Av(13524, 14523, 14532, 15423, 15432, 23514, 24513, 25413, 32514)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 111, 546, 2750, 14036, 72452, 378068, 1992986, 10602970, 56870040, 307220838, ...
Implicit Equation for the Generating Function
\(\displaystyle x^{7} \left(3 x -2\right) \left(2 x^{2}-2 x +1\right) \left(10 x^{3}-18 x^{2}+12 x -3\right) F \left(x \right)^{7}+x^{4} \left(16 x^{10}+48 x^{9}-676 x^{8}+2092 x^{7}-3328 x^{6}+3207 x^{5}-1965 x^{4}+760 x^{3}-175 x^{2}+21 x -1\right) F \left(x \right)^{6}-x^{3} \left(272 x^{7}-1257 x^{6}+2380 x^{5}-2411 x^{4}+1412 x^{3}-475 x^{2}+84 x -6\right) \left(x -1\right)^{2} F \left(x \right)^{5}+x^{2} \left(64 x^{8}-280 x^{7}+211 x^{6}+430 x^{5}-923 x^{4}+739 x^{3}-302 x^{2}+62 x -5\right) \left(x -1\right)^{2} F \left(x \right)^{4}-x \left(28 x^{6}-132 x^{5}+219 x^{4}-180 x^{3}+79 x^{2}-18 x +2\right) \left(2 x -1\right)^{2} \left(x -1\right)^{2} F \left(x \right)^{3}+\left(4 x^{4}-18 x^{3}+19 x^{2}-7 x +1\right) \left(2 x -1\right)^{2} \left(x -1\right)^{4} F \left(x \right)^{2}+3 x \left(2 x -1\right)^{4} \left(x -1\right)^{4} F \! \left(x \right)-\left(2 x -1\right)^{4} \left(x -1\right)^{4} = 0\)
Recurrence
\(\displaystyle a(0) = 1\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a(3) = 6\)
\(\displaystyle a(4) = 24\)
\(\displaystyle a(5) = 111\)
\(\displaystyle a(6) = 546\)
\(\displaystyle a(7) = 2750\)
\(\displaystyle a(8) = 14036\)
\(\displaystyle a(9) = 72452\)
\(\displaystyle a(10) = 378068\)
\(\displaystyle a(11) = 1992986\)
\(\displaystyle a(12) = 10602970\)
\(\displaystyle a(13) = 56870040\)
\(\displaystyle a(14) = 307220838\)
\(\displaystyle a(15) = 1670180466\)
\(\displaystyle a(16) = 9130856868\)
\(\displaystyle a(17) = 50168638753\)
\(\displaystyle a(18) = 276886618202\)
\(\displaystyle a(19) = 1534364651301\)
\(\displaystyle a(20) = 8533880127018\)
\(\displaystyle a(21) = 47622482074266\)
\(\displaystyle a(22) = 266562791700537\)
\(\displaystyle a(23) = 1496231907744072\)
\(\displaystyle a(24) = 8420019245526159\)
\(\displaystyle a(25) = 47495891625049815\)
\(\displaystyle a(26) = 268504325986069547\)
\(\displaystyle a(27) = 1521004384883149409\)
\(\displaystyle a(28) = 8632414589765115991\)
\(\displaystyle a(29) = 49079665173264442493\)
\(\displaystyle a(30) = 279504331194268282900\)
\(\displaystyle a(31) = 1594219042313139109952\)
\(\displaystyle a(32) = 9106236068067150215202\)
\(\displaystyle a(33) = 52086343753833999642013\)
\(\displaystyle a(34) = 298310614779228093881771\)
\(\displaystyle a(35) = 1710574831301731998648897\)
\(\displaystyle a(36) = 9820084060201438623747963\)
\(\displaystyle a(37) = 56436697595985516800746595\)
\(\displaystyle a(38) = 324680937440865165746066509\)
\(\displaystyle a(39) = 1869726973175899089556081996\)
\(\displaystyle a(40) = 10777173018250066977947713440\)
\(\displaystyle a(41) = 62175220805012204909748290831\)
\(\displaystyle a(42) = 359002571891403792566494332082\)
\(\displaystyle a(43) = 2074572841945628056532155473248\)
\(\displaystyle a(44) = 11997617516520601215686415826830\)
\(\displaystyle a(45) = 69435545832062667499947675359894\)
\(\displaystyle a(46) = 402138335134362001977126642347267\)
\(\displaystyle a(47) = 2330574576749607671377918756176742\)
\(\displaystyle a(48) = 13515507574823126608254549081170705\)
\(\displaystyle a(49) = 78428189753807449965996124434156808\)
\(\displaystyle a(50) = 455377759989179873127108153791797645\)
\(\displaystyle a(51) = 2645581691541117746948555090965400168\)
\(\displaystyle a(52) = 15378386902358264645911807954814207919\)
\(\displaystyle a(53) = 89439976954638801174082204355070441196\)
\(\displaystyle a(54) = 520445666671092690264319393354920204177\)
\(\displaystyle a(55) = 3029939295224162248037239388839205862324\)
\(\displaystyle a(56) = 17648170232519830309648199071748184214498\)
\(\displaystyle a(57) = 102840806894616342364462807446047757237024\)
\(\displaystyle a(58) = 599548715863388227458260272381726637689922\)
\(\displaystyle a(59) = 3496795288326507959113534096719309138372880\)
\(\displaystyle a(60) = 20403116463139746830017498111222478406259173\)
\(\displaystyle a(61) = 119096093745042119339025171174313300004636190\)
\(\displaystyle a(62) = 695452790529214559880187720582016062607920957\)
\(\displaystyle a(63) = 4062576967974147698198475958876494906727940196\)
\(\displaystyle a(64) = 23740742121473025908777835134746243653498334147\)
\(\displaystyle a(65) = 138784473148560280209540766900763155273302446615\)
\(\displaystyle a(66) = 811590121919908282807392826010151265127930922823\)
\(\displaystyle a(67) = 4747636814132936824407742321836815023001297942093\)
\(\displaystyle a(68) = 27781703179383262115268509331508749329431176070743\)
\(\displaystyle a(69) = 162621081866379210387886951329807411335162036410622\)
\(\displaystyle a(70) = 952198638641314728764539239978869621965820270491700\)
\(\displaystyle a(71) = 5577085343470021987907286873813200579473333920006536\)
\(\displaystyle a(72) = 32674766595946743396749017947052983488424037452432836\)
\(\displaystyle a(73) = 191487203917996113207484153005449568826402807759818431\)
\(\displaystyle a(74) = 1122498602290930982324857383612822318235022106922230276\)
\(\displaystyle a(75) = 6581842794415962406810705529684172362558113984107093236\)
\(\displaystyle a(76) = 38603068420180906647492687147481188937551562544357277883\)
\(\displaystyle a(77) = 226467491953810562791971495054730327719707681288963315237\)
\(\displaystyle a(78) = 1328913901844237730606482794794844355472155661581679911102\)
\(\displaystyle a(79) = 7799954370883249007393235418065106838942665937805730706311\)
\(\displaystyle a(80) = 45791928709395873648508783743789353340297257701938866142981\)
\(\displaystyle a(81) = 268896391569201469806163599322295401829074891884733440049002\)
\(\displaystyle a(82) = 1579347785236866090030909839037007510684082650260388288282765\)
\(\displaystyle a(83) = 9278227668920702304420904286967841526819885732152872301509644\)
\(\displaystyle a(84) = 54518574155472134533545850914676465433429919666102497935669147\)
\(\displaystyle a(85) = 320415866031483143141305952165962463430261755395966186132019510\)
\(\displaystyle a(86) = 1883525552430296662787350359438035750018446615588613038205784451\)
\(\displaystyle a(87) = 11074267005431535274428281202367774405197833585017488205987791025\)
\(\displaystyle a(88) = 65124213872426676609399538384642357693305676383720370001088232365\)
\(\displaystyle a(89) = 383047075541564908184052142142651749759472144059630481176469129268\)
\(\displaystyle a(90) = 2253420016378753678902576841284442850054949313577192921734027575401\)
\(\displaystyle a(91) = 13258998746301089480569962784223119851781874765049932119651276973438\)
\(\displaystyle a(92) = 78029028338966167210409446802726311111550487884739197640927063012205\)
\(\displaystyle a(93) = 459279342806260937852504412581022844531322176600884479203785978646003\)
\(\displaystyle a(94) = 2703779550631751689185683317644189311243290795665917826262716170726474\)
\(\displaystyle a(95) = 15919805503185094954889812669461432860414833946854960139614611845556710\)
\(\displaystyle a(96) = 93750772408282709082673018368063648969828123840002958268796257910826694\)
\(\displaystyle a(97) = 552180572434184218273489742304771906318038830688916536403824815204356083\)
\(\displaystyle a(98) = 3252783500651175741654855062770603413549270367260874949665061901374696761\)
\(\displaystyle a(99) = 19164416495022985760745621166056895686720151547933382375919969142051774373\)
\(\displaystyle a(100) = 112927867987173278852981862025978956266124576707328667236060406438790667833\)
\(\displaystyle a(101) = 665534328938247645679954576505560029461909575969860055926694905216461442853\)
\(\displaystyle a(102) = 3922855896210598820133680498008282553577435034243604769766280476694960927585\)
\(\displaystyle a(103) = 23125737962066911837796851133409839773756957762557252562346589136081720957653\)
\(\displaystyle a(104) = 136348079370290437830154982751204138027633741872769257900897380638841149624134\)
\(\displaystyle a(105) = 804010069718470880388431798603410039459972960741902913087242809967234376324234\)
\(\displaystyle a(106) = 4741676077085112829828907171296767271365254238812073674980190675853991839819477\)
\(\displaystyle a(107) = 27967853129625928557351734786605681622561047868642395070893655541969540718955777\)
\(\displaystyle a(108) = 164984135281394515058735809964310996814771592189832790236356060850408586373289857\)
\(\displaystyle a(109) = 973374640516570736669269655320911867413710778307510245074928735866585062869044694\)
\(\displaystyle a(110) = 5743434420751996184928217068874370846201008645993254313730496215924636516267148185\)
\(\displaystyle a(111) = 33893478144952073001637008843847430950304164321943427666110900779222910791140088423\)
\(\displaystyle a(112) = 200038000080940113838629183885637614282904507921843658155333797921105012995605165995\)
\(\displaystyle a(113) = 1180755152647925163756812128878118728040073543779637734754704745499888782260800237674\)
\(\displaystyle a(114) = 6970393321461589849357731821123235419102567331780922464903997016697709759412234093420\)
\(\displaystyle a(115) = 41153231521898991296635063393787605879112642415634548617414834785310853075119279608964\)
\(\displaystyle a(116) = 242995919401800777932662155358161361056288872684817143439042823991418919294139336320289\)
\(\displaystyle a(117) = 1434965875238249191581148485932816928315723208781674114833696559263323230458422762924575\)
\(\displaystyle a(118) = 8474828517925282305324261765581365243736145164363549927950700827540095175144751271023692\)
\(\displaystyle a(119) = 50057163511438186333517406978438997608848315465839902095001902928769492141318453217813337\)
\(\displaystyle a(120) = 295696894010709053961303107625292533405932681322792357549972000484516535792581251277296614\)
\(\displaystyle a(121) = 1746914918657911373924271205888607407379962993648335615506466354173840331142488135532551461\)
\(\displaystyle a(122) = 10321444557161765652001550482663463254438575540906581039340710324597142106406323170829077773\)
\(\displaystyle a(123) = 60989102964588462479986365858319822223990912238844846684319185964370978828348422069118779567\)
\(\displaystyle a(124) = 360417896692753191519445225519039350631286696926350842783851594222832854321870096804163504219\)
\(\displaystyle a(125) = 2130110416403003894902665503671872138906446974985013480096221743377549509518644865137379280418\)
\(\displaystyle a(126) = 12590381561102589340220794470079596877062937863236819758813597064905386908303778582318331920146\)
\(\displaystyle a(127) = 74424518299010426022648080638540656768962124798702515488084175906960525102418695783297033539909\)
\(\displaystyle a(128) = 439979973928990054985293373109103545044166411460555984253610039133199137114011372484142274054905\)
\(\displaystyle a(129) = 2601290831222494188964374030072822823677146792430625117236092826908403262665619716972831538725597\)
\(\displaystyle a(130) = 15380959717014470303629216287614241936726456100392312783593129369674662162143661687118049235573622\)
\(\displaystyle a(131) = 90952763183141009459042747683354662098748551331296528037627250706192644864444527456540372981526187\)
\(\displaystyle a(132) = 537880409108409746357483990209807208538850372326054142238116885648262771450770992474556380837129267\)
\(\displaystyle a(133) = 3181210167442059059038412491710813199804597419105827289578649091788652030270923544391114893406875185\)
\(\displaystyle a(134) = 18816344531145151980309559124093856837062118564284167252858670319404014880096763200611350121616355937\)
\(\displaystyle a(135) = 111304795371158955526312247859997105595693359006247624870056789682701464046276130206332240479836179571\)
\(\displaystyle a(136) = 658457419710127547215334930361852353430620984863730312569441217698034130057319286935297698795009224121\)
\(\displaystyle a(137) = 3895616578994801046401626372781165885341282137952993263376988890837298685909086573380987522180464339545\)
\(\displaystyle a(138) = 23049361734984076638659877014928552389379267878361477795061152443965765625300125634862042879517164393002\)
\(\displaystyle a(139) = 136387729875041556919774806707287522645989496829807023533756469502520864151330559082386119910468072532308\)
\(\displaystyle a(140) = 807095483477589438992146686300915716513434299986565376737792097242775470313903864426976770260277821223221\)
\(\displaystyle a(141) = 4776472515479155405129363287464213679598892121424794997786624931185372240608672241638627232807912253329307\)
\(\displaystyle a(142) = 28269748159402323517500964155578951447981850330673203725220062582526936662079670064030696033697078707698734\)
\(\displaystyle a(143) = 167327929300333699196751322333986462417898312084201384522762296107376366752165559964810789453580046771558427\)
\(\displaystyle a(144) = 990481421143272430063722831339693146520281488726995371387233359288433925661445552428808015603077455710487323\)
\(\displaystyle a(145) = 5863476641039881683479550246341236781872127231441881207291917167833995357764484089677055007933632269524639439\)
\(\displaystyle a(146) = 34713196836765926570577808956612951011043052924629666200839762780015939474185951344818373195627442000663475515\)
\(\displaystyle a(147) = 205524762219242164456268566513861901906384057373783211950715758389744079070038067558984265993321447143428841899\)
\(\displaystyle a(148) = 1216923910038364461582955710894966410141928585727988825114433684706332358137818962630765232520421999147661365474\)
\(\displaystyle a(149) = 7205962913826652580783333674430975134979312715920207812694487818332729068911739089923222784231297315029511238312\)
\(\displaystyle a(150) = 42672644750610372192008243228413372551972676016644292434629305600698473663935990131242540074757211430591065991156\)
\(\displaystyle a(151) = 252717696909031160757354212894441232499100648161454026946082573796284679683751277317797841257425419924358307952491\)
\(\displaystyle a(152) = 1496752294910592024447382934033671818602320740270328785621791786803420035960417435667012560397330736595135549280598\)
\(\displaystyle a(153) = 8865271206939276815009571237512604217700715299908588187743501747645367165275020791012695248711341092474447746564598\)
\(\displaystyle a(154) = 52512364668484950664949833088785189675446888226141793171289960279398151872473871576533434713720979370948658588199894\)
\(\displaystyle a(155) = 311070070280198900566947005511940936161848576181279355653083019117320655747189611883802695598493571312766331737149816\)
\(\displaystyle a(156) = 1842814563997193531707300062578218134362902373473774371030728857063735380674401214203632713799752152146473450310926110\)
\(\displaystyle a(157) = 10917707664609862377092542569230810899292789575477861684624123783680486136889898714575256645276892887587797153690591984\)
