2} + 172155414874032585352233219973224260357001908216219598185050889047407945445861740 n + 813098586494771917562676345972135716275982120919998535608346118233188878115070480\right) a{\left(n + 35 \right)}}{863593685102461562050259479891968 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(18806756614994469625741280511087649641167216038907833475330990370195347 n^{7} + 15355775099839124358822744464418533151261033593097773644147057640579262741 n^{6} + 5372141525937756147372395506260831442837729023593454504685404963319473284015 n^{5} + 1043858033470218611597912609899560871634525583171105374936179498972312111783875 n^{4} + 121667171923899704184082084628234106903585897681317671304378475946806585343476518 n^{3} + 8506268484773883452993899125248041335234763046374507737873633556826355241462985784 n^{2} + 330301219869081495097188175936885238285282605916338801160016113174162862854955095160 n + 5495125651470953596480668604397820411730577522189466444159939615927419915455570541040\right) a{\left(n + 118 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(105119648673617413763716750099785779025015013239134439744185010914339809 n^{7} + 85025450441613836219594450934691831472094696307248630480140489474759043376 n^{6} + 29466078463561176313622693849157523310200619083071743771008158098694877953754 n^{5} + 5671585786903163055587995641361735141116022689652716002247502256086195573963420 n^{4} + 654809706617266606705492839761891777410252025106593948267425738896732239474310001 n^{3} + 45347134204054449740139200466570932692099769647106788980686876091547493625579704044 n^{2} + 1744136299459326011920127944647078146474624490779759983420012932892209572224582339356 n + 28740727354904056062841310792593062200284786762125183354731096160359661575029889776080\right) a{\left(n + 117 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(112281106724024397280708043452922402740641252098464400151181161771653957 n^{7} + 28708475148690631503137426875446575151095456589117250010311874838903427428 n^{6} + 3130808140735594004473975829247277224737781921092299549652098299560418117614 n^{5} + 188704985267095319082435284096894417445516659873602846502246698183037483074020 n^{4} + 6785841982589896111780912060232592696127961929574301052370678864094333335118293 n^{3} + 145495745528246704885886237052423333733483458091304483649306715256435247424391172 n^{2} + 1720911450131658875048509004150857486681184802350302684154403435726442006295606436 n + 8653366540469050198601448283181181609992941114979752726286449364681911811866336560\right) a{\left(n + 36 \right)}}{1727187370204923124100518959783936 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(112673826491071164635301107376990502570996108326015268966819873380187101 n^{7} + 29956343765000365393949048405326208539036056226517886998748889851791960813 n^{6} + 3400304237309350967475732006277681474663891489181482948932190700607050197533 n^{5} + 213572623529684556530183319280793294860359894213419325526566556011158545287395 n^{4} + 8015042949764234388541992140970374655646484613784586693752291369465489734491154 n^{3} + 179673191747984235075593457811934819602689620395091595804370871476146637434941912 n^{2} + 2226940160553727332763763283864861852223027331944142663229006349363947650763334212 n + 11767781641340762781544054845973036299524119156817538481555131138240999190514306040\right) a{\left(n + 37 \right)}}{493482105772835178314433988509696 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(321866811756984816937265974980947310922876033302016236941933186121260245 n^{7} + 255665688765806695847634743587286478338467648968253650248113236132417545388 n^{6} + 87014686637170264437584817602927564836535337588918935750235328415290728131333 n^{5} + 16448956142552509274495193640549563637354184693129658249778794180344647861155475 n^{4} + 1865223877578436721481926329948948586978160594354305323947461379745360751097317800 n^{3} + 126872568163950735702929557408380770213024005177282982260246591312897429192334391377 n^{2} + 4793161426426133387178481449663785853063064381719879798127256342548383134049777869702 n + 77586596823146399707018498399079440825025014734289150591909437720379405563114644945640\right) a{\left(n + 115 \right)}}{75461967662499894574034407032266686464 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(480731758830714007403299779189381379493125127882330948056741979310475704 n^{7} + 385208056014305460956971993341072839293758119732224022386999872822712000163 n^{6} + 132249733280263089049941242970747496941976525803924282425819114384429561847753 n^{5} + 25217486063700380172094068792027751564369796955460980336035227079715252628525295 n^{4} + 2884272208314947414122112899606029806282125436304095735178154325292171792388870911 n^{3} + 197876465585450937918727667212490680692521630255936020438317615369809823522334120502 n^{2} + 7539585791774876010123466370039495399819600796857506920098367829522859547358668051432 n + 123080008416406457440001233154869300668195284297644146153166760416579478879640803237760\right) a{\left(n + 116 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(3449864693761623285364975938885999221151869466548824594518908457871451293 n^{7} + 2703463349539096871301392257068422352712399273616769790709794855445551480966 n^{6} + 907980796518007763082111508657573579791436548501653882653674151992902440918558 n^{5} + 169424946136542250137111202752502767110465957097943217987827831454007481631070520 n^{4} + 18969194706079031274766200944642875928258778893734434770786472890514605194528494877 n^{3} + 1274365320441375560306190314629621605437035630018661279231114236754047136234051385034 n^{2} + 47565439231073300879495939481867606679461489659826268271944027407072602916884104461072 n + 760922051265854706638547093078028276079732579619105189595379525926260432057081323610720\right) a{\left(n + 113 \right)}}{64681686567857052492029491741942874112 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(5192841837284986248978925841122969820607329552489696323656399319289319159 n^{7} + 1431914436993536508610915023753445412507503256305055952734527510599511810786 n^{6} + 168669088251955835942522627238096976942638464892436569796946532563245215655290 n^{5} + 11001506711741663881792735291331291647651941244984040027504861204249630134398640 n^{4} + 429107276578962517944888689213330699786185740538809771329491207741296197248668171 n^{3} + 10007793845796893401514864201426352049375506905790723591386447755755828542069037994 n^{2} + 129209043078003665679097019002661976258567086215930335527134126849508777504418376440 n + 712288396226625028921999359252106871355134417023308264618556099768049550622739974800\right) a{\left(n + 38 \right)}}{6908749480819692496402075839135744 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(7072595978471460109336729042871733024822414473417526433028199269670548431 n^{7} + 5575531156069888043050751009226671644396930078149575196411079723554463291607 n^{6} + 1883480642485319333905435932389051578266140496887623577023223932814875001113849 n^{5} + 353433493678652457502146562656927398654860410244286352635038671619536501997320425 n^{4} + 39787759068637344430372055622666702100229521210369945496825104844705992756187826064 n^{3} + 2687115638048380826522843523663543067590979389983214574627964939413647376515626442968 n^{2} + 100807876777169560396134689936897036074800026017762063226663630555066254109926056669456 n + 1620576153468968027443010318939774080964499918159985780817763393527983147410399171821520\right) a{\left(n + 114 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(31770466239567396529969359571492961689245330338080498748960082604805472509 n^{7} + 9068935839918497138309300530594341007775641542565647786965759994793156613731 n^{6} + 1106152274333671522284902729611576531966148582790023496379170882789550349545409 n^{5} + 74735548483638613836407021381978989761984360071729115839132688098927704620462325 n^{4} + 3020864469836707419123585442191398489860205844604841494096522543088544258867109166 n^{3} + 73051997403290667300923539282223371861425021513076902690343919082364710131039726464 n^{2} + 978593012917138636726363518706474588503703833394377099904985548594379496661818080316 n + 5601751502880285026636482870501824236340747409403866991823383791721508054367964285760\right) a{\left(n + 39 \right)}}{13817498961639384992804151678271488 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(34366264817052391381269783635727694292149431655861144649436248268195696177 n^{7} + 26757023843450926664661237461945360335386695240418217626507769766718572354293 n^{6} + 8931561368402400323488240288725202344678275604930338000339300926509044072040537 n^{5} + 1656940933042851538974182930170608301275913636311614317565504976441559897846909765 n^{4} + 184502378919031346889385497522679062132917276164050646225121230339075125870555331938 n^{3} + 12331432085152930032935331157411277052037644245012040727350222108713841414162564066262 n^{2} + 458056458755613820759733292321812316670754057590499281255576168340082693744074506346628 n + 7294828435524917530263497476071039592984212456311992676009902086894962368923611428737600\right) a{\left(n + 111 \right)}}{64681686567857052492029491741942874112 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(77969789864525882281471754502379169546740796072065889039838514573555856539 n^{7} + 60849625090402377674474664630276579947357238513053180596048513164146433376176 n^{6} + 20356787867303617215468849553688846712773476532003973611187607979037206625589690 n^{5} + 3784323913002760065129930366815838331679638057099354147618675681143740220974438100 n^{4} + 422204093010371309512024719306009187807835338468161358356659490262308984726648932311 n^{3} + 28269314453526151361260181100451951179626399532409335667862659872177269639298216206124 n^{2} + 1051832669155811723964696698727798024170594117867108102008543764880016556381105652942020 n + 16777060300203770592556936595951438622406498996238390553985010810059801341263777330153280\right) a{\left(n + 112 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(178304230834746922579687658855667338970170004040354474037115743488688144841 n^{7} + 52627704299816783619329112281878189855114894496465464446885529586277324559660 n^{6} + 6637570331030829666177797898905432647881844308611198418875780148779381100327942 n^{5} + 463769569572631017506822485232209246418809858995502916471259366600759554672331640 n^{4} + 19389220784807446579451032771297770804877229695305512583520919381345074253109518769 n^{3} + 