\(\displaystyle a(158) = 64685564197637547806571645958252102602197663765267261113286174082976061545583885900095810810692013094679764988080837168\)
\(\displaystyle a(159) = 383273715076620933212277844870897365210693023656441915802095287374366639630173845784523402890015767645034223929172154176\)
\(\displaystyle a(160) = 2271099376568460985665897618726753323403145942672080499371853289566105989309556071242469792920709477070532108132173605849\)
\(\displaystyle a(161) = 13458242850617638435736340596093748847084246660553788882692120701433630915288511321589292505074422357913259632052432264465\)
\(\displaystyle a(162) = 79756372922917160786734235099653180179265516264845403190280591187377011723358778254458315374421510015228526729944449410595\)
\(\displaystyle a(163) = 472679686077346447758577123410407908571675342676752437388802666145663035573033729214510081753427487190798687018269620769419\)
\(\displaystyle a(164) = 2801513322538494525686763800346542545328584289364141803607571967922227831579173124688476520823975848566297426806076248063850\)
\(\displaystyle a(165) = 16605133206282485935219728321696877365209081438972280076327209842136585808485205466766346229706881645556262542718816711265627\)
\(\displaystyle a(166) = 98427321431039397524038184478465947886060426005065536994953094585635064580657809948987296258112866570302559927332717449481720\)
\(\displaystyle a(167) = 583461652902728774467153193507372733177438035821171755777722932492303030358996165475813597553815525973444853669536133871123011\)
\(\displaystyle a(168) = 3458852491846553099448990517770835921395122475044395356567609475981010624291365777505759643164831503135138798058301670838480809\)
\(\displaystyle a(169) = 20505698337044228718772525584105883469000347616650428931919005740892753750956605407354029015647289134566045201974424844080014879\)
\(\displaystyle a(170) = 121573695772021203535453787655467245325475629281557794071978688538951891377044210685795309903620231044443149139253394308550853241\)
\(\displaystyle a(171) = 720820192061503352721177209334071696801035502778063925769394544975131607414243241712431148593793296159171180873573052082755431001\)
\(\displaystyle a(172) = 4274017341632895247870343450849281206054275670344313796412892962485348998963548327393282484252044931895044682643517217840083772309\)
\(\displaystyle a(173) = 25343545633960944534521732640558677696035786256026333609388918252227721884177181543729188175514157393482837467997065700118409724611\)
\(\displaystyle a(174) = 150286502012839304107215449588461428969558462165819348893111903819606194395294935014506436028518191093881349437246047893661910537828\)
\(\displaystyle a(175) = 891238300747897936666315221174629722010049425475302845006718269331548307833955941811667962983740669577065909267568700089259015911768\)
\(\displaystyle a(176) = 5285532288929332367846551321387217361990644925714160349542838889803708720407912178740848271147451909397771050879092446830884915486464\)
\(\displaystyle a(177) = 31347607783214321336563367406795044080956414985538889777655598572218519548001892831143193796918628651467778141745868521549311173287022\)
\(\displaystyle a(178) = 185926216304789928446254420989425077778006014911753762610558790192912563159922344364316777053167343856857172765521444413858232610535343\)
\(\displaystyle a(179) = 1102801078615924074407715285406990375419572749452946408759874874539929645449157877047534699679651556196639815861638579105727537387059716\)
\(\displaystyle a(180) = 6541447074820758038559587261775115459611475610717531130807201654797610067839814341614835778352786437110593040028354683394030646125133812\)
\(\displaystyle a(181) = 38803451688869780283392505444445857634241225281911249802454856547433862120944201737411961181226721989875523612767884251431696898407317242\)
\(\displaystyle a(182) = 230190049338005621005390468502207607306178770632388726784450822667709704165125597878575103758231859636786387160062262616446444752950621614\)
\(\displaystyle a(183) = 1365595818436353237923741176858792734492437883329748465644303490009951213604353714393336097146982920526808464104691146575434889080993852577\)
\(\displaystyle a(184) = 8101716559399441060196077719095982612138510296823653445276368157676001584251753238646092143993209449245290815512753848499018368015892754132\)
\(\displaystyle a(185) = 48067434094978842658881141138514053985586021310889368375966577971634896297433061032444674012399332067261488686438369856475275425075593893578\)
\(\displaystyle a(186) = 285196149158128998062943105530668462388527042613482508913447649053925312797791707037839539571930022193024024082402437796439626151929024161876\)
\(\displaystyle a(187) = 1692212884682268236474827212147514683768426619500879288858280446316862468743732475823073820249956827490718229521140421285560714464192882949827\)
\(\displaystyle a(188) = 10041180242713783420729928850200578400370581762306233760409934588689820391976247214421084915775770640121510794002533954724918352537201938881753\)
\(\displaystyle a(189) = 59584425861593034728906197061897648710839767492489968637769428690893345485382688231085330383342660371266520643759324745813294429193957580190605\)
\(\displaystyle a(190) = 353589039515349702555042631432725690153956047062799901638749724734080038004119305457108781613659002743740183691663323325916497299911139113609954\)
\(\displaystyle a(191) = 2098372957752327761538400155217685980235675647627198655663768473438291155795365981996274885850662776028993012026739831515074182069582302060422183\)
\(\displaystyle a(192) = 12453293758134888270739389594674153401368955981499845795194856943709067444998141273523375446528476016251999487934941445638596482935652769519309856\)
\(\displaystyle a(193) = 73910011125624755383943153833238145351451458830433552238989364627344612267055739923209108937701745070057839591578329676021503438009449818610025700\)
\(\displaystyle a(194) = 438671688068993887011109902131346777770745129495086642775990054786481127977853398134133996000603621092269449142441622286697606260967410372922240497\)
\(\displaystyle a(195) = 2603712753905399596220549649720618292277267426813538032548554838561405593567260691636584820000280957669590264223914134209021253467889722513345797072\)
\(\displaystyle a(196) = 15454803478265899290296136084820702109013179223336967444633691230592020084033429336239129234678078698057718195683974414323297589037751465909390872115\)
\(\displaystyle a(197) = 91738299153603031906950694551515642920859073106659711064014931960776352378942975591114156611725139060721301019179768594051275413686735592288859311720\)
\(\displaystyle a(198) = 544570977610699341675583516921196657575541599464563067384275704202886110620312153747001963690235761813205961853552979347171745709044686202585743886984\)
\(\displaystyle a(199) = 3232769540910042998362125668127474082445854541266622879600827600947740427058705310990708163627342570471056714733451722288894310498065056686085149525173\)
\(\displaystyle a(200) = 19191604257953066871271759979315883666116757558956240218660843472075267502096293494553499104497048352505071243720020298819283050821369131229809954805693\)
\(\displaystyle a(201) = 113936777769932212911074518705230563196998354615445602956812778109807127839833521060292303168606841914325825362048264969088819350954072641415880650291973\)
\(\displaystyle a(202) = 676445086671859948900358272690699851646352424653942907645032530842137651895318365206294136686270631837733156354760441857717659787683081960181350611617908\)
\(\displaystyle a(203) = 4016215089820977928356785798616267434451843706737619797878508252943289498064026117179258229600752816316674341385364961408506809847001495167325010934836071\)
\(\displaystyle a(204) = 23846081792914902634474530647519473137118799977050609076319700667195335883200490629158027978554444546597300881583640280934277451214908796776240541693499297\)
\(\displaystyle a(205) = 141590003182841544179785931182630554373236084538080029681481458648241384035121350288154741444554503428430111718478113544610323352613606581252135207887488046\)
\(\displaystyle a(206) = 840743464954608820958623540459420753830874690652159639894267911879804959353210304774296578604532586820554975282024527782261512339032236493714732534821344769\)
\(\displaystyle a(207) = 4992402679297193650894797082706299387533751201437078927146087669676714877097027086346741936256811652290246950222331838062290148126761190438133200385943037889\)
\(\displaystyle a(208) = 29646318343276676863052643632578742098164509296524012861583809104419016480355986490379118426673155135944540670017315670317449742135600842251668878185214267763\)
\(\displaystyle a(209) = 176054381175355060572073470851265065558623801255477251930519234721701523937123154740471028112716405299726245904666138119191626110734999023178351188683378938477\)
\(\displaystyle a(210) = 1045532829209326346129911354108655990587166070263846061223130123127627342789278770259493671791146435777987759995805131492248146907071874060237169522972714225541\)
\(\displaystyle a(211) = 6209307086981952138923638791679633370195501745472937163492283159845730858722647372981733159783212725989622439477719064903134270235533642028383547868428872037367\)
\(\displaystyle a(212) = 36877637748633294011502396058983399288910998744466865020260614294577463774048449646614778412272510153310047180006977277374547815626269710463063675598486039998160\)
\(\displaystyle a(213) = 219026873344493570375193783995621361659983533019458657767692169019235130892769197011502314007269039064830985717148695712169108015686024985782390358080133313499427\)
\(\displaystyle a(214) = 1300906051623485288045081497834825673499721129078075385308343911216267705942276894422109268097878620080489060279736479412185832746829820843200788946726361988079205\)
\(\displaystyle a(215) = 7726958027391634230636062726629956096727836474020541732558898522779881239541732844978007369814914284591786273869825998603675739185890923542805374531075641958215093\)
\(\displaystyle a(216) = 45897087896766178669768654093211881503750619564762631658427075827523759917051501030675444632033086923086237841686390915752840178124981138034768507024051263263697801\)
\(\displaystyle a(217) = 272631190049778440775752484503956371675256875638209988034765395809440447968456509031810831718060553824551805824120221300531552032242047909261891473151325303298959962\)
\(\displaystyle a(218) = 1619495148334772394564721397533752638710800487429574727547388105887725893786353666868329590943513621162311946641591108948929846419866233092406496161556230241653323495\)
\(\displaystyle a(219) = 9620493316867617205811103969993243154496082184243306093893353005135225865034624668348641427839916528476781568087121472364660810161039592961285075073250886640381771556\)
\(\displaystyle a(220) = 57151612591977436146683481386262832348314521715609014401086632443724558772015993318439970856494160580544059862766875906562618804113747020426711463397868302309770438059\)
\(\displaystyle a(221) = 339525947639332843948137612233284337739531504093547334563382129311075026077212967148525733378921559169923997060353901391774421437159516119512097737609575533795571988661\)
\(\displaystyle a(222) = 2017115030712254524724559978030918202371065571449064580463344952479868051534908927748972616379313001360550070958015194271890983836815924815366596250563687685517941344193\)
\(\displaystyle a(223) = 11983990536005484909120588784169400176994840132000576424902285447760433218777966154127742148502960157893397291433410186657625180210464465777292531815045504073629910149928\)
\(\displaystyle a(224) = 71200858278979723364677435977217925869172226253431174161039851102138982968301768685007483457454432629587888259930769151424071504227062223479531999076988474202253355833408\)
\(\displaystyle a(225) = 423040420082377559325988805182512531387558576769945580927440802866158709275214732623616561741189986301868643806094523628882510129555308059773452454614998109667260709938019\)
\(\displaystyle a(226) = 2513571546866000582180194076301861318506118597865517115747497919489568257076030228943772469657587281492502102484858220053238471887419553908930396591907683800011289673550226\)
\(\displaystyle a(227) = 14935276848267211969096767489197210743834887558763659745078278352811495264948539001165577340890513736513321402660536175391624352571751836316435334237334601875056961742089312\)
\(\displaystyle a(228) = 88745804620225089706391889738562098710136113802572300877864991787623168041005785843331260742976047858321231109988390360084468036172005122478436490187934569361569261709020013\)
\(\displaystyle a(229) = 527344965755847513548717244234659775484614668237172842294953741775590246718048300450484051470880853685122096667351227184729345952582914427314737139605709575097859037594096043\)
\(\displaystyle a(230) = 3133675981321211380413344283068343870281275786017188243746696378488390986539378357152320337895433654901957068719822952250476803705455307083484513049466557872228818160175184341\)
\(\displaystyle a(231) = 18621968100223863040803012123940707698991085602448612624945192960375522668453316310383734816613857422760337762188627702516914124777977089000761718685705700967062636672207977084\)
\(\displaystyle a(232) = 110664714488020117359430986031487377312318864311258349853146800853737767057227659147210819773378939645349813002651233895170780552565955853224781922985211170091286852342846100028\)
\(\displaystyle a(233) = 657665036208580007489036521863204023765302828667269970678558421955664808640733186461279313164069469176429056376512758190624932507842377875604821588485027575187746206078539410911\)
\(\displaystyle a(234) = 3908519058110728661998359165332227076348695778211351106437892195263768466878499967580802216372650887130713375767989402858873988293688967536445042370141450326624877558905594353741\)
\(\displaystyle a(235) = 23229053122083462466479590192975584587826909321541241393789756038635277720383692475913350170967910169275504415581676383280169043153328478516421350372117850283871458059772011719280\)
\(\displaystyle a(236) = 138058284892276536888573765151445845155089324932428185034877150331634280581193788075000717438607330279340568382674382737689550818979300960298268230499199147406370438053418799247176\)
\(\displaystyle a(237) = 820549972830308834420731423387117947217822277050836499006913986836874396544844715731493964122095661609906266987258093229324926223118303396744843186069422505678059078508103290462294\)
\(\displaystyle a(238) = 4877071188105361125160073023294506998597534550212135180243992675616302224286991022606732457682000331643511276272380456417296053800985150432327022266206630644813944917145054868679785\)
\(\displaystyle a(239) = 28988420731328954422689595685432433280264777457312762532408449398444847540482635503120561018373096180143801718603733046146582843092091198346650792917874004089645790237976049586400200\)