485085039380415693964388344879202764108822343288020340125166827915718525825691619120 n^{2} + 6724775511635958374435487835851564250161591549261822212131482639801569748649092936468 n + 39852479843398729977117917420689070668809053026475462748066079155771991573846884975360\right) a{\left(n + 40 \right)}}{27634997923278769985608303356542976 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(717448632609264504049514411591996488044669668804535126545621472387861191727 n^{7} + 557915637214604333512462948644172341079357289642037209965969284922324562437969 n^{6} + 186013167074727509282961363519847514137357034449239180499884707892245547055315683 n^{5} + 34468150268686429020387923835287146611342495716962018097565357139672780562795297755 n^{4} + 3833649488906467008825189406836288276121941171654288900062032078611836677593271761678 n^{3} + 255931670127916672184928772129674704976096426794249642062366758843781965900304976812036 n^{2} + 9495678707927809451376010527930038013973352103320250969218221958016177838675141579169472 n + 151046552969548619588488380511690001150864513993517556669099156539893115747473283647816880\right) a{\left(n + 110 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(902152838664578538663492754154338312544155366943132310156503250993388222067 n^{7} + 275294799032461465879896798696397560334547996457127670830120521154845227601043 n^{6} + 35888862678706389381377334473703823780101929935460264347192158984411624400248995 n^{5} + 2591512561578390394232775584613730222701600005276549138594846413572738110054046865 n^{4} + 111962983725551832388325692079693346568425113209001028763974714656413000432511809718 n^{3} + 2894574164940276617961026251620446355624473382624868931849121450773001109678490113372 n^{2} + 41467978230339982372381876054720698216655174977622105106344856671880080984551143909820 n + 253980026785377507347005676727255751692528889299954097031137740014729976840053449232520\right) a{\left(n + 41 \right)}}{55269995846557539971216606713085952 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(1048945556360487625557892224493953580405558159833767073520959859093480623364 n^{7} + 814556530376690166205040652634330299942572584354830502463467710152723777389951 n^{6} + 271167804002147199048539609669913144532137603451353181796338734883831221145709668 n^{5} + 50165163493654632178222509474658672873148649851667561694930394102914596242541459640 n^{4} + 5569698526990229754100040261545250899567964167993233756528273750141313086031002622366 n^{3} + 371125625383595555757275789960639550849912454356533571131673563762032661794619110274749 n^{2} + 13741709568020385714325768002048481695741720178239578614166614626459334002445778336781342 n + 218112970647971396961280837620943211454051554448356514787246922458805115741290694080681280\right) a{\left(n + 109 \right)}}{226385902987499683722103221096800059392 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(1337190457923478811418383362313553061023697943779147721862893790994745482885 n^{7} + 422551739942160689879210105420897774409443476692210062650088266788280732400622 n^{6} + 57007245436760816334970907616264473130939586487734400903184476185763413414903158 n^{5} + 4257783849936261175645605596829433925215721780624272170721085256116752220559311020 n^{4} + 190186724370175096242753664497031654563551773483375494132455835992401066625554223985 n^{3} + 5081822623294532991775962082019813298478224816251737317127889518187257395657925529138 n^{2} + 75225305204803645920609082594419969420185044464714654898704831111068118049068545316872 n + 475974993153271546644534893112958936300985930356742519314009922872138062255427975412880\right) a{\left(n + 42 \right)}}{36846663897705026647477737808723968 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(6091939100207747235342627502203721128779082531444347597749639671527078342622 n^{7} + 4713957875916359047419453413242878426690063894185882875369161830911040208092179 n^{6} + 1563473271774445797309031440069793111186906596341413360450609532019825765264877263 n^{5} + 288116727327565344206031495310085956201194693466669241999103281158315921489605346705 n^{4} + 31859436452649905311440951097473640556242761937199534132068738903698227848585946372463 n^{3} + 2113947315710848035908153913064743532646723528950806470875799136327304584876930627732076 n^{2} + 77930599794778876346615631534652913450271368925701235814865695856426723255536427116979652 n + 1231319378074206831835450453900546362349446274418333829995553063360213644678577562516872240\right) a{\left(n + 108 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(13853981671552521343443936822142971358640998564047722453953750940058412213091 n^{7} + 4847767580756844807227070444461373944453589780364567749203695973953636920407277 n^{6} + 718931278498002922840644054224534867845301764252109840807485481013654176244342025 n^{5} + 58684707871466855063247402485075883074950545406372510131527410490712232249997348045 n^{4} + 2851630569533256491637226302753345800364964505865420152824862818247465624449268243604 n^{3} + 82579304435686449021025911316096865115077500768448517523526888998024934606242119440938 n^{2} + 1320735099197359052518781400040203342994538710205989899733378287089709876012058522363140 n + 9005968199435172707758381949904948267508240235397503997087034198505458874564636622297360\right) a{\left(n + 44 \right)}}{147386655590820106589910951234895872 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(14966116686704457584285931197567033084295536011238880322041492801068386704745 n^{7} + 4925262441368055655526221183459157397521540067588140439945566382036095025363191 n^{6} + 690875990378823361262969150034298414737111731205949991770727589037949776794093613 n^{5} + 53578056651027539130677465862775615435051833579372099746091358120957943540097158885 n^{4} + 2482162974729018607198831847393083984483121988355171619861700070341312865206071848510 n^{3} + 68724512691802194774648022477009040268003270124199949845800291603191740750410003600004 n^{2} + 1053321818443910379003173727486232235227109275802125588085014013634929243773313398675692 n + 6896132900575454186132167769955313326815691645895780411341990473370407118483154409550480\right) a{\left(n + 43 \right)}}{221079983386230159884866426852343808 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(16673079748208284231431953031872365203750094341454785729238342623703461848691 n^{7} + 12657636339316591733620318464265896319868352626128864286490492009293624386652259 n^{6} + 4118866860228633987830073524293106327616318002620001928195951237488663512664073687 n^{5} + 744712776486746808931042472859586520325424021438949703943913533699020333657988958435 n^{4} + 80798465225237279654645376695540774539095405789431068383321034687671257865061949324754 n^{3} + 5260349121422877921206558484467576472902028015268065042836823412477365935115527256518146 n^{2} + 190280206624290274750866688776588402288112763325970657131362722050419065505219190739603548 n + 2950057308902899069026449351828923779643254869262190939431731680919430058959441619136284560\right) a{\left(n + 106 \right)}}{150923935324999789148068814064533372928 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(17609730208189611151412242357429333967987180652121848805238620425623809268818 n^{7} + 13526222884083205579153770517530704973173162925081361918008247413246452243577341 n^{6} + 4452901042263046602594476167843867555169633141555870102731214479949784776878886881 n^{5} + 814425442030526353416034322746976948679493575248093910071096106647050076755634849495 n^{4} + 89375874531202732524176925310705959358757226368447357109185163433449643293007611224257 n^{3} + 5884985527753364248357946480561001293466896410310028462968941529680989524105796720002804 n^{2} + 215277470630659238189806823371672469495023825340945042856465653420386286464229877272182884 n + 3374982791949070360339234404674654973894050145897508142385497171794188757583076605891092080\right) a{\left(n + 107 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(45496831485209430727503035979319824654608357705377815001108192069645954509624 n^{7} + 34011042469361304834580605927408546379069047020391859575492296186053006143003479 n^{6} + 10900566890529198918457089465944388761541944189664506769521909136171865812530158601 n^{5} + 1941622414065171513074119346401540331893096950170658280197684153710820500628796762355 n^{4} + 207578705754247682806722456707347923329284784730887869230110700475534343713322568568071 n^{3} + 13319726140733164474156230759840671005447201875379248308568456466836842770669309173978446 n^{2} + 474975039749629408650924005290775857337567893147265382987070193459899718428045043047262944 n + 7261016543958845205616065992945347500162416844152345377794336567582244645895450661459775440\right) a{\left(n + 105 \right)}}{150923935324999789148068814064533372928 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(84354248039280745562314944327914838139179870272708444339917097711438799077470 n^{7} + 38656509511066586962270775922195220233207326637671793086007523468277087942097789 n^{6} + 6915627894058906082734017677501533482998730954332942250221636520180769528514152765 n^{5} + 650734579547456840064403574659646163842383851967773185428127733325842400085349382395 n^{4} + 35435722865134776553949723499581099384577622401279371200044189101497030903185521866345 n^{3} + 1128406721418057769184277596249237835863897569919823361592285402642940065136947819190936 n^{2} + 19581433983580850827565486475605071078808090374947560309852848787427318884048857635727740 n + 143456538568650305015706758150692457868967023593796551085485134586497005960483102153706320\right) a{\left(n + 45 \right)}}{1768639867089841279078931414818750464 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(142205436548339851888931578092125199074198663248885740101454479190725983821338 n^{7} + 100184958637426011064289860384531222952846768875783584186937063076168346552945812 n^{6} + 30270325570041135616808259303679738066423179801740047660055229217163213607406610657 n^{5} + 5084860504678936347665782264167710242137965869893091045072136968392394661089019183675 n^{4} + 512893019039142968910868016339609501371353219571066828720815632349168813218999152287347 n^{3} + 31065237919345138529311764360860665236606244403058296389068504512725757176327235108350433 n^{2} + 1046195712334284337715921150250896897796456941481567550823706724262881119223865918113576098 n + 15113001330200854323605279497265335955461259210401542979063094315331747396297289448651281920\right) a{\left(n + 102 \right)}}{32340843283928526246014745870971437056 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(350928500219488858694835586790279058147060131762823175132867918900546513740743 n^{7} + 257585084824378536562997176949330370647494683250128405529409085861616543840129966 n^{6} + 81081531482401167653894932479776523499286956215610650967528683756341310663870056060 n^{5} + 14188012847761963805177232271972837106110988700863510276776450076440724837199190440250 n^{4} + 1490520380817141016761109175081004916426177918413471375930560023657567625871343021793057 n^{3} + 94008078052874107854347245074528372251294526857027145269755545563838487869433687565294464 n^{2} + 3295895548037076727840961945009180520057102913061254111965169900692550967766552478558665540 n + 49550950438369771214400523128903830655895923920785597156083318360202961678280367766285306880\right) a{\left(n + 104 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(843666366653848622153462531270090876667115253690527681572561590675511809781089 n^{7} + 240182740061628443090382388618968740307832367965733112730798513254439064252948312 n^{6} + 28547185158522677085083505423694640541201336895283900340997205219667233552026567904 n^{5} + 1817162302273754066337390826259133983760303971644706956990598371132338723820851467900 n^{4} + 65654985881695775801196064838265158555859919609736057085535862236508590098016421677211 n^{3} + 1294309434764125576947907620851383988541268392779164729396057941546009794859340952829428 n^{2} + 11566519600570335103923451980650981057663145607062184627817717736683883439311834142958076 n + 19415912630019648268634212281830969526335336744489233970530833091922815081213896764629920\right) a{\left(n + 46 \right)}}{3537279734179682558157862829637500928 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(848365239227295220363771668540369765466449211124541401182055747890455355979440 n^{7} + 610158167778799157060314675429333441903645397389634233976212540210609317060390507 n^{6} + 188218194076634033970549579805846092201424185713014438589787587895144289041507376849 n^{5} + 32281135467767631964563190627051923580996013562438866681900111768613608878500953493735 n^{4} + 3324537284192050943640792803266072946225581279434041125634537244306361149874322705335015 n^{3} + 205594502882624343762428550636267033268400937446582841870392609485308063584861938725832638 n^{2} + 7069160367938260933025709692209139908811379313813065268724118115350012094011701604739385736 n + 104255042350695393358519650936666766419672383903286555352382896574515644025923383723113411200\right) a{\left(n + 103 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(1947973073595297117635426723304796558147560777276697493402449013152668603583115 n^{7} + 1340953127998969332187939440343010687532684918234375212631747218475412434662161058 n^{6} + 395824239208472728347287105721378920284436496881203648345627583489724870108943506662 n^{5} + 64948238645180285316460916670863360692209326008731180148584398811626930245488383077520 n^{4} + 6398029255508872151005037792997486704737174153821722068330517356867554352287641793957335 n^{3} + 378401503631005697869774258094056725536334109433378764096720276650589155695277532117901942 n^{2} + 12441634199218418604822184985724489506921661253793121444267345790081756173877337794957321968 n + 175440346046185995890225128001302744408495120512874516604172983338862093939616129916460102640\right) a{\left(n + 100 \right)}}{64681686567857052492029491741942874112 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(4894779077802155234710603322490119394835448592734173521538509598213792992506828 n^{7} + 3393001995405587318164406161018033454210497137622134505027884928981691255488071969 n^{6} + 1008532358667908483397032955894233029749539125863208467776616576055783622264647430855 n^{5} + 166637513684197226221349611080970020640243459589847262483687668483571765549878587190165 n^{4} + 16530096149005826790585938759105047021617915789449763117829082860719420969649747774804997 n^{3} + 984502244501194635562323520313214080913638984837007456134979376497873981910340370823167786 n^{2} + 32598106018961298555601551389800663481590574195133432375129982100067669358826441980732593240 n + 462932436513833392281690620706923515733668693878990863125382680442140582909960431763121102640\right) a{\left(n + 101 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(7485648470464513683972068195954324407541063942126723467388044006933518646038921 n^{7} + 2429818764425606709252852585698151188688436554554654441676918233269707563824032923 n^{6} + 337148501339426643190249834855747445075649048100754567130368330392153504810338368925 n^{5} + 25921891359256499764376214859189184095374485716869289947980006476631688682159846852475 n^{4} + 1192655365719232411767121531220176193826438921521557064465839203691170582324366104600574 n^{3} + 32834938596057183976021211023270205689974212610228381096062788094643821409428550725699162 n^{2} + 500800426876525581232925255394869965643183342096757325776244200871869163501764665209200300 n + 3263926304313642951606221055941906423153882416782724530211801655830045885348480872832511040\right) a{\left(n + 47 \right)}}{7074559468359365116315725659275001856 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(10656444880102228276272640950611970431495682946345541170837562750602741981111345 n^{7} + 7328840633073827804447272617900208533988901456429613695088525408569043576357448110 n^{6} + 2161356273337364834139306397120089888576285316259137910925452366409602552410902638671 n^{5} + 354319082564651717431281895174850926739440997313268059614494233666263606441246174614365 n^{4} + 34871281321915944359926561760994504502406199226023479719018414000833103573259526670155370 n^{3} + 2060394625985103875162986002139138788901244949357096593881100955386084678223520267584051855 n^{2} + 67674002958011032463808493813013171319265398929717987329878795650752408985435609742950727984 n + 953193689711487519887590784157171400868098988092085887718465835122682491443487912164390433040\right) a{\left(n + 99 \right)}}{113192951493749841861051610548400029696 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(21130929372588935786356839136826990205704561316132707493703963340626084844075431 n^{7} + 7566611942378673696812919591356612441942861026897863774539402178801386432481018796 n^{6} + 1158887303846419039653798117603195138815741260238966125427107487327564873644703209276 n^{5} + 98436366642115429019804657977179878928994568718346981919035125124172578254427342181290 n^{4} + 5009173572571435263765984604734965695973988585865065233819914519164239409058289498642989 n^{3} + 152741572531733899565323567082605831597109487795456018603471869273177684289346236826713994 n^{2} + 2584512517688590311453381284554238851461459734080148054389841125405392905652474902863302864 n + 18723609038342884315486261818549840334833181776448163990594758832122113509160314359036757760\right) a{\left(n + 49 \right)}}{4042605410491065780751843233871429632 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(38655385042679914758097648781163273690989341327204426324722263047783186794329175 n^{7} + 13242093082348650833842278480821667683483505562840846800242409082443827894318094136 n^{6} + 1941510611996607839893567392692873144691409504506502901289920299218125741492922230826 n^{5} + 157953497921053063572051847618266434989462680496629606214684359092887385474470279741150 n^{4} + 7702074171543681800346293683542499734146850209649944597641341018548430503380671758041095 n^{3} + 225127233457121226015488272477213751245390568169018393482980302061904814310639254201060394 n^{2} + 3652700566485971911828761648909115264344560558883402410423326763472888477037110986021359224 n + 25380735757667371339820910503448546376824734524520390036050496051452178793939766811374396800\right) a{\left(n + 48 \right)}}{14149118936718730232631451318550003712 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(49191269907705772896792135583851774684792407867803647898044884087176235861790755 n^{7} + 20763070069460447530817527391209356827968824303243701153662136603837735066277301354 n^{6} + 3673956532425980794425266738319779156553186654305446348420165822582752047922275775794 n^{5} + 355254471014523241809343153452826550999301400395311115205857104559057921706670152563940 n^{4} + 20349522524848038119673523988959547627656201630368987713403734321015929537658543560688435 n^{3} + 692337251894652939515498451639499574020402407702497236277241611159298237390308797185373426 n^{2} + 12978861200590636593969274572732477056924132146570664181848051660679352637370265944751385016 n + 103568927996633157474501228382410488190409721408116349370494598773652707864765637680470775040\right) a{\left(n + 51 \right)}}{8085210820982131561503686467742859264 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(52343008321243721163202847083400585436815310442284269752755581402226201471419300 n^{7} + 19744231464424163811598530215785604842041002440024488599176507614727449280637345759 n^{6} + 3176871921635960417683299917245811708623280026815079667818678659250651297386306765947 n^{5} + 282846192619750275072596839606476857745359953954377460446104243185055892017731716315530 n^{4} + 15057964859441855998664382941612173307438093271192326525085431848089158388952328964598235 n^{3} + 479570911941287637466415351057074378112041044765660858582424388935167162831161235469746731 n^{2} + 8463620903136215704992876677926017230659549149077111211189127266064851126212485662436048218 n + 63872502992218562820726333228334581110213636448852118651353500975717436439241442434111924640\right) a{\left(n + 50 \right)}}{7074559468359365116315725659275001856 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(68541793573057547485260406962179190098722971506011028360849683704145421646893189 n^{7} + 47063575448860665363030239660950223594873494504846157888848361620200386081022965046 n^{6} + 13855641513393520157751471051623847485374682470484719190154067183930821730321128200687 n^{5} + 2267163941014632793073027688999198566983724602622364583048158793523602196098959512454885 n^{4} + 222676986468868401129422455060869930225647537587958711068561397759242966668839691154297166 n^{3} + 13128087386583795459645451011756618687243448432229864208928664526578686373228773462969557189 n^{2} + 430164863255067763851614021326828306903824042667748421010306299952634985949762437979535753478 n + 6043223869181566835939760127047162409848746232552254615751590085904204905228465070443357066360\right) a{\left(n + 98 \right)}}{226385902987499683722103221096800059392 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(144044483316552719158398590163249370952538893541836543092402248193256569243998032 n^{7} + 53187724983898399322503030217804887626650643670054063479794140023008292415140098192 n^{6} + 8399322759348998902654138602052089007731740255368006469643918563460760676223662766455 n^{5} + 735174975806679073522855068655204563831937480300787630092995580599931120753892059101740 n^{4} + 38507863065923680248254965170091641964549871223102381641384103556139843532117488964259853 n^{3} + 1206632931489589371422133853446538152665236918903463980654225014536337680203249216005038408 n^{2} + 20935047961311025855927376049133069666607632809153405168632857116233885579692277946834444240 n + 155074225859005159875362393305640300691788235592552162996301647230819885053709055070386061160\right) a{\left(n + 54 \right)}}{2021302705245532890375921616935714816 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(210349836100331585985782515962801843642233741062599487497956528264115508012411187 n^{7} - 89647716007172504716978003646307844977813696906468055851435984825671000884875079617 n^{6} - 45955632015961361644044503372933723129558182493189608479266828605869224220111878933211 n^{5} - 7369920894847282750485241044911355483152081495725687740912308735766206077658625627997345 n^{4} - 597014284550713737124801706339688401295966640700536080385859519965351847257058582726073492 n^{3} - 26674119214928350154929555031772511164164329272345310247623450691242785484375944081849171518 n^{2} - 629785570608871887208164581084431029011967479714590664949985847673828853805726787590839999844 n - 6164866472586503116644650322473759987723810370822749115037768950866119154017392524214430290240\right) a{\left(n + 58 \right)}}{18865491915624973643508601758066671616 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(234843640227517310491892646400785044056625400532200825936042857021133363712953511 n^{7} + 49835568557361718686842138546460968581966921179448672303759391282379974049596689440 n^{6} + 2092093626126519791987408955438457224659682989685529329473792642632045030071444603676 n^{5} - 322673196277163695660526290816504742244310983033944109915712911152752593557193739810470 n^{4} - 43638921972374655986465487714593154784560293849302865706262407195751610349804329391635771 n^{3} - 2221588860130303153149756596576977582385824829582634347698743072353521786518723618135116490 n^{2} - 53825871706670983574795956429638217793950291337805657559358058387753730410162118252320875736 n - 516909127303677820018015011622613165702638428726482057944456294531707288703990878032848684800\right) a{\left(n + 52 \right)}}{56596475746874920930525805274200014848 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(276366777719417094067387624884635843008692198212963767980501529578400197820439709 n^{7} + 95130772846866433624315762514773674063606156134471208388307522545808617397497924899 n^{6} + 13911241616159133481071430298425363519244489020959367023724828328494981840036409249459 n^{5} + 1117943163914471444545967852390529752359609076132302044642253383529346530134203476498015 n^{4} + 53169355596228171965953098605977637812725939059495020330118506561963400622906947317180756 n^{3} + 1490421691662600461959426879762762202620782297803791444535633627059367479944267831844981286 n^{2} + 22659810474531197338248366555936127270821484098327381276215189287940386478479384156820027316 n + 142717156944931252346734628460033373728381635333841489351214840229846968316878826291822800560\right) a{\left(n + 53 \right)}}{9432745957812486821754300879033335808 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(420704374938470929035281064506535342265149986124355029906022869012256622309404819 n^{7} + 287543794288323006901048308865823827451660355382633956355494422371515187798734540843 n^{6} + 84249552147157789346507761197303373588561233373776017911489768890380117927753384285593 n^{5} + 13717288200477429327263194360195616957077894987442709359300281722210079502774761057658625 n^{4} + 1340373652165673206897119198879910009328577625996303196111082986023944002939413219446472036 n^{3} + 78602543251538425244175507980562421135038199704211890748724279095050123470519347614655393212 n^{2} + 2561372860666549136253271665808886936675416105011146196619946444406433119094056866943483500232 n + 35778850337516402668579808445488572281211534701411761323745346429399658904260965563245828401360\right) a{\left(n + 97 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(594607512064148592417574663410871634926844809409128807488058411283755985058490100 n^{7} + 403512082472242712279079452172168580984424514844265166253037940413564994950075025109 n^{6} + 117370281648380236433364803854793133288706092041684529480453899634703138848740618973632 n^{5} + 18968632736135074646534067643452395945334640247906964611363893709689646272104354043954600 n^{4} + 1839545636702807328103632271448798531408896937611489751895617664719241457263731684034251990 n^{3} + 107047977438266735480828026418855401879332112616845629440816143139943878618640353298513129151 n^{2} + 3461088910871116521104779550361679456010025393643422473751884719030673993734488801704287890378 n + 47962964978382844179416915023255774492674882779749448459406480431629483674900803658239278607640\right) a{\left(n + 96 \right)}}{226385902987499683722103221096800059392 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(1105073749371150302805090596115930743915265741528697936026218038020591069451562986 n^{7} + 728382086593365077446870678410435745897943324846583839413875853166811821120585162459 n^{6} + 205737307872775411401326050713580345235290757112717219480158152728922364642282374746631 n^{5} + 32281649083059933065861407916223841467671925659049742286174336299533514506953548496440385 n^{4} + 3038853916574358896448065583919863366241422994863648663843702146402414350963318701051945199 n^{3} + 171622517276871165022555888640217624181020552387875743092445520824924119158078811021826699016 n^{2} + 5384237631147837318380925506040642179539977183475409608435680070172836158691726008958543743204 n + 72385965337325723941158710128970543231606818266708891056940961998718857297411757413377509602480\right) a{\left(n + 93 \right)}}{32340843283928526246014745870971437056 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(1799101258566802358440457915470993586402118676221091688880306729561327028162455397 n^{7} + 1198376235546025408028226012252037413011391306917509760145536790018866097971344428039 n^{6} + 342086403441238531952542497429375565166268756450582071356485411559406613105900062532541 n^{5} + 54248281089390945298458031432896039925636133859279448259865226052329925482870718056707780 n^{4} + 5161378887467585930886169048792121595171277481888057819039202217482611821489681733505620188 n^{3} + 294627616373750618702609787934451349361999796106190661972953911567945928978173696100741351041 n^{2} + 9342944909607392306883193887875633901521210677424587237589271688853949830353660896375494520234 n + 126967030146256289856099859895446079595128720853780316199824326925974852986488459170724151565900\right) a{\left(n + 94 \right)}}{113192951493749841861051610548400029696 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(2333540288559093589518411412298650270182142550883903564157476639760225309060871905 n^{7} + 1028163210034668307832039050270015183026136774409895478737377730550211719942203101516 n^{6} + 192240117629640822300080308039175992199421843227931021802556655973408500745089948452808 n^{5} + 19807050992335131096608161458365381686269672761185364848688982812270829510983795728982070 n^{4} + 1216146805382567984067548536203854393445379635768363669901765633561238952142941961357022855 n^{3} + 44543834352347671013787667524552493774736811292578906194809457838741037587319535697759649774 n^{2} + 901889440024840831233864380698571715362231628553375981600313545431456925772857568366105961312 n + 7792244096417302834255318656918858459292563436534433924099026195676330572739425995857489312160\right) a{\left(n + 57 \right)}}{18865491915624973643508601758066671616 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(3063929979218341027649897908775445000871189035722430274708413939852129383250156427 n^{7} + 2061041552074678100820303788690592716736249327957258874427271994141751076075330682943 n^{6} + 594193445514210122465102669614558052799973911783018260297094516674166871325581248003133 n^{5} + 95170835205862641504097708122388516701371158551544971158489390101862167064978648043962105 n^{4} + 9146103232665170443309810337986584588752122745514648276431615359797034445564049062235595648 n^{3} + 527378138367761691816321287711869722409272857630821891226735924201086710002832007228206831632 n^{2} + 16894132358630824293622924471406426303842075201583102169994073910641173906267706066909459584512 n + 231937464920296461261079569617466150438525744838854125750334895726321875828603971299464083011200\right) a{\left(n + 95 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(6843682284812317377216633743749600056475495619281975895982334689720414912585086093 n^{7} + 2646060795667522639196820268788757898692256356064092666530003093661177959389583422304 n^{6} + 437966695359836873742016070770322915097068122966419462527906444652126664354336643881802 n^{5} + 40225296696258630059871579058333050121812200709505978224885681750760161985031385851028120 n^{4} + 2213997258509654613491704387838659899432853942448225379323603986769405249330686108270155437 n^{3} + 73021533387221992785509349898787029564276840058139079555122252792278022263564533721826587256 n^{2} + 1336197296798682023259882281129794548067616126973565898199843840901349636933859645975961081068 n + 10464100762552276752358409381645051500278179358046550880266750876820493275362883210798268907040\right) a{\left(n + 55 \right)}}{56596475746874920930525805274200014848 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(8622996180571834677801430612820487327855605334741026577678109276636491095202033823 n^{7} + 3496363892117432487877290977304681089780758480249488044410728068011092445354977328117 n^{6} + 606334470069946328600849974274728467512473692657900091264333015659935484990698946636925 n^{5} + 58305390847358558413999070001483238522161168832604285058606812795709395545467900467090995 n^{4} + 3358003143662798040497728574936107881947452746583182023434738867457635221954881692796921212 n^{3} + 115844095175674944701800625629312007172545443887766159166145351810826364315159837809230360568 