\(\displaystyle a(240) = 172306366364828777362971204372016678635541003885444346653221144519734412355187841178063808422166360922999600694739911765112114815835142133599336774857446645033930118248225986951145212\)
\(\displaystyle a(241) = 1024210692504066162748284219932980001366742408932430226946950100179444009470889313411523138042280745204022843526315128663563675713060185313732689954950895577795187637309131558881856052\)
\(\displaystyle a(242) = 6088192948286789779904868456382259824940077800326793047630512073396740627437417775613578234866764170725550168902438709564689613321763702363006334586116175802172254632551086563343449413\)
\(\displaystyle a(243) = 36190829685830798333313505772937571523736148204570017914026879037117340197631723991741235552309861358939065970780322817768554667523388056222309868831738363495824024899475416217092987762\)
\(\displaystyle a(244) = 215139230393650718253058511715743276064967693047697732140216173754034981425056013863335924339557394174625329041595105617614829118098239526119658699518362402193427107528034311041787139590\)
\(\displaystyle a(245) = 1278944009646431172570943448414308874219465655008628860051694935983493240989007961796793604392407821570074193610353484826343858731007155348712429692292170746460998989680109702283840740063\)
\(\displaystyle a(246) = 7603161503304356939086541010381495659651900661670680182438778413198653386573266629485463965508281431451661299262622665886390291564488166573863345352066279227028865094897281152332642510017\)
\(\displaystyle a(247) = 45200951244622887540646567258783850032918927579020969556315931276331917029603826114826513776363123755702127861785807431063482045587428861127121199804551807702560464243512968347092645050944\)
\(\displaystyle a(248) = 268727135474288063761925934879541973578822903242994285522942230830203063946368383700219279588367022183009623873096757308829412650392322051370718401414483222311078375878651317983207284116765\)
\(\displaystyle a(249) = 1597665935181391829985502156068378316832757222167278823720753801453229973020188672383276212386751879668614282976667771394618835011991364944276136939395260517953679624502721572182114357800863\)
\(\displaystyle a(250) = 9498846043947633455796612863908079257296863652679642862567195312048980675899960275291100525845856447233659905061776576013801780663136509447253442288159232342440540378886087334811056239066580\)
\(\displaystyle a(251) = 56476277022777382563510413500795917548016116432072997533893221037537856396942895785909033101284320393636787267372123478402064646365220920241642355377810896229563025012198707246227230724599119\)
\(\displaystyle a(252) = 335792913628811641549192061702600722460257168460732217899984888681958779790068321102793727257655878505036544331955609326981069040037546250094840514723190241670239139170475481659575024049796904\)
\(\displaystyle a(253) = 1996582079719941125890676367759605878582374897576875439952800256282002948557245352895548363953358405171833253822904994781317674228775008698537428677494469140872341017892872181757247035793198813\)
\(\displaystyle a(254) = 11871699793758554048077245403411945966076109735653801013703463742063176902231621312184854961783461164886669907156244114065483960841587781116231599959654941523415965092198959971736602786777413174\)
\(\displaystyle a(255) = 70590890236022786459684956555473779839639569143791068653532406797555051108878024533946222453731045936813266351337088081551003362025298842291089760757446738397648777308088134096493160363078613356\)
\(\displaystyle a(256) = 419753523068583250223399841542369341145107498230990354670800069984289160469785011819299228206207141418174025158984721924146699925614049478288788391815903731592597262832371294058886705803766570717\)
\(\displaystyle a(257) = 2496030579830208209789464049022860693424646082887833131462082943049041952732963519895689946555619064578852067878804554049694095243641472301755311326823161970008317120066417081719901408318695297519\)
\(\displaystyle a(258) = 14842779579191728290839348588503212164596026536217230947640606894014099530025855378370759481970341944358664138559257963228009273663023299553360490904897471511085600113352308299690779749409260806071\)
\(\displaystyle a(259) = 88265357278166041777030665046739023101310776662334713773598578057808913275815805254914728166951113294756163713058642168431075051287399709663510953781038886117461053925765809783123912910063362555380\)
\(\displaystyle a(260) = 524898054946087326375523495654826491305499706400353581062979772212557831589405745239247486840982054198400919210626779491473592597826425271115377249217543342659321892908883861257542171779346032569470\)
\(\displaystyle a(261) = 3121542155541765990312595970255582791452148106610667400435307742721163758493374034630347511078838501155182912878033525099454315971022497216133765645585356213202629497333953305481501389615833567311361\)
\(\displaystyle a(262) = 18564058711352681029997315632242134409216414101193232759230386734229170634458335018554008214296167156650006910153695162412696478892613699084780429857160366058236344286589485472784278839324829186934717\)
\(\displaystyle a(263) = 110404322811510661483265236053319975004552660520775631656123235185776753976959426165843356419116308160817810877195205655874758793330443122462957685370926730069767448412840786778746734461330751200317187\)
\(\displaystyle a(264) = 656611626005141605654162263941530623567010919161007431246411584058313004014774127288743814088957818945369288727256162057624438976623677255102436499878040422206829944028075559360338429584643400492513155\)
\(\displaystyle a(265) = 3905173489730139839443352755642510121388562862096539906935009642176051678496882312597137628123829721374359677297970128020887998936232722583137913585381976509707404079346932218830901112422525504481912343\)
\(\displaystyle a(266) = 23226367942248880632515480435901852666285198494698669984326341005476567763815319523019642622586869714595030031222249975783944056303537805716581125316356332954649631137839690375793300020486555316623739212\)
\(\displaystyle a(267) = 138143802782899139433497785449115373382676611781699194220075521978805879343994419151281118108383595597964800327583607921327286898931371384376218281528784401172986170924979581222221658284241832365203214236\)
\(\displaystyle a(268) = 821657039332020754334559689484735705519989295597172608175196531284986744718572860466725742354962807285755908115263931399408269509313328468907264830530997796329244859925063494494948755889578875388016729732\)
\(\displaystyle a(269) = 4887184721213634420466186722929545977337995104682169224090872388377165087042794295122551821576433363971626959905044831437581701811993252379514676930568350097327562446801781417613228613036519090992602923167\)
\(\displaystyle a(270) = 29069386263527404497575289845198250755776978313535010066577065322599552236819866417277544160018554869357789294634499644242331512884653862182279896901503042481320235019031602423437081384831785487632790404675\)
\(\displaystyle a(271) = 172910688225256546532759860409794204468400615084629261948375149498109416476198544809916028660609506209836778179899316876802961761138218246525228202507119061779080468644865438358365751933437470496510498633207\)
\(\displaystyle a(272) = 1028529184770762624103913379336998574159813353553018056366035733106722807118065881161216128131437152730296888499554185652731354275325050762142665916984499528152981164929630514284860568316982171541377704561752\)
\(\displaystyle a(273) = 6118150252663173392660851969040370173716300667877360096981631972335388047158157136196260356116090734399931861520424779288426978616951915311213754718312465831025021608044253040639166758985395087996578529856436\)
\(\displaystyle a(274) = 36394213016093069615354420651168743667250622685781445708592347461836315758083254458890792907573854622193827561837307400728575530425632171041452369434537213173069529686251738460911562619283607292344855681278222\)
\(\displaystyle a(275) = 216497626412624462702375532183807928555732754570440054416985293496545770733466283979000380751531866304028397907571216148502098206066063925028944614892387479325469792041326936555221804717979366549596955819438326\)
\(\displaystyle a(276) = 1287901046066467859323074897049048414882775405961789257297306798397013104776455505266708121226312349301536866196359938347087197020167743836750519784571356328973027891672452346192214538527982671566617714687333688\)
\(\displaystyle a(277) = 7661615288237519392804455591904954195686815161584260857426307923143096854548352263535748079006093046669061788103697388920919279160755707985776049008937818959449449761808343024014626024860145341579883328118509963\)
\(\displaystyle a(278) = 45579191114429683632872990245218611389790092372108520302244778196746462974028668070450774591995943075557612095571495283405711024102028546395025385847933701052273665136740127824109125195991477306790093946009674420\)
\(\displaystyle a(279) = 271157270310404138602239728023271140114896343344573772661473732634512043304673671109702349144578671484937553103477460204873771881946335612411607248733208731861911276777874138024180477332599274990033612326238865508\)
\(\displaystyle a(280) = 1613185094481905078066624400115324681566290709002180794396704426758334809059684496325831147015176212362845969114188345682280452847365798637348830518325239378327498449459806212199316216247202339648713913443202409446\)
\(\displaystyle a(281) = 9597439792197412671199288221028370023029690734761807833654264858330892516074038295471512799174999273806604120866495224845656040839050735455299771285320130681338733922781573512567430019868922411722616245105659319886\)
\(\displaystyle a(282) = 57099825658618659594930295552672850747906118659462001813595034442008088543934680402311974340578300923811257503252717006854926897524199118773952714466986838852439894544959427501080811842579996868215044010430095326312\)
\(\displaystyle a(283) = 339720927001422822142195726009262803343677516509526879996919351620597004653237852021880707001568517806828240999350468338986995192867527244885732169529841603377423906754944931797027712015018636314196670546161579067894\)
\(\displaystyle a(284) = 2021240044948735135271113168064908806675870620493834114454600012481075776932488800996654860362775895579375652889871031546250804601674640050012042949684729885074559403061565714592326774047792612976226763502989664725896\)
\(\displaystyle a(285) = 12026008486961184734004620944667954194141940926849580259723181458141673698929255809916240400610689474775712228975987839463998008566150658743220927850648907252865023885686805196856442042794868726531805524623637220223510\)
\(\displaystyle a(286) = 71553862278169641804427352129545716662175185738777951398237116982197538290683313684826001926323808073731081946312997051927225586702020301239081863492891086463743147347692054077589485258451322827035588030398843165962683\)
\(\displaystyle a(287) = 425747947313603918692902559775554574588196998014897386537355656700172947374256210687172000868496064190635890286418649674674902870079398621536455731207603618134398471673412658159489175689938704874005043648659873674477779\)
\(\displaystyle a(288) = 2533260767219762164723111950334125065860022852309683068176050178232630841733196121604183718737645287055833174305120108215931843980259573506031682501304087853901394862516542251706709997463224000467536451184458639330004867\)
\(\displaystyle a(289) = 15073532092816063956169927627317338952046922777292359792131949184251847739587043879740068575662396995659096457630987107270461888934270823123655333056665126934838399396193822379405842347488515743505014763765998959878205928\)
\(\displaystyle a(290) = 89692867181170928654005261490886590377620598014756308149748998684453920748799938039379648721674942457491664078777905379705160429132547994259487585659287301961946735175895263809319195065171380861453606031532558418563147356\)
\(\displaystyle a(291) = 533713853501573134377205209968241193657789997543045864586841666842922358084736992468814449475139450348724540289730610316354869582419437369415848880012622343235523306574309742473304001753695888353787076301308946981714197079\)
\(\displaystyle a(292) = 3175899005877426042159312846902900214236998745276988255024243225565737448739175819509793223539782213006468418392898207641749607673219419757656765288457163198833068374322377495385183717217716779973091761489853815844641581018\)
\(\displaystyle a(293) = 18898723784749491713216486628094083955672974867271747089629752813196707970046328059950737292466542309535010163012341539506635985729130424315173799479988097067362687191656906754442507289369680532700362708457372711172050948696\)
\(\displaystyle a(294) = 112462001169936573177056329037985931525053195336716182165377561217439070720602542015564501688095990266165186647326165669222271890929141239249511451592738452043076407323264675789003032314362849578332352690759650055569060043969\)
\(\displaystyle a(295) = 669247289560499327468350059551204642725984452322800775862484520094088781450750836287193436742838137424569189714371424342641792528196757015531678714762388829338813201150508598987675989615862841487974724813725703229444433595152\)
\(\displaystyle a(296) = 3982675006068687833417233054055248112995901524625665485147867856109021265653916442990257281388773710803761254598938727423506700119980526808922486345175569146632645678628564072437663637622609811575052191437975427345204094502130\)
\(\displaystyle a(297) = 23701209003828852130049051939338221552485466517710803045646032842840509848989811372574544943644990898193669354524344837204036215275916870281029326524768777902508610232224296680116132071715119675029655034849711699802984585380439\)
\(\displaystyle a(298) = 141050121902657113297658316605917991022649885674294796761662917067202010535737593727135114815031928613211687434802356557315008960273818936844317339913764588550599804015882405303346633454625878958902569091292519424364240113593353\)
\(\displaystyle a(299) = 839428513278215526130625199290577577352808998432766077336473993902225463862585405008505780535753636631478568332640235860988960423327312889595667817912605814866785503010941200298416939470141118197288445779777277810502488120745998\)
\(\displaystyle a(300) = 4995755844332782499065946814246911722967025617854451426290822346975562151309090895081682633060353760709064419828633298119482244790438230029831076587922910725792370929593420774627310061839003725490392515568984249191040802421353362\)
\(\displaystyle a(301) = 29732120352408704712920030110200129732828291197518973702921691327269180341905373682145061456225950410333366064579735662336335389862415832688474518200351966819959078811155852010335730224544211854138649404314036914615854691176500698\)