n^{2} + 2216674192356949206371348241025345406080733533802124984739036885128857717093428537826740254120 n + 18150724187240854860201895265876324147430311675351373310022109987062010983216158749487696257600\right) a{\left(n + 56 \right)}}{56596475746874920930525805274200014848 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(9282556854170619682445196325681502493345211702310267816436433492400004198148807949 n^{7} + 4621262376218045396923481527879448256790249799347722994252325483943931865885976438278 n^{6} + 961930974529258541399496082326137590915849417035591028315508314530390189953908527774524 n^{5} + 107607117478961003426472447774947639177787923691383234870410864801464096370700453313698510 n^{4} + 6884453008105306985352947376931033902440206887126862479621963166601612749125033878975018411 n^{3} + 244697912177065359133377567652007927406698913100264937681373194761707345954721368199698931052 n^{2} + 4170229876654879593217775575256022943360773719535371023785083676832322096131160956172920969356 n + 20092700265380276036705382730875428036202086838772527115989479723813309220253786560333194957760\right) a{\left(n + 78 \right)}}{64681686567857052492029491741942874112 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(20134358168316302953403459369935006958471111581053662414519033986265568445345055760 n^{7} + 12192795823334360756296196321915335883514718425228502557750226625895017523115570140445 n^{6} + 3163442550040790412998089382414599236523808761221470588872770243965539966376075820128473 n^{5} + 455837897888920130009521744788517545902652221856603533956661330190308846129448578147377175 n^{4} + 39398238650603553882948042583277256111535911197511690336242461653866925613660516019695115235 n^{3} + 2042477625495325396416223937556312881053621782676301451042470732171934119339281946772991438380 n^{2} + 58806631260748946424398368166226802437522627745914142141743173726220080074629029279596380925172 n + 725399960907289283780466631914778433061566569449894067542381731942038110622898109497438044145280\right) a{\left(n + 86 \right)}}{21560562189285684164009830580647624704 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(21617810077444125178479718035092908118612962083990738938894078477327020764303556533 n^{7} + 8542438825185378546316401590305063155925683280022614591590659381429039896543737651596 n^{6} + 1440488621903769096812223014317523114138156714676175401824517894381825978395537325039600 n^{5} + 134265578091806063109863739181217813759563276186820480773540779217604607301841651706458450 n^{4} + 7463637945399932385916869494102250023853031731673938419158450151405143028927529809496239907 n^{3} + 247133883452198704750830715140988838652536093898506185992551262356412202566259386573036798674 n^{2} + 4505971750294138027467675457860297258779374038698561292848335935752199740280405144763260657960 n + 34824188109085015733895105705638293671330687263912213191219872937425044641619282865524194173120\right) a{\left(n + 60 \right)}}{32340843283928526246014745870971437056 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(30601117793867362550237631427975824023086403393611679586299847502186303632194098033 n^{7} + 19948876530202322003825384564528242145321077881826964249881995811905211115810302356170 n^{6} + 5572772030281171209233420331654091401835216327154493955284711943448489436274545635332558 n^{5} + 864767219627223527637501012292401163420653744604796062051930986670113395608042732886905340 n^{4} + 80505434344257261159416214912512010473761043985443187136109693144531339453388574812029133337 n^{3} + 4496228983876674048236765928056545797823854997686713728316572346144529856637577242491908414410 n^{2} + 139490415974622376924047632348940465397097020458227609058521954339507532207960611571224341309272 n + 1854419672714830757356066806087445757318701903405597494541856840470700117073890355775366267964640\right) a{\left(n + 92 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(31751089803458326200186095182742923464560911045152450538866559746796974594211981401 n^{7} + 20223620042670100419013610479493562379718948662036704394811512680198134838280272823221 n^{6} + 5519611863309386869091789600628300812149784170837016989389864843643283572881044682466957 n^{5} + 836779937652508386930754932788815294629557295528399018607603955576129985822454197057607585 n^{4} + 76100976694585117578499770637462125801085598363160876972993124033008891317260821605172307894 n^{3} + 4151880770306152643572526933065919466342967221510663241099619552807883860604221769258376513874 n^{2} + 125820338939964680026605076312815412963856327268990002011265848291928735666715164136024967439308 n + 1633816581108914499607947369366401326055541208654098409855472129557010322347425565641030468731360\right) a{\left(n + 90 \right)}}{150923935324999789148068814064533372928 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(49573049207321959369697508627158335781700612119008470623564998157090570723809783583 n^{7} + 21939482444289632770348579841899116528848477304980899713288927962126586889537015400110 n^{6} + 4159588255419198666042051139042177143158324998082145946336102018759370672606710248332564 n^{5} + 437892017906462168717937690705449396471538842348895016627524843043190124074531676231753070 n^{4} + 27640429394220010846728888425116874363584816766474941060930941866354929476998315661612141497 n^{3} + 1045989365962500738465760304229518467778874308938104691432975621171363655296161256090741996180 n^{2} + 21970151248449058915539147361250081012076658062431499364264688102340912303676626605694025497636 n + 197559694088122931242692402076456066462169542842233336391756200962099989098529145645979259490560\right) a{\left(n + 63 \right)}}{32340843283928526246014745870971437056 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(55988667850467257541092652650099445206322705101894464782528363848392309686085196557 n^{7} + 36084347305535730333510051207974870840135172708326851786601324693248761843164903693048 n^{6} + 9965468092068844257317224357614335788254775864860617135389529058686221552023602521622842 n^{5} + 1528763502328811941705861051852819742857580525556356947474042326441458868546991836101586500 n^{4} + 140692122170973350643080886848827315879873565321197484893398658963214721023369667783450783013 n^{3} + 7767575879139948609360723502623559569147186156103230925696923398740853461925566495639589975252 n^{2} + 238211713633648996596420269114455815875771949149329906042760993178845155761653527935027944033268 n + 3130384828081833671094976597072503456130363288154384442635587797915268015584595633823684587327920\right) a{\left(n + 91 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(63444097877633233298448157756877390272512048320711293745180991549895515213600828573 n^{7} + 23120469617269141438042744639487810981562702466700716153750994671044008099183801743502 n^{6} + 3546202162438204412797082918310049624539072739566676843343380078291617016080963689245830 n^{5} + 294869787454096114120161110987406323696981459797987467522438203622989797875815779078849220 n^{4} + 14208021132954319364986585619416415737133037031756495249502827265166739786897343885161370517 n^{3} + 389450194597417993536769072856360458826749924997760776940712146492997510790120854130059297838 n^{2} + 5411519642896909271021739014602246365937885403407744851546724757320092744961750827121193049480 n + 26511638218079681341047640369816714745292552491615723378938229617108292070882183939147844443840\right) a{\left(n + 59 \right)}}{226385902987499683722103221096800059392 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(105968504628781409349926670331704739634641757453640860594596520455865158153655053002 n^{7} + 65019432272240531857083883479867879668420750734092665612454226995577417549129938913473 n^{6} + 17093050511051496276951201080900939110736366927600017783238961878231194197650722218345373 n^{5} + 2495796558266248821686962983635539385662596377462500210403660042749860957060908021986691915 n^{4} + 218592157731796750883690873945827267633006746223280726927986855010547521839266192765452729053 n^{3} + 11484035786217621382928408775052668311353139703463492258006476614298160344457895683623480013012 n^{2} + 335091969706265532382577380032674936180030021852030535080366845640851172751595857469177771754812 n + 4189260786381216131050980316821498764822335508575161808166499682990624488358558284425951900184480\right) a{\left(n + 87 \right)}}{150923935324999789148068814064533372928 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(124590924635812264665559545434106359397465016480401792387520271951628120262427890286 n^{7} + 51366477470782400462144644618609846370591460015493607839888556775012192021642669729285 n^{6} + 9061111128979584800019572695870699993075329438067374240856471510771794069479711238750161 n^{5} + 886301378070324167867318557072887856689777730410098769314358101958812534300870731210028955 n^{4} + 51900498333891518638437671324297704053270414132941081358805270473222832908972272546680517309 n^{3} + 1818855932308022602584029183769423723987086093040259204602124446069902399077069307172146181720 n^{2} + 35306757089682005821460009801304254734153174948218236667793648259390937180414162320480894570124 n + 292706341254028426113964915358709315144274696557998982452155347568244598534786433272829423491600\right) a{\left(n + 61 \right)}}{113192951493749841861051610548400029696 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(151435877614623118071829027988577576947802997312846061572487188903103662739971748983 n^{7} + 95293360267096667529728155511106540081729637574793040367005899145261612744412856395303 n^{6} + 25694173243634445744793239463748507179472587712203457551105972107960315538623972347814817 n^{5} + 3848118582133734425049664519414400626797391356383961821163574643972175771525868289585622545 n^{4} + 345722104539731230700111475924200742090925522258686297177253488352915796811899580296262068032 n^{3} + 18632455532471462186278262574282812709466030273001880683891021439320896943890556955597226885832 n^{2} + 557767047060947465892627734126390017255206858687072791749676525938488056883641622110062345338408 n + 7154354451952894286016183120321054125076724579680660383807071643140899628570777420699566851106240\right) a{\left(n + 89 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(161691336949968895332791814421907752844321341881956144087235437755627942819069998847 n^{7} + 94865844171051670664506156675236935482975441765121579015402928909462106056590607891340 