\(\displaystyle a(302) = 176952906521992058806132588806332156114684174253230992074325280452943230018031499850909985977049115072269011073149663953424320232753603562020787504351947117694421785586840906909475772513895390363431363139671698716734316839031770227\)
\(\displaystyle a(303) = 1053165474095146422547274441040037950765905750534724251934383232044808471492050719604388710474377553236243679739508875192416434785858904189170624315535287305132795120942287156603165066243592584523110634517457094620702086375792709173\)
\(\displaystyle a(304) = 6268196082186583879869370032743712533234906343474175722502015961169607660381495200757386657163258297786558183559388073071929620237846635658743605449965196011100624085472582936251779293075888470046496973033265768482258943505569608977\)
\(\displaystyle a(305) = 37307447429449914132731852271067104025932945042906748306626919857392919585451134038569534696999645830665410183613582747767904232700861155505220637249793558294422664901306094289460091658093127811778920028624187310934554605755204274758\)
\(\displaystyle a(306) = 222052390873199454794229702656793067191480419388677114091091832144723862081856583974919115386812613079696151570031944411528343017133985852887739736248384469663957007798805533171886572453567493584110732612483710532255450670263837115168\)
\(\displaystyle a(307) = 1321667717705252076572329644271642098624337751424676753866113352220111534715973150132368426470567257289100612235039749052971067134452394450317439966978982993900444432590019497468109809137817906431937899883572492120673514807599130664805\)
\(\displaystyle a(308) = 7866761376120930072326437239881581598354716254820288212526240463329162767047279136311475389976669390938731526871754902828962617362051622028935856394277153049413413593160466441716874072042771150437185015855004463736117832686305513438507\)
\(\displaystyle a(309) = 46824860574639635040390352503626472828079990739486142605852216409822350628751860298299245636700097922783048421075386973231634887249142690168507812891665568906660440837102852043784586775321950675058825553089853500219626962020227265554764\)
\(\displaystyle a(310) = 278717210353048417798865368893345385648478325579553508602472133352353724462172616861482303477613015784028301680437653383931637979063087688453843784762945265585657962443821395513698514453298135576327529404734037827917565999877971926102259\)
\(\displaystyle a(311) = 1659043656378272025442647226051310654933377019612185132249185956148548041445569423665403708725602062023123499585350035337419852283615142618364092128626367799579850090023054207314869920569070421555997109921185604729326286598265311526235488\)
\(\displaystyle a(312) = 9875487258358993338154322585549579992721043961090585734384002951671113489618243963737128844290907240079350844010903283732012220792151558392874237667603278799105687677280191178662960027181025763845745387971250215731740491272837076780829085\)
\(\displaystyle a(313) = 58784915738217422638401387450836788188909489990986477163545361660310379120719226171807791028853389371637311411621679752522578246767939126731115120521498593251379729312037544152216804150985143470169095092811294590878582070883730364293941919\)
\(\displaystyle a(314) = 349928949560947874419829786681837716904702711629996504165217266340631726930554478680908905982383077735026355535552619394799036187660959714632292172529808042942791179731253709833119940923982921411367958998291070658061885202760209268167812377\)
\(\displaystyle a(315) = 2083053432947195152352336663116969282924263028717949122462139415356508798245855252408210502570157431120569054327899661801894432723172703561250702474307844416254663031325764475708802083342107858515068773877448375791926449514983086159550918567\)
\(\displaystyle a(316) = 12400165175609528091528587614282731685922939581771321417842653355658681733688931133960657753836917786310494959954000044393076636442535994159509647859632767882955870133378750441191391597490625655572918471481202668652911652807382800842086361638\)
\(\displaystyle a(317) = 73817785377222919340998089752883813660162375269838993064219698206863429310959911257150313697170828003094841346662430839242006744215076021411462952150340509133531757234472078335403833000323625547060625123510282796062652699268607802487125079859\)
\(\displaystyle a(318) = 439441424776581274453583537605252264879865780393440085607890614694943431571890632749324249414283197497998047034004779977411090596746221796456687901901842447200144088096197195746891657500913947335344845831373028705718204850453352350934652280582\)
\(\displaystyle a(319) = 2616058052443432478176499710522618371313161248126193064360333447016162281708340791433537849509455886125100237690452727983715677209459879491007697364498117788339001014743865067076582288215884647400501317021267246283507237291539639168842464384490\)
\(\displaystyle a(320) = 15573998221313552061863338960509973032756882930194989488986161789416559342588462595522149281914690776683288172679878345097364856205698457472569949118602182642183904860670878122936635582903169142574540753258178907621041314171740374906103086986251\)
\(\displaystyle a(321) = 92716960415582195125677833394632509906693996538665110422515991146146986623490071816647837150143005581144084390522386282329506800068928486214110793706191641143410306768760306933190205294176363982995901356379240083769697105554769272910216020101709\)
\(\displaystyle a(322) = 551981512479795478254845827215155295422834583353828445899831205140708107815571851327573474663559497986002197529464349894200588536372695412500628479148173834348765908050814479262047543808524638913557246051609450389377519693450642300271538245015980\)
\(\displaystyle a(323) = 3286216121265291714172278713080974263042932602428702867116655035679633756802090191563855877126003435315747883176135298562258348658216896526634162128713917652475503698177795153257564310973347173260181857311339440210186213602574244044017561653407117\)
\(\displaystyle a(324) = 19564732579961046368954488087493817928197678433595087270308414250553430555848579193795148311433795031985041084395452864093031806164933134190820344824283374877718405923398519587930574809523839719068929766150734259247569642988868307617302592675993429\)
\(\displaystyle a(325) = 116481747348504823683982182534589084925339659925340955487237476257354930308834545248018889392477304288913072110976747615651667407171684628287889874793515837930038893278920321843377376735911052279584695743612684679925667483300413847343759200950612825\)
\(\displaystyle a(326) = 693502396765135049903992529334392158620804198249870804854053881998419089611452373767781104743607086211259737354857724254593627364311583775913408591483785957049789211580140621345329927663178778200238643328385890740052610663289059803617870376274872749\)
\(\displaystyle a(327) = 4128993004513939445377117218423647151202513975926103080380712805313221603742527298770699806742250049535388983300313689160779302775672512488523903954642202552546121881716807910428121285083740590378761854650812279725473639826500469873179724899298940136\)
\(\displaystyle a(328) = 24583651008036220490118555679065265054906881452267893729742300278547198513135781343554806855277119594110241587559411125344581950856706087177375638064765659746504312670076880150467477227019087778973349416451510363922818015805900433096526948862100910785\)
\(\displaystyle a(329) = 146370863319798511161223322406044597850334038928600458892950113155233498356259619207007110100269063137299209228149943930173794446742580933678417085503426525375389760181073410988244221320645595369611038642484295001458220279053660610872075283077871338818\)
\(\displaystyle a(330) = 871502962604246238423941835203256813619666762218566639243396961907185185962756124764756605554325013342494760104024607277209578854858700081676176802443163543252512500367900714912627787878896593111217105239611647264653931718202612719895432721987646111350\)
\(\displaystyle a(331) = 5189064227232249277027369990097752109158804823303040582894016756225865814293863712410690811988448661093298211445979048684936311906884802892766058421775106975571351682580723832154376521161718131106636199342436101098182880825976675974635555327590934972720\)
\(\displaystyle a(332) = 30896916114635295442549672362618627128508163359322884103742191754811289124177063773735049874477972128813546119124350608228875892651853344081645468376054805923221560742846080369819112258647558195950224512854875512944856034213429873156146307415076530424047\)
\(\displaystyle a(333) = 183970036748035826491675516920004387665359390108579196485335780914634226753772572405948937384394522297926381950878522669274634172561145695241933484663921924003131558467173253270213544406710784157921276857657536680057269314663160171791780099241288154845130\)
\(\displaystyle a(334) = 1095430667265176504035660681338996036907520008945837351368879234571361976571308082359083441711203087583236795761882177689076537789531114965556616625494787852426686577421358062258245207213233066633529052294638854695169857715584354850608093456147187256879623\)
\(\displaystyle a(335) = 6522716439678697668129811714094895640701815631307850505651590332808611801587198816455075774115329877296592198203210563135436984282793799966579188794471623537836117390804265406622531530651280383836588462646749963253158364811706556288466104257429049727924982\)
\(\displaystyle a(336) = 38839879350884576603069936339645696813491978925808559433060629636028446255840025028940483127856304703002719677791490536383480376699769335251248969195902258599353026363498550381126344564421928068789980482939004829563663381618010180568920694654530433482661576\)
\(\displaystyle a(337) = 231277285068697487859377383802544858741045738705614533190320427879927872357664921575311286653245753318439921564810439629051222352117072602723641391233773207523563434052805779259000360941836396744754243824487827669793162554466065414731344695995285689862233508\)
\(\displaystyle a(338) = 1377189777049753024048958166093715563928113512249460382142955753388778205024828918000058156838496879777531166808750291784468016175250132721392246549319603965829906449563086124681526584565392359974653408584894744499651276627769888112078706060633287658413916783\)
\(\displaystyle a(339) = 8200876422601562454884136785911656046017030043976126292788840793642929531145983861363673709566842915660199365580907700728041106223127952205951778751469590782351057895546773620312244848533741976855787761238110119910452896278652215681875489456006010733054234590\)
\(\displaystyle a(340) = 48835133520278936379703932858123065845948494569674915044355381265363229181259045444682148526075722605533927272457717519438716004302990514873109197105272433212776301623332523169762137337201691680608031221398238369202136691159649848299769933294583343211961855049\)
\(\displaystyle a(341) = 290810506430971042900995635760790988993016876394660061279932672563639058040711722666220489351837927835362079671408175933837811692340480148174795344986889526730178317878908261846912232087454193637808980822949253783369578472210575099971259585017891139856942050349\)
\(\displaystyle a(342) = 1731782611532602329941742054287514018336002280037791452988059778615725614138490924330435029977499068049010679353197211607367861384903904245862278133283878905794616815770610001021557755278761819236649987439913253954063177426583083616238377658410502286408544919631\)
\(\displaystyle a(343) = 10312932920585867190502056557869050108761779419042808555946978979961923575734917623050369889645687276431170084610509886573797144967026221340076815487082846634224291054242101183865099007679006401435935244571826022405890081864272854307280085899163184083564618863729\)
\(\displaystyle a(344) = 61415291196145302868822859437506684520815758613698325418160013466550486678564255229990864636719855355267104607213221151298512411367605308644781138349279851144378846664594761720513129397603918588856337836438736238312571295335483792882508066694221208974832438849815\)
\(\displaystyle a(345) = 365743241898164402625130659369487670148200758784040215817239077416268684581880707013803514915793910274988904824603798429736415193889353772422319319039061933892331480859973346763218698714569827171118982026179095115232093295989113391396251580571216600419787130369787\)
\(\displaystyle a(346) = 2178118709681499350004548253718324201898588500445107868954479570242902654488154507530344652538500602315354721740692530089968483315756986839118664733933341431855820907396121212653993392603663020414942169465831122255406321202860797235570684890512930853542684008025093\)
\(\displaystyle a(347) = 12971559450350177770525014622456417273036500809209524566283238427990118726623588043409050630819177714572515852542757451741659941979738672348464779844911535670622512106801203828766913130623316285573411932295299308901061160345351118379633118757424612577290370246996225\)
\(\displaystyle a(348) = 77251729951054469214659229034714189056335244793366317828158136101109414194107836556329447104636462462316807266553277493291063190883520892340119324063752177486729539367319165879395723961618863046022619913293091949122112008246812720155941890572824862961587842933523934\)
\(\displaystyle a(349) = 460076006078671245400064695341524819170224297165505672595692315652712370855312836046818637872588284427886413039586378791247480584533612238294670471337447575948226569581998458818432079787685739288159587255930628133211654211805180746754485143583156788914675116973384862\)
\(\displaystyle a(350) = 2740036022529639353107700499339812262458405000997179379848767638909028907614773740460954849682079806168147537193059073773215241944555887438964302562860173371108454092939271603262444412190076453006921248942986911205876161213857563637740407236150525010685286427246552552\)
\(\displaystyle a(351) = 16318801027284881936272807143412112052814163097276510772925120180664328333607971678632095812666643350155963633891753444177117509420045373619377545060748243761168489759897193122242518742551420431228180048718694788155453592560303851299709209340991037903873569286759363556\)
\(\displaystyle a(352) = 97190872024561654429209109415510671599090418606227710760741580254729837553629269295165581579019652315620031495726840283175734751312487712630277185842100760909935211285418698098842262296810382886837636313859884504401349265614894809278647951366572187433263507453553504207\)
\(\displaystyle a(353) = 578852532191749880206324948700183120052849957009084026624627456312718220678232912746746324882890056660559391155765989468314681304478794012374081887375944410293957597789733338752538399610643885101566928315484833815451921374022226938838303171124222065389900957204655127870\)
\(\displaystyle a(354) = 3447589852555060906703765611191354171758011583435096961624864099192151712140440736191423549947769832686217014386595592256582788011215657981382906704720831685318051289371074309953139341638417159897106716977656833069896534627871654618333454968932040507378014355028283361809\)
\(\displaystyle a(355) = 20533757011725104654313611846927294456502012013306847124713578637306213473334941331599550342550770993557388919293291634657203105292567184476545635769034420784756342523140326110221904277218885623208467117090523898793568471553039689871854403047173349240767706203392826963032\)
\(\displaystyle a(356) = 122299979015483742151866830745231404307958362230904485387819537772486491466089952898817701696788807533297215420666539536257361816206389295405419381268091021937494556777490969072172754938667715912827427256762538949390509546178742007218209327476972521107616149359656207604946\)
\(\displaystyle a(357) = 728432739907229527256095247269188466994326108311363639505126421782143274766188976415605534231480206952566648694706637399115112718766606486954933791938885859898205257913104466388316167050888538233233127275769910398157298520892238151998312686893389927182724303455632571650807\)
\(\displaystyle a(358) = 4338679942054251852304841748396750477718999608978833951690286354524813792072842783360112107967135375778194518642708385600365176532815597852822163961823394464939956768886889968488317287573936211605656273414220058446060973276316159284411536522092109753840816171096144546643759\)
\(\displaystyle a(359) = 25842279821948716662452141786318567975345467497927662529583513397382554295364946917605185996763714408131524844809287808381885213184793417925962404245700639841336966860056312243621243294535055934567984374897050164756959095311943972151716011788129031529329424473091997593159156\)
\(\displaystyle a(360) = 153924964197764811480475796473015906892810414908035236879788994607967903989644661322232093141373186791216205638349678873634485290424966268203575362814832290839708069866782521515173447381089106255243539804426185271488802136150463283524954814131035454731198680776157508792782134\)
\(\displaystyle a(361) = 916837346955010578271588147767860159979177795874692097094630603817740146474446647284324420215205868488798696101953035788917319017255714856000326865896072840610264538319324711154841445610490029916434251205302524648962555594853431228624068663512007227701274947074385978088649647\)
\(\displaystyle a(362) = 5461104673051720134509255177114759617391865815919194251302467041879969940446175992923766301052946957527433735519986889195504753698155162147195096782745447600021745744237383774653015066282830471344537347083759952971767665626446449522210116480264732982521839994675285801106793806\)
\(\displaystyle a(363) = 32529219933278186640956737403648705665703438846015307371904795030009475396366448321969164969680076929084697900738904459169332621192001380335827312989140931307563042387196374529717956777610216230927305053682336450575212058354751503159856070192700239545273034989471352511119957682\)
\(\displaystyle a(364) = 193763384988065967631830501234261529798654800576646512788362578370853545027783845587986515445847424617663820946184212024189956937860173020245374770451907540091525159024447554534020411614045411634991716620667147341568990079047283324324010381161767566191676806578974544369402579785\)
\(\displaystyle a(365) = 1154182980619346775112764824643258754796900095623835469884291293349607539643957951458358698800722621865393160547997054563135200937839333366897157218875458528974881808091591285675318028249800269435946711659479160339897548888605589236830541795578348735839632643761974118168425253862\)
\(\displaystyle a(366) = 6875154806317412471559646756431415018139021208872079080246775231608598851697442834350993598584428537680737439824344993333071615426608735219674704871796132224283744164846519227245612645662470532033471138589608842982597336772007044863168692101221809417057048691678334683531621053207\)
\(\displaystyle a(367) = 40953887504971445735777831154925636785139607848961247761664024901344321391609750581585427745732320562017906763240265440669571951742936199494319537190452216259865937691877506347507016616368911657684096276860516429040756529509675091595975263913263683260010726785979283737218755275284\)
\(\displaystyle a(368) = 243956612456898248077277563797466526815686002633044727622299588849407939571343998739256312071051945873322307713604259031856101553783664264807297178619116859442961413191056960450336076951550987713081036428431792574133978413476489525758198941627421637368405297449360586178119464949973\)
\(\displaystyle a(369) = 1453231620614741709462122280109147266575011614412333298913156989382259713954273583426992893467527896924814676825394885695735680426798078155432209608080793419676558774959112973965848258853540704578007554810272785691008364140718944309191861139776567723981211906475492444816293686121931\)
\(\displaystyle a(370) = 8656888855866495910118155378934036179058853209562447744034491562394582844001067181921127506711256363994352508004633628081198849386798919200286622993852883219142906251164190127706125236147013734970775312628472350691601886012283382151133290619990583826710074384163939419961156468240054\)
\(\displaystyle a(371) = 51569577896285135207356332470223676355241210389751564662545125837258119829271098720437867240223637350562643555968883886713165837900838301091109906311320576724423184174977336530298073166195451599779212823085087341848459893644755886972574174578570165015438726653208796847833758068524147\)
\(\displaystyle a(372) = 307206229781090272707194089989505068390718824959614471149872155885113332642875099865998341692334529174687363494573745133385879337782630906822297299957333385497747653439603593469897640134018043597400315548420269336688344401912642663069742904822989509432919998118811312612650571736145861\)
\(\displaystyle a(373) = 1830084496079456152726960492125065978238117469904675443362437843417727276363351698351499467499086382408902514650836166784512963241267318183386924960943189943359604774271058427564167500926073938385848106535371763802387422160102056500072906663058756462957450674629751821307918840628392024\)
\(\displaystyle a(374) = 10902269711616980782413625595763541593585379110393717978057720195675855601361069475602739177835783657855727560029269611847144895491349496618081727595225397563708636693250260086419367842926206248478716734641573223916323787969424754963010939323625530224592721487464551527708845826653574866\)
\(\displaystyle a(375) = 64948232053889791132811612983201379486643379401337514264000472258198176998522722996069476602891790364784539280326535552005394830396291774798165096041696627705210060746721483993704650053759108531069950703296802721596100991825110202905420350056041631728806418546524236222586897844510207472\)
\(\displaystyle a(376) = 386921045656384239369818163933318639129116492442018063652804595799090964740161453605033694014429948777604583710928798628460067962762459385142487166895937061741327435986977347805603570864882656245436459685374050550021349317891938176321769208119101710315698695924575871424198894208605945548\)
\(\displaystyle a(377) = 2305058515272797368102695288181696936922529334184485693183297134533802923692357013895117941324285419393771762855811050090352058835438004032919998993636934515680820936996247887845776269210850978537433857241742656079476552436790976893863599116941002866727980322943410501561520808325662416504\)
\(\displaystyle a(378) = 13732389566790457563160576477086069215341642353470540194052266858906780796084343414874168687439325275679552993025049551811352898600416373995154760630792304795425591055728746674930553947187617076134037656873796962775658977561764833613459236813559501772407144834602439971231418778170674032729\)
\(\displaystyle a(379) = 81811585681408656887267841704452602298118058600122587324598691630315222137687178680343247296301302297196130231056802833299563020159000335365084276514259284332061308888061691984308699256284505280164391517817816870225568932672478412810801901986536867500211388691128017059521742825899719635670\)
\(\displaystyle a(380) = 487402795924387895602599119491470837221652211562364801655696107024531317655613594173797836193312644438778311221921818516489777767878873914918515248283705606968080328212617558847951458421381104906211597016288254505887167441515189911016330210893197816004349791908699821965168330438692985188590\)
\(\displaystyle a(381) = 2903793368393147141630573678152680522459228591627654857936651142989650641569034077382574771758591695142982900831376996887127896805551189080405575571387728452356186266128922399808268871389630757313562731961376271215820745681958231141741904232627109620792642528243202762528143754658328607783463\)
\(\displaystyle a(382) = 17300070210723043262394328154291712560745423838424020781249317624248938503318605965023247959199161161149627865937233725635764383746913318489315259636907333823526320993422553767060762749290075971762564833351287242157355437118997954640968864486266609601403273961709837922465399858302403341665968\)
\(\displaystyle a(383) = 103070518940326699192678904688239570930337100464892713233776676100640835178349976152210084831296753827046585740795627517078319043471719657544208745187651867431389575362490362428286853831165405013903999638688144008505683764647118146198916015530461277630974685775660091371463003612561272173740480\)
\(\displaystyle a(384) = 614080740674517066076587478991184793651573751457119527586463927444577952501939306218919546384653316890511274395283748557952492040716309759089414076081020046294904219520981864744210612682197598775067812376244781181410462765160002918651331270642383743232843016156885169476835624767979662125357155\)
\(\displaystyle a(385) = 3658650170370917028498590874327675705144648548699692836728378358921620291761940292896967975493942096219667226906033224525963424833399555521929999382584542548518744873012166282679987742461508502411591134760300653360722483875487634776077911979832653718823293340309158477278019593271511325570296398\)
\(\displaystyle a(386) = 21798201644015807889410388348418982027333597557921255013246191028838446961929178701148229059811526992905710594098329968219449898907471142947343913239858260409883828378271737238719581955302528784205206868529422546045676917577936799511994160428345298251916052973710131132548670776871018457245267369\)
\(\displaystyle a(387) = 129874771054240210909912749408070896939809064966070951869552393247267346577980428359451573773011502171848768840027836382485887318904085588136757787000626814798578167717200275027699977027261001622669207881574487712651663945456740172036649454107196670947134191882409821951121418124814437023934467194\)
\(\displaystyle a(388) = 773808063403778752037123969160288984248692368918766891585364493348046109636412024006218658809060000540116089289847933703323270222388397639211515522967146152015830098741283587616601471418261042548599969771563363284615520891428590887164397550240811907063995821992501359292181529016100225041623292989\)
\(\displaystyle a(389) = 4610478608623367574673239569230766075903169807836457935572094289993381643738916053808384026810603078358586828967075935927576286411646614428619149043046855439305096084898826890863249988856609143814633309406014513802485141988364994489338012685436408805439417680688815670844722714044033145383127551923\)
\(\displaystyle a{\left(n + 390 \right)} = - \frac{14696779596540367758312033896358609558097902685999163904322360095801344 \left(n - 1\right) \left(n + 1\right) \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) a{\left(n \right)}}{19484959768843 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{2081542458129490576399693522799883269963776 \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(31595382117098679857502360292889 n^{2} + 200641984323789106047099339592625 n - 2054612360122799896728585404754\right) a{\left(n + 1 \right)}}{876823189597935 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{459704606477360993021133728533543124992 \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(74037488972053618936322014613481913001 n^{3} + 1086755310158446611383576003966431533936 n^{2} + 4391565329997631699779985668367368146791 n + 3303697117754061269424000109787171246016\right) a{\left(n + 2 \right)}}{13152347843969025 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{406099475686714658145877852061433856 \left(n + 4\right) \left(n + 5\right) \left(4123797786728067953211832297333707467882897 n^{4} + 108711840569636665318362689538090314371750318 n^{3} + 1004840834685336817589048009971613230350586063 n^{2} + 3720541017433255730867490051493058062750169618 n + 4288559422720741652148124491442573194144203616\right) a{\left(n + 3 \right)}}{65761739219845125 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{358745119864588920623567007121408 \left(n + 5\right) \left(10915638557237866568227999956202819271903758443463 n^{5} + 390114742451886440508824576323901378865824151077215 n^{4} + 5375412862410205285367178177692868955458140584525055 n^{3} + 35525428266585785556493252296223706987198248152874025 n^{2} + 111655683032112300797706236978766127469708089210958562 n + 131399173241201392068487765155199455381017002937586000\right) a{\left(n + 4 \right)}}{591855652978606125 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(238005102806281445 n^{2} + 185239191192012221175 n + 36040953142771323841252\right) a{\left(n + 389 \right)}}{467639034452232 \left(n + 391\right) \left(n + 393\right)} - \frac{\left(6023884915859184139405 n^{3} + 7003278199408690030818621 n^{2} + 2713914557404410811052788748 n + 350558998019655556552450820322\right) a{\left(n + 388 \right)}}{46763903445223200 \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(40443063232929503580542281 n^{4} + 62519241285383249107474754932 n^{3} + 36241861079830545843231774471149 n^{2} + 9337285910792383528312986918918278 n + 902106902344872469085054403683022600\right) a{\left(n + 387 \right)}}{1870556137808928000 \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(303902888489996937459369510952 n^{5} + 585961137488679819241494711531639 n^{4} + 451918821296110128841587728874835168 n^{3} + 174268822131291859800804781580238957981 n^{2} + 33600568238448484576866016881538840534840 n + 2591380597120391756954566038270423275825100\right) a{\left(n + 386 \right)}}{112233368268535680000 \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(605937358489871675132585787962276 n^{6} + 1399333560692605882611182966274665394 n^{5} + 1346486199609539574521243729063364499595 n^{4} + 691002584174844285474570020402891751292020 n^{3} + 199470348622939219324079240032884086031796529 n^{2} + 30709598345084201551750414549298993747984185626 n + 1969958483587070062829983122133090165324393203360\right) a{\left(n + 385 \right)}}{2244667365370713600000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(166987653607947669014702246848570308 n^{6} + 384674378384002897098066501454169439886 n^{5} + 369223547881397166472128646391108602163565 n^{4} + 189009105405461775640085563293175506578198840 