n^{6} + 22638507740517118610630363267013167979827902152109104501215863372861259576044675245885700 n^{5} + 2898524228892693736867698135451621175788400501162081733935347058395828926801154274697015130 n^{4} + 217168430296926988033285212335720496671068975428435520439702621469859190150552117210228758573 n^{3} + 9579825217779829922239831976296715005741191928597649060402846005667511415911732672582982078810 n^{2} + 231308357926059947040771443291896424742140511302173200504966740189587405914870190817595326046480 n + 2364912178456786277384896674744397242219474101270497182813393209285622382043352557354175527379840\right) a{\left(n + 65 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(162248683807861795305478842097915595621765898528990079841384186399412375823976922628 n^{7} + 70512270397839429757611256170137962425319710902006889997530565604971641461005469122069 n^{6} + 13047745144314895985674117972533955484965469340699986630209492611271474586689084469754937 n^{5} + 1331110209340509623332929669873016340680927860925434277820365320850505621472462824862224905 n^{4} + 80741848767855532934021365406507440177620331238154560143158426584388437231833020163759367887 n^{3} + 2906436092824289069763989474112107696197548183939862339337232056316012384487702427475560988766 n^{2} + 57338348298431769247291537206491511992849454487490556302795359743329030686012381114813162422048 n + 476480370234449118772031632019179137332268641356845172606261868504255396494107387403499437573920\right) a{\left(n + 67 \right)}}{56596475746874920930525805274200014848 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(163484249559120345071916917642485268281655694711522126615136719991738377206600627587 n^{7} + 69782776603660991113550621430010013052318954484467053338041745935296058960759359483101 n^{6} + 12757153438957242012985166260547973224659052747920927835942636806208393309397767661400357 n^{5} + 1294588559379331877669450246693654953840521818924266062792717379025509700958328173067723555 n^{4} + 78747215130303425707512869776451044084571580497875476919132196713093756391618743125775417528 n^{3} + 2870693011126163950654872015385155762646029990392984618743110302635153765065425736529086261064 n^{2} + 58060078543377556045555483234816714373879334197306405795491523578834854841631596392302156723208 n + 502469165983801597859908571924944316119926837400498408660694893588913206527080955059603187279120\right) a{\left(n + 62 \right)}}{113192951493749841861051610548400029696 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(221441048970545657007369552168788829713433127722820605981984911361481749569050177311 n^{7} + 122885331152736951780538864907633975953077050776412226718764939666348742468610382764793 n^{6} + 29191251310442059963353382339689471502886414386111020877897143605341791630939603047121001 n^{5} + 3847709658961989458902513418145884427201220109974522876772900814625574377846670661097093145 n^{4} + 303915080840967865073061539452219334885832635410129386781975408060316732400793983497498241204 n^{3} + 14384006661946561319412126797892526884364843482379421295920338139899782534602060510255044383982 n^{2} + 377690449440824500784354541811745213133310684412642134643274546070222258593771494773847433850724 n + 4244122509981041622117700929224177879471051537571995628287372972685977645390435295138884471897760\right) a{\left(n + 80 \right)}}{150923935324999789148068814064533372928 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(226008109454000887753868044126693794955705059320833235298477491503435955094960764757 n^{7} + 140457956545668301704568467499598159696942808274419168421207270396208884031931826190464 n^{6} + 37401931034506422890745584022960396038080582226366033125707654252671859332020638957942918 n^{5} + 5531851810145387714020075117281379766601037536612003658578030022351372445391042230608890100 n^{4} + 490793502943111701777978881784855983417035091230150826778531850494728192373211777181684454873 n^{3} + 26120288012749067973565652066023485811832550951072654421787789924211572444286105947980493326156 n^{2} + 772117419249589084390059041068887126903836119091815045819443446669367492037959447717792765458412 n + 9779344704739883691313074776382553776827781916499541075360477484665090730437507146778338752349280\right) a{\left(n + 88 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(233800270748236102802403716971226656575075627804427094636640434258197456871399664759 n^{7} + 91264111994944193754826166297169221513382252784718062936976261265894829942931820874705 n^{6} + 14751839344612927683642455719966460981073139358030328778684719799554751311694613301591867 n^{5} + 1258002806472662952940128435808240157459108584151599889548448867289219884974638871280565475 n^{4} + 59014298405166486799032996514890995812985792655249315248229750980102903237575453670466977886 n^{3} + 1389641075121113061197890007096655867389959807947226950623834878065783706182331242010550476180 n^{2} + 9842095792971825992096317961971343740068180165908702560126004965337751204546940405120630145208 n - 101306941744814876129354511831600844409476044839339407215959794146003618177348746661253696306560\right) a{\left(n + 66 \right)}}{226385902987499683722103221096800059392 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(273122887874228026921655101635390626000956230770029205173259609922427838524588063210 n^{7} + 127356707151093084449007576281371852036513072069391539364444794670094926869809968161035 n^{6} + 25401106131215791267021976449105836094000218353613058187153563542727533947329165654720873 n^{5} + 2809000042567351478754521303626175726670882964873415018512920178083404559923490867336768375 n^{4} + 186011634253618626659807850692709209970913548759529593252539872959588920113091087309559899245 n^{3} + 7375892567286111427784494679658328657644708415649268806147068747949358512328228944313090464430 n^{2} + 162161399401881513153648117210630713708464079203819199050862956294566493638848985449952464988912 n + 1524857916585838799637214915720579860353253206249364646804379036139011189129548799015558881699200\right) a{\left(n + 64 \right)}}{226385902987499683722103221096800059392 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(319005625412359658372878289714896431437929430399166896455944748129084556839365285467 n^{7} + 144303987524802144320312693668892120607249598067757563262392080776835780559808334146722 n^{6} + 27892343374235710555696333645930367174833919761617139546890425068870373997140796435375350 n^{5} + 2985273005123320286550815439458905123929950853693295837271566010705232799150691689771506200 n^{4} + 191001071129931116098090101443903096850723292822387721284632717414292409692401502134583626863 n^{3} + 7302062990992954740619507332089470172926540388509086065893516091750367856546443083318214080678 n^{2} + 154367235079081183748103978433803065694486812723735800898627045063150802287210601090477705063840 n + 1391150522815559506306799244573850326917184196898388355669733389394827859127777092964134529574080\right) a{\left(n + 68 \right)}}{64681686567857052492029491741942874112 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(360860579117431623144857569560263821074419212540454646093223833642609400290582135607 n^{7} + 209647081257001277228077389580614296993652041671212442092368754507385421483263413311622 n^{6} + 52171680609051093610572581077858536994535978030299030415681369094540022008458990662121638 n^{5} + 7209033387727727037763591665711302175037485569605668834318642454479438494880675501070620000 n^{4} + 597357252639690888357929085855027246024914656811751970570293397323160934856942255282332344603 n^{3} + 29682514502820955607033978264789961935053898220115916987843053212193102028226765663307236591138 n^{2} + 818930529948335564306757223588346856682442647632608907473337716448113727034030823008723779541152 n + 9677488762249230902610730717027362143564489880454735907388881361538107244548018037934622991992000\right) a{\left(n + 83 \right)}}{226385902987499683722103221096800059392 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(379972519931904351679555950132618487166133826142033072551381178645727329654533945628 n^{7} + 214275386181040642319532235852890771231207038963576317173400598140089530100409084521121 n^{6} + 51742842720996538634709997033653066073048827774934518182787450627414977138071152100932284 n^{5} + 6935535046817799343830028835694753358014640390663083420996683584531962438496975906887308170 n^{4} + 557280131342863978034838451773100706190806776342653672229323831736568473720849006174926402182 n^{3} + 26842216276780997679514427254878491108203019291613978634730099180236399244331242441636357675509 n^{2} + 717590568869359040238604899957805296044639132791320799050110604178674047114659755225225333967506 n + 8213514563021785260375159110764168639053813099125359350871109063554129631757683639087452070168640\right) a{\left(n + 81 \right)}}{226385902987499683722103221096800059392 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(422835954249179239724008728190950429748341568366693335368864571174446945281038690178 n^{7} + 223748443023843762926051514769619777567956041766321456970347767550801673808782038495337 n^{6} + 50766288578076332501803706968392938444022186792519833495296266138694223183653498728513989 n^{5} + 6402050442600941396095861689093438544191233131641652665017815152013752637962606434525401875 n^{4} + 484630598109200495149498253912449685990942597246273824371649666501444916350492426761258478397 n^{3} + 22021451899927647306641034734193586814201588863062768931443523938569371803155535462644413596388 n^{2} + 556154316432641574580054418447608675396893660913616699050764582353936352221537494611309075038716 n + 6022108450837605473761715077294289019334258489692097168251209450959680965721398923145891082455040\right) a{\left(n + 76 \right)}}{150923935324999789148068814064533372928 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(446142083882110806230851394341589199311067826293890813308232687935750543545152038774 n^{7} + 242917801035220482021860809611523569557013018757935781830432875538193991089303718454569 n^{6} + 56567670605994268787495183885387607260536266935843127967134640803247440573172951252620631 n^{5} + 7302274822387147298461377196198254461784636797616818959636433288719506200950214234861054945 n^{4} + 564285768275659177596897791048590345769204130304953514719141559496749424506151392617631280731 n^{3} + 26099293657332423627227692081197142784231125062057448580968191348177885381998683184378194710566 n^{2} + 