n^{3} + 54424828468294128886895388014845079747612025087 n^{2} + 8358120392578031539745904394802894810914291496634 n + 534819730542883277511670424635883264612953049186640\right) a{\left(n + 384 \right)}}{7482224551235712000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(23556202680261816997623208631658846080 n^{6} + 54128364036427729661034746895292376295914 n^{5} + 51824108827641410372745836760922572430612115 n^{4} + 26462817363150113529052021640093892684078605580 n^{3} + 7600836905481255728238431538575961463412404941905 n^{2} + 1164351347245947495846501924540571769474451529061926 n + 74318001388692117432991441184740814788687897072035840\right) a{\left(n + 383 \right)}}{14964449102471424000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(2894401377032666614702418342720063574052 n^{6} + 6634137371377920993447227269066128269117524 n^{5} + 6335743276861808299573292938176753582044509015 n^{4} + 3227067600376570123034175157457479804354734952750 n^{3} + 924569871723451338283246361674387038170699912009473 n^{2} + 141276132899714003201098040188648365593331501197364346 n + 8994670959076404587334151663825375391240242989309093000\right) a{\left(n + 382 \right)}}{29928898204942848000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(1416324309557938124997894444093429262248944 n^{6} + 3238097094188225716764792202234121908689948296 n^{5} + 3084640182108610481051864244879771643435702215835 n^{4} + 1567171830196338126601141629926175900008186207663170 n^{3} + 447867949350324754261253711890215282796400066081135841 n^{2} + 68262284592683529636127520196103350237862958450995122594 n + 4335100348594032369930000274012592252275499592976140234840\right) a{\left(n + 381 \right)}}{269360083844485632000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(207035992791515678800546458187232833732548464 n^{6} + 472138940858093516306067123668531967471655865667 n^{5} + 448622810846216766036415637386813331931394050243080 n^{4} + 227347623299342770782688249723169296831062800965555920 n^{3} + 64806836593172139667303044023851261030322989199406460976 n^{2} + 9852552777824044188189704665993160606501686569247734082353 n + 624114530364020027850825265549215573130462897027584911300940\right) a{\left(n + 380 \right)}}{808080251533456896000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(36534397099722066427369119978672525616127450104 n^{6} + 83103259109262541136455164358946018452231192773918 n^{5} + 78762918613337966574793057077315043572079646386746235 n^{4} + 39812839436791183205215404234598720825841986529514832320 n^{3} + 11319986613739991472150906289314242810845973093128378719001 n^{2} + 1716588853912113750876540044856443525863672144607535272364822 n + 108461176572681053085166783917586476829530883526234463419181240\right) a{\left(n + 379 \right)}}{3232321006133827584000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(2943315385860755626740109285122054143543051825132 n^{6} + 6677906762892286891579730571950699944229094647977612 n^{5} + 6312939137295151134780592684356097009575756242189824065 n^{4} + 3182881922868044606923961350588342245329161461496698624110 n^{3} + 902673991953914821060534977865092087640640346143977678865503 n^{2} + 136533433913304441125640899435565070225493326104160771242810738 n + 8604681750430437935675277674521610485922183729069405647148726640\right) a{\left(n + 378 \right)}}{6464642012267655168000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(327091954581950698771443279691257187512079666560844 n^{6} + 740211968265672279663672100213060317340680633089789448 n^{5} + 697959315297894932749319275614519789663714267822566408185 n^{4} + 350995744316662583969264696629577095716990587128355904181410 n^{3} + 99287627715425087759005414165975500546296533119980578409580691 n^{2} + 14979115272274390826256299936588944660951510671576945268641833982 n + 941596794020538019375303400389129524792326020611653654394043740000\right) a{\left(n + 377 \right)}}{19393926036802965504000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(11210856899166702180873003862804401718285840190880040 n^{6} + 25304801752369156341941283672685844625064661199439876536 n^{5} + 23798790938876105128679570274923951058927576240881619417325 n^{4} + 11937259824525852500833627735168488220979898557301118338084990 n^{3} + 3368030380987457504142243218498866772130711697440733825256060695 n^{2} + 506809981681241483125095895355165708257319049716910745447005178374 n + 31776214556487719209972321415026290581465819151918082915386417942720\right) a{\left(n + 376 \right)}}{19393926036802965504000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(119134768983815567773399388922540213526332712757153376 n^{6} + 268210446540610972514292745226059629660681386282949913750 n^{5} + 251594262489837246230148461860562110289464646364194799922235 n^{4} + 125870405675851262532871270271821686827402766802306642399494440 n^{3} + 35421601173036893314791775828091304425304726035819190494369829169 n^{2} + 5316313814762891824780047781789795337022561686399371808549315924670 n + 332461167926853319660620393878618000434289550813809151357486363865320\right) a{\left(n + 375 \right)}}{6464642012267655168000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{44843139983073615077945875890176 \left(351527786552446460184072797737375184612802123177183211 n^{6} + 16772647538218506812514647114940962887712641477139053899 n^{5} + 324598874023952069669230965270944806034462021418541239595 n^{4} + 3262805389214560927534549302296755278014239004084423653965 n^{3} + 17960796260398547869814592677775228172695028828083499700314 n^{2} + 51278047071337981538788046994039646289374087472476548289656 n + 59188667229823758775046872227894273398897252549143402244160\right) a{\left(n + 5 \right)}}{44389173973395459375 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(21294667025735969332826652771601572557341931225712631736 n^{6} + 47816318137468222386034592199116362570820468642739279884292 n^{5} + 44737256399502175816382911471308176756384519415685429171030805 n^{4} + 22323406626840596897145831489482783370577622760616007985130504320 n^{3} + 6265753505324560755105133630226551627930913808573943175351961560039 n^{2} + 937959439969130249270746299193888926930595922593123917016293893859468 n + 58503623193140438456109428122470359479711899451545824997208631576556420\right) a{\left(n + 374 \right)}}{38787852073605931008000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(1190460340011656904059627975451477171794032037893995627380 n^{6} + 2666142477214652914837957463883019793114494692031566272833572 n^{5} + 2487939202686104387091487737634139386004435483249209690071890675 n^{4} + 1238209503378448532045568647062141178874374731835827497912759629610 n^{3} + 346633287314440370045328515084342791993685415529866276625204656744065 n^{2} + 51754053127029705888885785486035479905047726135881002261238366536111658 n + 3219633754179680531115008800056237048879686681746765741884585595651283400\right) a{\left(n + 373 \right)}}{77575704147211862016000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(20890462536999843376259907935067690043341420298206408764484 n^{6} + 46663208437030168700070223103108809029918606014548052258536688 n^{5} + 43429934237563104139073357554276022678839738371053355737274466015 n^{4} + 21557666830239792167045373283809205426074692683708810530653273338950 n^{3} + 6019163652324292321854852516317048100505567178386229624829354798600221 n^{2} + 896331303437005189056347541151086089071859504427048673292521401096316162 n + 55614626921120826614137811373693168399232491269862656111806022609465878560\right) a{\left(n + 372 \right)}}{51717136098141241344000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{79228162514264337593543950336 \left(34205147831618298200999576125927607336130255263309471248689 n^{6} + 1885132332299445426449088388481131409390071047672932379625106 n^{5} + 42165981251728700906331270883952000738929702288857529440436440 n^{4} + 490757726496347829311706804730297910826012052166287223549428850 n^{3} + 3137198867587561699769572669627093589384789940601466366002417671 n^{2} + 10445136802975190648954049001040731983806974968491171657935305404 n + 14141809986779549962410914032284054263765665936978852063794019440\right) a{\left(n + 6 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(519511523292720226466595478796056214297033663547864402813516 n^{6} + 1157376795873243056734545186298133329645183997446612355054659576 n^{5} + 1074341709945719899549129980118101904129846281222135641580534281695 n^{4} + 531873260468842573040812774365667003528511713616631865153727876448870 n^{3} + 148113871609633772283766000961264512921664121882965576651437128663043529 n^{2} + 21997907634917960524962441018087692755539647869313291995904247641158804574 n + 1361303971044511717532136250449802746059660195371985266424508765994077021960\right) a{\left(n + 371 \right)}}{51717136098141241344000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{39614081257132168796771975168 \left(1760948110597023134337747679060026122858121412847967852686923 n^{6} + 111048433661355881365253595402675608206585822926780858668330699 n^{5} + 2837715282446359199653159325723211476266168268755894444483605010 n^{4} + 37723599553054598813966171652117063959140104249953686539992509955 n^{3} + 275672763115593527996076409313526649671551674986711110835040410667 n^{2} + 1051137425351393922808560374110375086594956122949653581929917783466 n + 1634456832005575180789578294778955381694075973250103544391605062960\right) a{\left(n + 7 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(110174064533545822756945292529271103279207764805047741458142216 n^{6} + 244797451895495033420010738243775107156521296949483424521146718700 n^{5} + 226632681186254509196820499719759697920097002895287354360438794365915 n^{4} + 111901595110813942149590031455947047722648312517504264142444625662058730 n^{3} + 31079349312054098961385729370150131428828996741164993322998751135984671629 n^{2} + 4603685673439999673580885305603368659141480435344773598938650042778072472730 n + 284136842288021832339760498009995005214367054909812273457133692650877839104760\right) a{\left(n + 370 \right)}}{465454224883271172096000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(1233207133748512554993649045711005449100728397918467203532168512 n^{6} + 2732790563269463148568829035018546090817731558252874650383618450848 n^{5} + 2523276439545001160671746738093051987342487366781327588031302242757895 n^{4} + 1242571683173277219732515259131769760291797677583998904036512290636635850 n^{3} + 344191397611943759295265820072316151229335572851964354588344662121048114513 n^{2} + 50848332653148854637431339013857099767221374083766711630563416969886184452302 n + 3129980284335586749892846448083903712607831441168285636234171399399529624843140\right) a{\left(n + 369 \right)}}{232727112441635586048000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{2475880078570760549798248448 \left(1719853199788471472291805144768130334736232206926471712493809553 n^{6} + 123633378650984866360351311442239223400422140025535692591227286866 n^{5} + 3585588236242665489199825353689260998257640997618580511381695591050 n^{4} + 53968507326789019039040981797351874516244750023434339330572355907400 n^{3} + 446088853477184647077073984076914574153705817650264063988520473584197 n^{2} + 1924000733848932863274879657884436001165772689466264026480052749714854 n + 3387233774995270767530988354817660011665234497940365651919300562063840\right) a{\left(n + 8 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{1237940039285380274899124224 \left(56141658229409767070185906727834831152167853475402027678391556565 n^{6} + 4622065642612248557139662447498891636761613780501377457344062829803 n^{5} + 152065974835227132464839576811016416658169246086988284840920892483455 n^{4} + 2581909195447776810632705911131094776158293081231614465422054991292665 n^{3} + 23994604957840626138995861161026325354472553346379891476879669756184840 n^{2} + 116147751717585255666940413034038507129734367643578607446807539527171392 n + 229331375338395480281205750612099955358818691100356651186328598225429920\right) a{\left(n + 9 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(315495708942773921018978823449763999980374225174047256068853023884 n^{6} + 697270722823856311859335143244012230043278732264654200140902987318354 n^{5} + 642092508474743972816758919536116341841031459529925513666466061802361355 n^{4} + 315349356206476361484561658863453001646810155925005192486739363840868255720 n^{3} + 87118075159792580866969731247240591767775260739730571204196567261593951853541 n^{2} + 12835795118203327616063880549463918865156747997505774576427276824517406968199666 n + 787998696255903052397297754890101360266825161743880309928618145842408404352943320\right) a{\left(n + 368 \right)}}{2792725349299627032576000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{154742504910672534362390528 \left(5743927088200106174122030397948151526270161016147739418867909733135 n^{6} + 554223037370177909782001799187166190242537116185876784142706004016892 n^{5} + 20899081084485472734706966303057025271920409345941956526829994617810490 n^{4} + 401707472125644731568374886876823956705391690963546574697298021907673360 n^{3} + 4195267344986707599215975590548702950657509148460823710777916903416665335 n^{2} + 22718437805782984285142794014672436897597420696271036637661891779445578708 n + 50047123808830139928608649394718122969483935392821526656458929292831974880\right) a{\left(n + 10 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(6419636854821615400161140713386014476983262031632664203872199841174 n^{6} + 14149820947099145485557988163651003271963238609662838692326605361898849 n^{5} + 12995101012964348204787520982597372926072981534830496619915215969944791330 n^{4} + 6365119802064589326387141777889963354078461745036383726037475574421422068355 n^{3} + 1753700861937053374792046421213041154439756451873508547756719104829333740509916 n^{2} + 257693025969881868707699428040057887777009000130737607155197381456603445196180496 n + 15777495564797471334834369207125074660099903458393952887324505096072086650706950760\right) a{\left(n + 367 \right)}}{2792725349299627032576000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{77371252455336267181195264 \left(34044156610298183877314688884904306029655318538120743352445379519917 n^{6} + 4207318406262823718940513663298194720188321501344569671515115277089587 n^{5} + 189082621485376766584579682337493711613947262406481375634036748565494310 n^{4} + 4193433890124674467779601788996406489290287594292072773031738443635679315 n^{3} + 49666770735669568019036049476244085234254910425544726013315280405341470053 n^{2} + 301956318299733793038082708987869580822990514068317097539671956980800672658 n + 