668884139987963627324699855487190313088552085644679482037816641380144121285724207079211232267944 n + 7326165066375126202916060084148550722472008949980056938347493066593065393864029070330599589011200\right) a{\left(n + 79 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(508383152390072125076668194630469022656462336264163039238098745926186220404502465402 n^{7} + 274833840674111598209319120435430043482150393624111021738597070473258728238710360259255 n^{6} + 63770001164774667981320579294702562788832717428670764923014450660119883672910062316171935 n^{5} + 8232190299526849672034555781552940136187131942263157267236605816335164217767817189948799085 n^{4} + 638512059934712938730202046808421191817054567231400044043316532918997429648382834789600859123 n^{3} + 29754520030102798921525730890092765050793955730176563062707171134779858474745009961879764038380 n^{2} + 771287210723820341684799508624836158789151681081095690811650168337778085801591770403418162186180 n + 8578773598323793222347239866950910839454839485690141355123942942937307381107802896165404705335040\right) a{\left(n + 77 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(532949291209422277920653759543285495372618221732551194212959492577390889202482133423 n^{7} + 318422031303170393241113737128337900690646776321104249820279768456031131662278418945217 n^{6} + 81505647124937123737162542960988951788670975378920469024414953522736748766683974702581417 n^{5} + 11586216931120170852172930362648852936975703343871023151225119000967267659075156201923274365 n^{4} + 987839301611445232426002887561576242044916784699328240804906602620360099169709020605086753732 n^{3} + 50514848455545818389598828101455152715175406758066592657118086939181062944668679253672207702098 n^{2} + 1434542506824932122539764654901635944724758306749966541402359271869091876194311444968949220777588 n + 17452683509173525123156512164220456155220078701682361014328979531569869057942269062955672517897120\right) a{\left(n + 85 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(637214430626534569465957902915125680089732747107314465178888342261406533058888496656 n^{7} + 375492310413343177929201318254899402111929443249217471840339733263966717592006177299227 n^{6} + 94788001563413373969435580411368688231263655482186993771140560277765406181845830662569897 n^{5} + 13287508754566451399163454067535523952404477293791920362933359162222614197536193274967604935 n^{4} + 1117099584199603857493095422373785524475328462773498916628273838148296220363724137972955416879 n^{3} + 56324144526343826221879053059918996696259977268554723502180091461880984605401180382734115589118 n^{2} + 1576971895986264545169001598117735486532517473077780244319613221865560042970036994477098856166008 n + 18913477655487270788880926853685338571791055390545858704511796355139746160043505337338888561241600\right) a{\left(n + 84 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(769678780842434643009421667398447715277621783449341733166192530915129994155971791883 n^{7} + 440665878626736240962494355331179255476519324425760264722176310691099980827036363756532 n^{6} + 108056378800936254622859626070908032119942620966557844482582541681425884738839276589636428 n^{5} + 14710583020591251771590803409913967580444639688501978981434540923134573188297135483702790510 n^{4} + 1200781943207675600024197053288690848385889095559329731000844160818348353650155136904381978017 n^{3} + 58768566932612864346322724288298383331136263162595699095387297321965799479476763866231687168878 n^{2} + 1596762028272771080505623148987721976329840105551887046066594606446638413881396784424540999567512 n + 18579568206045291633074929368111359578264623561917483307816037436631872648232853491374611554285600\right) a{\left(n + 82 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(1281616051670258974720272993694997308415703967983155544680911257845240104154867702586 n^{7} + 609616951806153805555681201525288952520233009390449038328963934810723988341936944783463 n^{6} + 124135348416475807291882934951815885490744153509017576361574927863442038584637193200807109 n^{5} + 14026407035265131854480186360338980979220685707769254624604008331955933216703942493537962175 n^{4} + 949728412230763773742183004999658207816600996552906156588145100132350452025473470937582029769 n^{3} + 38531553928957585092928389462832432472319075839217545377822549388424560394185571326982074684522 n^{2} + 867225102678131396648594308087487820683608282839893932894372485375049363744304586009296624433736 n + 8352070014938628338687582729650349894013716809400574819430353750583391683315177013717169238630080\right) a{\left(n + 70 \right)}}{150923935324999789148068814064533372928 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(1521334966032701731035035168327446396297079144798785613265805252670765584892498928722 n^{7} + 778426812115058749101431415509213129209271685818842356130429754032870925409247291400831 n^{6} + 170680469455948979972572089948099046055930961092649076261406410638650442496155012825491174 n^{5} + 20788467804167509980880085118769277894291993815595684620346467745589424389429615000763999550 n^{4} + 1518981111105491803705643882294241991647010895076399593397208749762367121599617994833335281298 n^{3} + 66583712010441001423093898847797160918788360965223213323118229942120093427211420479655774691299 n^{2} + 1621211637094529295801642561505478866409895681384263578464206573974653321788350032842433178267926 n + 16914411404511515471563843913931724108702816094328609539876696199301841979101237932293582042240000\right) a{\left(n + 74 \right)}}{226385902987499683722103221096800059392 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(1567072692080111740210798922131435804224509683571647012842160939108375227652406584063 n^{7} + 728661417215537868460524328251757025777192848101432750428103864452887291324109973263098 n^{6} + 144954511846832229982170126181870194857784161320131219190190916283463479243408773611480488 n^{5} + 15990113322650560329039649377923324201887025518798310732845524644539832055624735164716452730 n^{4} + 1056188334451531802731329844247361739991839500781931299351070622750194780821127105511215168797 n^{3} + 41766145293933861794643486245041028568067476169897293558522910249933696717878041922796293399172 n^{2} + 915353873641419643114377508130699642586995143512699891878602600755246951047983736144176909821012 n + 8574915502169002708663125291247230766349986712265114065936413896861251320669122402898022428233600\right) a{\left(n + 69 \right)}}{226385902987499683722103221096800059392 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(2113630173071152171546823560566903222243838856240195230057269094686264034202973939700 n^{7} + 1025848883922579311223014978847116521146118557391989229287465016715254742567008869032788 n^{6} + 213224858122243560536819235379533106206854134359505350356947577448295310401001369451523747 n^{5} + 24602464248524197389360025257600877422305937997879718503091937078710652703123293264238129945 n^{4} + 1701805564172929024745596005630230772383605453324455176557942542212093968574516323577510030335 n^{3} + 70568450344572775912759922288238113183812903777181245496395991009919636914717884181311312729147 n^{2} + 1624177968761435345108861529210961351021971397549128167265796682786563265949178302666467140329858 n + 16004770067286627366406300510997485598211142720005331593628729614482813128098180486070017061507920\right) a{\left(n + 71 \right)}}{226385902987499683722103221096800059392 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(2153874307960783295578079498951299054961672317137382845187571625806883365796339623782 n^{7} + 1120438156415133210510818913730854697868548529618655753195641859497410182835319458502161 n^{6} + 249818194012410210847829649775176982273926629385439707206266679156223591062642656759431823 n^{5} + 30947812258747367273725376039990356101251045180291551175139292446587860373682386511521451085 n^{4} + 2300518602369899630428306243089908286283958660655168311239619979072114339082678957270290793723 n^{3} + 102614212341782730202013512108372327580595195847515036801728883725883728253250673157134408845714 n^{2} + 2543004777104322452032853243941654624781035954037896363799876712085021897348500763781051015777952 n + 27010693089624877791180992936012143244193628671468021392645373448404895280682778510902354461719200\right) a{\left(n + 75 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} + \frac{\left(3775721746557062399885853391288422239969427216143699561387549939381026336984620106175 n^{7} + 1899783196768631616202216083169933154277226669872243950975124211815066199097588893991271 n^{6} + 409545177503960038433440191151642221172124591113438849803759971075878114352524058125600133 n^{5} + 49033210735019775903857624812749167353009883735843867743325884459469406202412093772091791585 n^{4} + 3521158672235638382668318891213867202965174748668762011325178732107048552275060967618995330260 n^{3} + 151662887483560791595620100509782874610356235434299352803258803056516209317607173443811231734504 n^{2} + 3627762750007120646230516276366314360891553046738234025208800077501701196370981052607000302675032 n + 37174957256079873209867940810555691360944130323641991143085729914066093159293478484028327623735360\right) a{\left(n + 73 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)} - \frac{\left(4201932627078759753321465157989758095307414630887178790762963507455295457049988945645 n^{7} + 2077605685362026144483811269974952858356369283070650464764163236519830582213779366314056 n^{6} + 440033901076113826785019758699875735333492905926727839919289461231812260553811136492397504 n^{5} + 51750102498575739000609227711924313917134906855943249318741476964798764775120951148180366770 n^{4} + 3649640635446990668826391211701568573981078037553171259364467633158494023217120463365789026355 n^{3} + 154344048301156123873466508987136172709987572422041475214587550923650734012658860908033142206454 n^{2} + 3624039258701967085362309796827659289746490923455466236373231552872641812946127023001999280042256 n + 36445156670523561516496843140943824935716896336920068544740386128943765902971641137352438730617600\right) a{\left(n + 72 \right)}}{452771805974999367444206442193600118784 \left(n + 146\right) \left(n + 147\right) \left(n + 148\right) \left(n + 149\right) \left(n + 150\right) \left(2 n + 297\right) \left(2 n + 299\right)}, \quad n \geq 149\)

This specification was found using the strategy pack "Point Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 186 rules.