742157509289676476602864874415670557104174780262685068895327561602776159520\right) a{\left(n + 11 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(41640452721933967895993486585411434653831373435755814412329441056680 n^{6} + 91534183336231824316784710303101608109114786677646073008599059924643593 n^{5} + 83837716921687979775929289175273757927750684700706653909414829157901585065 n^{4} + 40953763011879446615064146204851509019415081363092142729416760453906063776925 n^{3} + 11253049368145512026348262563359019738725504964319559296909579459180902262041855 n^{2} + 1649091993289656291450410932666562643365470816617724038902659769540210088470835282 n + 100694981120558253013057949763760364687702277653566887438370086645899990337579387960\right) a{\left(n + 366 \right)}}{930908449766542344192000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{77371252455336267181195264 \left(217027579120292679247943239065345396334956077711299937614030980346612 n^{6} + 84673014599662183528605227240473330068915537540852801634431645866739321 n^{5} + 5452789585769408423684298973584394982802188787516192713493389036471947765 n^{4} + 150015853818099896831138768252189909583977205801887625379793734716941047245 n^{3} + 2086713592363937840770093421801534090104868336689150216499258422940358165703 n^{2} + 14505660064196905207351247552207400338789685725649825633864261518351219663964 n + 40157638607728404751646885613202011453513651332490573259892061559331669667630\right) a{\left(n + 12 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(2328983136138718917703638161919653714570302243665994106946074874538744 n^{6} + 5105714331465916586283049717844824466232935399993534749905468091317498303 n^{5} + 4663746874086918176828966818159597852955165690689111225408844464422859523155 n^{4} + 2272017620783870203000700313886266466740129635660362905527328012289208585207535 n^{3} + 622601967477564015792943542294155526328590807958820435551158604708331533368578221 n^{2} + 90992910713005206909264233001509803357080116469905838587679032288867156972624020242 n + 5541061075899469693337321650485163070471627835816349160981178011353645958094944986080\right) a{\left(n + 365 \right)}}{2792725349299627032576000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(20835152597943172961799204152466906185923430520394285443770622311543642 n^{6} + 45551650772148582197105079615269910559189162971614475406271352392620225272 n^{5} + 41495391808651552734933962875130401506353484734029744123716969940361379549125 n^{4} + 20160156938886692704678076013231854981085128262982390818214456519635062399863140 n^{3} + 5509472771362607904207075092910499128542996535812043571427872977744872988306027653 n^{2} + 803016507859716068493401916739384704806650046788763785584653885177566098621504675648 n + 48767134845811973838755501261128305168217110296915327089751146654925488841832619564380\right) a{\left(n + 364 \right)}}{1396362674649813516288000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{4835703278458516698824704 \left(74840485618318371308340283387227898019501576876447372491782439717185238 n^{6} + 2436960209699132230700448573336408108487848466670226100376548676325664988 n^{5} - 89023576938473810078477812946088697635714654635511115719871232196971228115 n^{4} - 5661813781028865134779216615991941541474173323856611849086640530638350819670 n^{3} - 109199656987479696936422933687058328538550694987024197769952036020135628801413 n^{2} - 932013249353564210378397276648309183565274979981838082557771989097201719817828 n - 3013998502753409871046435835850136879420985787634934561900665788778943062035840\right) a{\left(n + 13 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(1433225057252860648516284414021249493785421417475062138451202913920206672 n^{6} + 3124885640747154269616085831207852586109368924133826083805885935414787273965 n^{5} + 2838848391956981485288840893590639472432055588686687269154414310446316700001155 n^{4} + 1375461951642598492887184311979242382707535029272298963590468786245036057097934885 n^{3} + 374866884876608562996474230291866749114873582863302658698495522900727990971136813573 n^{2} + 54488379734283460492627499674880320010352318979640568038564177367801617846887205708790 n + 3300038958309316601780028456580602042521146707057031680358607602723435073153768454572160\right) a{\left(n + 363 \right)}}{5585450698599254065152000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{2417851639229258349412352 \left(11654625508049975155185684719200823699430231387442602393551289510800212742 n^{6} + 864956653036630691553534112855258194939293657175695128158093999504722965458 n^{5} + 22304951454164570215700461467497397716796977213055717199726144830078116445785 n^{4} + 177842265468958890273014137019072717813185168602405574737312187879939647129540 n^{3} - 1753855153944514878597821379566595552126729446030631259054262936817508001342047 n^{2} - 37371632837691842093943971229290141504004570500945671693877672493285748437136758 n - 170854620839271780845658996411031008232800860170071051699361024803113377683481680\right) a{\left(n + 14 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(23723628034915059976185801600426573291104096392292651623656650415904068205 n^{6} + 51583197511845542052496186855173312657845697925191133352167730265365759739192 n^{5} + 46733011183520068113721863122599439958673449117423649120670559097791883922055925 n^{4} + 22580710258970964237682677017170586705613235228431161879148848101074866654894586240 n^{3} + 6137246442815020459232375950353628718290441366204917661009027906912703811704756975710 n^{2} + 889626816533481220606082664603019222239145456268092013642979670149293029746808928650728 n + 53731695172754203375862098976123347491809455860442888414296540481348063200368072797254000\right) a{\left(n + 362 \right)}}{5585450698599254065152000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{1208925819614629174706176 \left(378124113158093859939823121002183050910369856014827221244228566748281259503 n^{6} + 35139245432441594870882925609306035615889817076986114347306602438301399338805 n^{5} + 1278112371441585869786970671284833019159500254693956368849557622230190453213350 n^{4} + 22783817665907626409510590702499580663577582942753304952729549020152651649835045 n^{3} + 198351204032962386109466756241242940521805556076026031181004806061038011043539657 n^{2} + 654673629078592652171549235314256790249285400871311247205839200674162116577789500 n - 240686087573719752597382730963196122869666605571114067484721298506300325558821980\right) a{\left(n + 15 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(378458529138357587859236483759942381134014570332013049220398862449854538117 n^{6} + 820631296043056328611904058002695990965045485298875504318657634027066699518088 n^{5} + 741423281691405162836212012547428298944721193537343996481873462726907238640814835 n^{4} + 357258609902482177681730150552327705975655528444591544792839360622092436762424764740 n^{3} + 96832542234497598908248269662998483666931013918983798061301264600283554818843285980368 n^{2} + 13997752673376908661636648216153894295950064052177460203249798509118631895744425053626572 n + 843108922048943978938789002430071567255813147774405031130693257447265312403951292049093040\right) a{\left(n + 361 \right)}}{5585450698599254065152000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(5825614825056853860765706307891303589181374934646982142002712130074663154687 n^{6} + 12597068079390221399080722283473565198417036892348334944307985067298628466047410 n^{5} + 11349730814971288726620017752897339545499663417291174636323246965641592538724209710 n^{4} + 5453809910642639122395970564162703763654377859712685316317439342566809235434201876200 n^{3} + 1474132724475531014497931341033152771239591754561573801216035923569032201492465778711623 n^{2} + 212506167808153176906798297221451011073757719163763405685936709322358773456500763783312010 n + 12764237894376761451088803028511330655830446388066698809292448308376845367726644776483436200\right) a{\left(n + 360 \right)}}{5585450698599254065152000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(28873835714840364371438021296852579392708176455766228204892680897123675800704 n^{6} + 62262353365829115945249535201893537582770956787187140808990768534138508764269255 n^{5} + 55941610335333946412527784161786664023605128492457406337568000004755621029000706350 n^{4} + 26806662849360665225299443133053918083777522177308405551742464024336765635995017818825 n^{3} + 7225579799057872507067288555929828546601667284991547159271849952274243065468726332029786 n^{2} + 1038726040444066776055528905164954279982889927669614996501158103975320405700562837829546600 n + 62218242774423474864729684028061653050619173741668201151955898586754612316604020719455947280\right) a{\left(n + 359 \right)}}{1861816899533084688384000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{151115727451828646838272 \left(37677156029636682521061311786585944964140571388936194766391239066573930566984 n^{6} + 4074889592731804418193600882383586754125209778373775087810410768011482753643000 n^{5} + 175516668636502314222432387265697538412783459000752597066358606969746362662487945 n^{4} + 3856678233651406777215452967778177464431583232040841836314526533004737223364515700 n^{3} + 45370237926073897167249048952897443754999571801473847761249541018975094534719428121 n^{2} + 267411585461531046809539456331534491058153435416548581233929493428718001837496823410 n + 598856209237076516296262970563696281133392450711984065565863397558609264082201862840\right) a{\left(n + 16 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{75557863725914323419136 \left(246219000633734172832015856204986711308397946300512785328273493125906251271084 n^{6} + 30853418800544117589780934339079293751035963396771824634297419552793078825485844 n^{5} + 1526158112882440524384850367130517764750754316021718917646829761062449223399209615 n^{4} + 38600242836143401702090407966034008950587395838351471522541573397415629630177143950 n^{3} + 529429010381418917550929667635847447996629745543931872311922863172937660649623614931 n^{2} + 3739563461377614731112794202107776254372479227787878996514542409479350970219425719296 n + 10608961973127411000467191498332253519471289558689635237565239205164906959629746049680\right) a{\left(n + 17 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(2490787288536536151365352051312273188311371246627716343916296397468880542244437 n^{6} + 5356073727307046945964203460709067816290362901290597380528452031835065794100918133 n^{5} + 4798934645448919227332011538817257007114676960438155973309138833049716207142156993555 n^{4} + 2293197624432346340226470590629392891587139609992330280271364356462685871224236210003375 n^{3} + 616396684974429990772023736037432252046854292904558730307526561561037469582763552471355008 n^{2} + 88364429136782525910058822054593064939134279942734450576663858459246676783756711014318776212 n + 5278166241580446381932392669658743988229655658324627730972171756141677142592004987883197757840\right) a{\left(n + 358 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{37778931862957161709568 \left(3481747301014780562757252928614459124178415527694397908319263242288457476631336 n^{6} + 538286575549903705760394590730756478396574449816114653483735381162557549674614978 n^{5} + 31197042581686922235641155495079175118823407087530889874609326228092518337916171330 n^{4} + 904496499544300730643269159685228761027303148930543969621796224758210742945441639525 n^{3} + 14102395225001464288777994079160244754436203936233407315293647395330193918831995991024 n^{2} + 113223976063753988557530700167437250387210086033853330090636438912789445486206316697517 n + 367651551556181167808950257450852753482621821192738624737708872443106203356114691574490\right) a{\left(n + 18 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(34659053209471566043698692006808499063512056622837989648666858071745318532222679 n^{6} + 74320919029740601685971141964352064384033682822189337794723674199028548358401376279 n^{5} + 66403937088669144962802497658307159425601317484210281075938624645642145086091588219955 n^{4} + 31642802801303717739599647739991560649509790535646213230350055971725409973912156122717465 n^{3} + 8481608498843618986229023795704443426841052441040711503978432094445894256294541985721943326 n^{2} + 1212494755205250331399911291794635263605978645217716695261293477736314599938089270858261955416 n + 72222068194706072882781563887906227695626112964504090743722648101352563593556093503866317597120\right) a{\left(n + 357 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{9444732965739290427392 \left(103014272145738507378479212695426738175545617672341877295235109642183816306154304 n^{6} + 35034974952850446351659457130864651980223204812264520755398630427097687948213459356 n^{5} + 2762659094780741324158708321394050625094879410515834699158232958067848092303578577765 n^{4} + 97237518105555083888226757503792969344379421209855544330523619634207387776249165044340 n^{3} + 1759875116473829671989437072746143924674190426836431292140555122318982494762987931611451 n^{2} + 16065405737611896370544121675381783925351521958413688830206650617659109322977452163107364 n + 58751763912719477792242733171608870587467971818035409369364259376304143997215493231998780\right) a{\left(n + 19 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(116790410136136074039982638555465995900668164418733325291112117389213874490703206 n^{6} + 249736340307086542321908048267954538209444061901027977485912766946532430250047812033 n^{5} + 222507512699292607498729068514795617991497483853684413275270578706291268002318617719845 n^{4} + 105731883026105976502807067373552232882761111279884296583120031148326229982454718717475835 n^{3} + 28261122767136099194811671322081110809586498615401685649632374760941218664562016374060839019 n^{2} + 4028758370023777121472954100067218553344745169650291037482517216389592517307241189069720172542 n + 239299301416414471790497380051252394594432467540110304267473641738736262461102160528864492291660\right) a{\left(n + 356 \right)}}{2792725349299627032576000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(2034746328319665449388936700816392625222673535906930614549517924020583010564607771 n^{6} + 4338711943662917824923223652073244228036899031338281505957167363178616819936660370715 n^{5} + 3854781167310622106759719907474565345371635404612164131976537494193195591378221600762745 n^{4} + 1826572786665200618022483182617772588853285499510628930796981404156769820048789796522139305 n^{3} + 486851358027248080334343463472174383945913059708346366696954062921337578190524630862465452604 n^{2} + 69207656633541673054519150442332737644971535682180818151050671513730681068506960770387240510860 n + 