Finding the specification took 64063 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 186 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{15}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{151}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{12}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= \frac{F_{14}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{14}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{15}\! \left(x \right) &= x\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{0}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{15}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{24}\! \left(x \right) &= \frac{F_{25}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{25}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{26}\! \left(x \right) &= -F_{55}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= \frac{F_{28}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= -F_{12}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= -F_{34}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= \frac{F_{32}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{13}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{15}\! \left(x \right) F_{38}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{15}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{15}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{13}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{0}\! \left(x \right) F_{15}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{2}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{15}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= \frac{F_{58}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= -F_{62}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= \frac{F_{61}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{61}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{50}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= -F_{12}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{15}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= \frac{F_{70}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= \frac{F_{72}\! \left(x \right)}{F_{128}\! \left(x \right) F_{15}\! \left(x \right)}\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= -F_{139}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= \frac{F_{75}\! \left(x \right)}{F_{0}\! \left(x \right) F_{15}\! \left(x \right)}\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= -F_{129}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{128}\! \left(x \right) F_{15}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{15}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{15}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{0}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{0}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{15}\! \left(x \right) F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{103}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{12}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{40}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{119}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{0}\! \left(x \right) F_{108}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{114}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{110}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{112}\! \left(x \right) &= \frac{F_{113}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{113}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{116}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{117}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{0}\! \left(x \right) F_{116}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{121}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{0}\! \left(x \right) F_{120}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{0}\! \left(x \right) F_{125}\! \left(x \right) F_{126}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{126}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{131}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)+F_{134}\! \left(x \right)+F_{135}\! \left(x \right)\\ F_{133}\! \left(x \right) &= 0\\ F_{134}\! \left(x \right) &= F_{131}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{126}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{0}\! \left(x \right) F_{126}\! \left(x \right) F_{131}\! \left(x \right) F_{138}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{128}\! \left(x \right) F_{131}\! \left(x \right) F_{140}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)+F_{148}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{142}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{109}\! \left(x \right) F_{144}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{148}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{146}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{0}\! \left(x \right) F_{145}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{149}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{150}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{0}\! \left(x \right) F_{148}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{15}\! \left(x \right) F_{153}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{174}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{0}\! \left(x \right) F_{155}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{0}\! \left(x \right) F_{15}\! \left(x \right) F_{157}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{158}\! \left(x \right)+F_{172}\! \left(x \right)\\ F_{158}\! \left(x \right) &= \frac{F_{159}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{15}\! \left(x \right) F_{161}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{170}\! \left(x \right)\\ F_{162}\! \left(x \right) &= \frac{F_{163}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{163}\! \left(x \right) &= F_{164}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{165}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{166}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{15}\! \left(x \right) F_{167}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{0}\! \left(x \right) F_{15}\! \left(x \right) F_{167}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{171}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{116}\! \left(x \right) F_{145}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{0}\! \left(x \right) F_{116}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{175}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{0}\! \left(x \right) F_{176}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{180}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{179}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{109}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{121}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{120}\! \left(x \right) F_{15}\! \left(x \right) F_{182}\! \left(x \right)\\ F_{182}\! \left(x \right) &= F_{183}\! \left(x \right)+F_{184}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{0}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{185}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{0}\! \left(x \right) F_{146}\! \left(x \right) F_{2}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 131 rules.

Finding the specification took 12257 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 131 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{15}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{12}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= \frac{F_{14}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{14}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{15}\! \left(x \right) &= x\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{0}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{15}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{24}\! \left(x \right) &= \frac{F_{25}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{25}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{26}\! \left(x \right) &= -F_{58}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= \frac{F_{28}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= -F_{12}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= -F_{34}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= \frac{F_{32}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{13}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{15}\! \left(x \right) F_{38}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{15}\! \left(x \right) F_{41}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{15}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= \frac{F_{45}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{45}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{0}\! \left(x \right) F_{15}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{0}\! \left(x \right) F_{15}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{0}\! \left(x \right) F_{15}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{2}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{15}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= \frac{F_{61}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= -F_{65}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= \frac{F_{64}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{64}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{53}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= -F_{12}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{15}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= \frac{F_{73}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{76}\! \left(x \right) &= -F_{38}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= \frac{F_{78}\! \left(x \right)}{F_{0}\! \left(x \right) F_{15}\! \left(x \right)}\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{15}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{0}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{15}\! \left(x \right) F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{0}\! \left(x \right) F_{15}\! \left(x \right) F_{84}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right) F_{93}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{15}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{9}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{0}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{0}\! \left(x \right) F_{15}\! \left(x \right) F_{93}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{15}\! \left(x \right) F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{119}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{0}\! \left(x \right) F_{100}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{0}\! \left(x \right) F_{102}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{117}\! \left(x \right)\\ F_{103}\! \left(x \right) &= \frac{F_{104}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{115}\! \left(x \right)\\ F_{107}\! \left(x \right) &= \frac{F_{108}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{0}\! \left(x \right) F_{112}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{15}\! \left(x \right) F_{47}\! \left(x \right) F_{84}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{0}\! \left(x \right) F_{15}\! \left(x \right) F_{84}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{0}\! \left(x \right) F_{121}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{125}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{124}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{41}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{88}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right) F_{15}\! \left(x \right) F_{93}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{129}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{0}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right) F_{48}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 130 rules.

Finding the specification took 35258 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 130 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{17}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{13}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= \frac{F_{16}\! \left(x \right)}{F_{17}\! \left(x \right)}\\ F_{16}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{17}\! \left(x \right) &= x\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{17}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{0}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{17}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{26}\! \left(x \right) &= \frac{F_{27}\! \left(x \right)}{F_{17}\! \left(x \right)}\\ F_{27}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{28}\! \left(x \right) &= -F_{59}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= \frac{F_{30}\! \left(x \right)}{F_{17}\! \left(x \right)}\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= -F_{12}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= -F_{35}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= \frac{F_{34}\! \left(x \right)}{F_{17}\! \left(x \right)}\\ F_{34}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{15}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{17}\! \left(x \right) F_{39}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{17}\! \left(x \right) F_{42}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{17}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= \frac{F_{46}\! \left(x \right)}{F_{17}\! \left(x \right)}\\ F_{46}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{0}\! \left(x \right) F_{17}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{0}\! \left(x \right) F_{17}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{0}\! \left(x \right) F_{17}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{2}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{17}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= \frac{F_{62}\! \left(x \right)}{F_{17}\! \left(x \right)}\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= -F_{66}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= \frac{F_{65}\! \left(x \right)}{F_{17}\! \left(x \right)}\\ F_{65}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{12}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{54}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= -F_{12}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{17}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= \frac{F_{74}\! \left(x \right)}{F_{17}\! \left(x \right)}\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{77}\! \left(x \right) &= -F_{39}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= \frac{F_{79}\! \left(x \right)}{F_{0}\! \left(x \right) F_{17}\! \left(x \right)}\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{17}\! \left(x \right) F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{0}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{17}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{0}\! \left(x \right) F_{17}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{17}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{9}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{0}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{0}\! \left(x \right) F_{17}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= -F_{89}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{118}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{0}\! \left(x \right) F_{103}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{105}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{116}\! \left(x \right)\\ F_{108}\! \left(x \right) &= \frac{F_{109}\! \left(x \right)}{F_{17}\! \left(x \right)}\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{0}\! \left(x \right) F_{113}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{17}\! \left(x \right) F_{48}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)+F_{122}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{121}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{42}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{89}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right) F_{17}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{126}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{0}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{15}\! \left(x \right) F_{17}\! \left(x \right) F_{98}\! \left(x \right)\\ \end{align*}\)