4099211205430236243391796857630112006361758450479346109626162209053155892525879588495512826213600\right) a{\left(n + 355 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{4722366482869645213696 \left(5765257735002574885054175856937679738556292186433350752246332004643460574158168072 n^{6} + 199363016732317132216191725716012474713807162681497663143528911982899076065166404552 n^{5} - 15032813812988277656016262593821015654111898347740731610117353312549590222575532248735 n^{4} - 1071712403319933014417517477637063758008205513701152130013699280520766857452200275288100 n^{3} - 26104255222459261382587019595114545706775500902432218165147152600810168996977784513369007 n^{2} - 287972540504025604312859206195348244096717523205591454766053288300449062358915383707665662 n - 1217223794550620965216367989594789133188320216038415604679443554303785564529700762391814960\right) a{\left(n + 20 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(38689956546245294803226504990747058993939210443790881521763221679791534793319367259 n^{6} + 82266051010411348506006114800710121693698969312813679134656301244917284806846261133189 n^{5} + 72883868194002467204919540078619816486330866403947981261565796295862178870825558102920745 n^{4} + 34438205131377524524646091491289441510003659456772319101784144529644978234161116166200874435 n^{3} + 9153174442623040209337778615257635579871678218660699221443141000384277554089443043583478755316 n^{2} + 1297481916720243462210660687805490400776704427759375092486495322287045557200432299945303557820296 n + 76633607192157076674839285558486894328737166660872670718300307821659591836025531503162496184206600\right) a{\left(n + 354 \right)}}{5585450698599254065152000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{1180591620717411303424 \left(178223089783687489869988379435114193383463149983573194371272677481019890543356191468 n^{6} + 16188472718938619134765690214274296858450384623521472086268410852730096662926261591096 n^{5} + 510957233797927326889992235672123994313801959282780428776377341034479875992923918639965 n^{4} + 4596678522009493420464976015659968738779012135454792944911969241408310710892728136994330 n^{3} - 83022948510933612311601487566096192797749772330782559936420565606505290768181127928269423 n^{2} - 2015033950775659348730191619008597180841927919754178129007873324958500818287425346094849696 n - 11674490496214755810522064436988965664889578511374897171624596984969107384095708304545776880\right) a{\left(n + 21 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(476127726034381668721822067975248034364435129255987449446561012192056242108466895724 n^{6} + 1009517133015821585046400816103060579279287000729431246000987195665591226931076559581001 n^{5} + 891850900224152247606836851963395901367925078808765205035341970100004959570713226378939285 n^{4} + 420212658962012775550633525975454482623766471694155966620545504436707527698186257521866404505 n^{3} + 111369976629714226892671594960372048768479818505700233056235669076472707870290450895386949968791 n^{2} + 15742201021946840518324983010782077756475499126324081384875934991842936833121715253932605179759294 n + 927152437232987239304232375445606558091556567974432167497202047228349999013747794106676953867191440\right) a{\left(n + 353 \right)}}{5585450698599254065152000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{590295810358705651712 \left(15322645861389032166249377527885286407496355392295157560602799526158065788793638109492 n^{6} + 1694461913917857767451992313199749475947452880668565962169578776481003607570904067867916 n^{5} + 74417709323060916459918467532518386255896836271867233802225536772905098016356632485328575 n^{4} + 1612951445989656140424129156736180939414627100141161801952915709688064307998678740201063650 n^{3} + 16934421220689332980444694926577264471477591586108854661348245422256368718804597760645232343 n^{2} + 61818185561882419904882163714598508857322216805590587740507040138670064131467323313550810484 n - 98999938811468118997964219606575648202420602886784029006388819439633290394388840051624500680\right) a{\left(n + 22 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(22767402216084307192192619507477582362020819280775283516200923693809392999872285358491 n^{6} + 48135725256192412815122183005748474337405565513301599645073853846268502128075078369678827 n^{5} + 42404298176808975212198240470967520342339390348823807502771919454034563272360789684830953165 n^{4} + 19922807387520548721496735285885403485844531695446095646243930676161075300941448551862260577945 n^{3} + 5265180869588779866748780463195600207728996187068645253682752374138992635590637142347568228514024 n^{2} + 742120387466720493506938897527817102354447776609178222757272354624741196122837071934244129931235068 n + 43583667942569307195530170925998584801065504795221399378523736809236786173164177565988507198875928560\right) a{\left(n + 352 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(132274717409175448020291502705033278073539653077641138279896775887996477363044181829967 n^{6} + 278862905880774454148391562204732986897169995743233829551168721537276245290713690611097214 n^{5} + 244958747716820356078029333896832180188060776628909058693771298601110928628769464165192844510 n^{4} + 114760764373222542012103694700617488595702870386002080532298516169705197368564039861678927623160 n^{3} + 30242381756510820046467680693214853359481606687345405663574325409239441470682451437380615271558223 n^{2} + 4250468853034043393040681245391725072627128949985990818180669023214979198015545242004253300092973486 n + 248912100376530383738893781178682071545220102170686280897086075622459593057161056941731375586054952040\right) a{\left(n + 351 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{295147905179352825856 \left(354891905004533082250421700954525890914038768084473545251132412154685444146253095407976 n^{6} + 43699379105044469740830777945569086594364675890500975053910288257922379701345889783736232 n^{5} + 2194662989616068999607122990678663005539312067699201271505331720330941656835106166047806320 n^{4} + 57126735653191956945737877744861487121169554699814564096373798132028514185542946722140694755 n^{3} + 803141380427253802293740379157708167910339031681025283661277803830574315922748171023001770179 n^{2} + 5655022130810788282724557870041019410860694289812309031011473930189836786788545881264940155938 n + 14835407077491219031201138738401199984922698450847484396806251765728503484703938398367502215720\right) a{\left(n + 23 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(498258931701225672606891041876775352001237930893388835062495802897972653221060561491874 n^{6} + 1047429848767079446763396984845895587541354259154727230280855488137755891996463768431634547 n^{5} + 917451410222090994432616756837410360347166574627652987625445785577617480307340580508449738775 n^{4} + 428587449030386428202429302611335700817120462128931416333729037847327337864027061895647576222815 n^{3} + 112620611229506179404706389305541913564812804260319312884095920242671207794684859293780092485479331 n^{2} + 15783182351842676614660507251015498097176368091125073116470963562253492124152064569457602983243807378 n + 921636292388755205493114528460667044004066084902690359075951195218958736062477832187550087434753928360\right) a{\left(n + 350 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{147573952589676412928 \left(2381701293231331537019739005138671163174060618937720223723536370806711414332817223943012 n^{6} + 316775319852355929053712183359795663966462479709768081890742718336996503308306701876863102 n^{5} + 17348732958472824867808696265964048842147729615400362747966403514736805441458217404364068555 n^{4} + 499451747966319462663195968427849300192458797659253693338931331437241606608403821302131808680 n^{3} + 7941695635781071657525421288962165543015232768353886816619548474948300434478803406067856716263 n^{2} + 65759379519810251045662031204850620941459279602663476174853101456121223516527844076288017105628 n + 219548404603005072965443373775349651078621236483998410615901137970929501643469621939012554633640\right) a{\left(n + 24 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(32873109360875305222581814112937926420424230691871806533802066093615495627358058445177137 n^{6} + 68906895877054152541894493791197939380995524475489595832779097867760375424056037013467949333 n^{5} + 60182861515928991924522553900171842633954820431906792272929365230285212812252081125992932491225 n^{4} + 28033750388300079208915517339495838063090577883414527684504949151859590086933666694091774844036835 n^{3} + 7345334839899722919999317360372769428667712869933776969394229725524833718515899827922779096677288238 n^{2} + 1026455743364355233293796389186968044351976872447663103744443890936816471495826303276170436956328728032 n + 59766404829067298939448982384493086042296208569177004632724462397859629198557344773073863709482900276640\right) a{\left(n + 349 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{36893488147419103232 \left(86023103763211748980431992451629828220182583414166797707085269926030611554496615751262936 n^{6} + 12178245563165094681406467950438121992332419241972615343200049244617104879231457062535291124 n^{5} + 713059394523663461641863682936708238256344496936894897703380765877152215191670952679725325595 n^{4} + 22076370206979787393331245122720367592383285971552143894158737077792986954602239053307127961020 n^{3} + 380570448367183677133632097122715908099449864636924336586635453254071014546202784756917927800849 n^{2} + 3456315223970344963312967374236938555641274660201613068116218735631214472665990851950890357977296 n + 12882246240662436022413625214697343581247447901672018272341700043924398893134599984517539014649440\right) a{\left(n + 25 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(351905824662820014499448521992141976700819381495098454602612515780034517744436279096761963 n^{6} + 735523438352984211232649579388489897697552349578768736745238771335428397110031196753241480199 n^{5} + 640552591637193486673183617327364313156371938385903770430110670621296815213468157034119412743935 n^{4} + 297516639342450915316730850109500659180239601530584522758941052394610214926701445083717505355531625 n^{3} + 77730188935693882686029483418418489734862711625808310297801304448724726683887269807733352409124055062 n^{2} + 10830946019336326514884229183969290197246898257941610451830207095903393533573472339960123397709373402976 n + 628827173856774856804855496156616482160362472233825074016306361339498817870400325622126250169884643482640\right) a{\left(n + 348 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(1223058435371728766082933410683824479919186415285457457560090243033869479307060478572496131 n^{6} + 2548951315841184142046195499677781894506252154839098509669630646493638821965372094177762267923 n^{5} + 2213421149089662722661264932443273201032077757799581695533764050563551492220419939050369539237235 n^{4} + 1025096445208607861738680276913080244253146906535361374834039297360709672460149549414026190907555685 n^{3} + 267046790537175400985057220784703211356985140985771942917316470998964376558830713706606097194369500194 n^{2} + 37102926769738574179102081706603369070479853323359800248677166566279795202642035325590797464244762583312 n + 2147915458456365597066317719629746805907567998588000612540203248845969400373912259312170534542602770007600\right) a{\left(n + 347 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{18446744073709551616 \left(1417038720043286934481652076319357650028876129530407815721222097589996880523640627363012696 n^{6} + 211699082150450146781349987728328009493252122678446857278009793995260159792594093619442468332 n^{5} + 13111763995265450259184968291158048643552336479157088514184751024501611998917520549750671625295 n^{4} + 430677307087468446694089870129371139200336325388466415478601761789006330852291064429923199961210 n^{3} + 7906530088127008981444281117037860421956724587523287003431979136848836832274750000117900172976299 n^{2} + 76846599682025864766640337606360912304995824546283962832104783574666504277243247404310821153676308 n + 308550829606402246226719884160623962983453102253823466542605497280484821290986233791748349419815320\right) a{\left(n + 26 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(12426264491239924008683848047068104000058730404945466722560156660974232466451965682156313667 n^{6} + 25822322694853345256983378863644758460973777619862401585349359024549206696708410732212426412551 n^{5} + 22358268127174980745214800871322155156272097474337037506828105370254311432669339144679433187964925 n^{4} + 10324740320915983526162588043077957400617909486774280989392542418985817534603715749182977714217405125 n^{3} + 2681896675328430041305865357521004567230900195619649073101280830551962077018602016620357522517688420728 n^{2} + 371537865063964779970860403045953298045316349083033228820693145503542175491599892282246854514015083262284 n + 21446295837996598637683938001715476759893742907548317680421959242159261211182946707843866498089672409171360\right) a{\left(n + 346 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{9223372036854775808 \left(64526361722930029391054396310574199838203297414999776127568372219318414322204239082041895622 n^{6} + 10114988331851756369851655370565578850198861743707980340071506601694402987765575922925102524742 n^{5} + 658282469787956640147230182984077235260560888169325304682244506068992632726404952393510048741215 n^{4} + 22758325028689844823673875832776195850366226140724728982940663962690053698037075100717657280530715 n^{3} + 440653191311223434435874437939813561508142785933454257865879072728406995212672743710428835758754608 n^{2} + 4528407926677515397127685712469741289559907196401796837193369861413370369830598419102692988452599818 n + 19284844601114560817162110183089446413922385754487056224375137655329314296756265335194583735904071900\right) a{\left(n + 27 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(369226225185976556682874848029470516214134939989067883821216802440380228998814702702302071381 n^{6} + 765039256356296904860050040382429381827621314268112194671867007001747420885383033809195269888153 n^{5} + 660485073563838754796026979395995497994159031760346844475586376805274695564349852201646362633825925 n^{4} + 304116775284770773272547490240410446794984083139908943762110802584273727873699053817598092313536148375 n^{3} + 78766152949506530255521862180103427280233857477131620981931555194625300924671705184847514028056173809974 n^{2} + 10880202743559915827878223004949210710539617746433068022878658260209277609223993007152131527563223436068112 n + 626213570737495453760140311857693275332999172415526709980607551392057657877083996677051797934930013671688880\right) a{\left(n + 345 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(1783233222142650540693167041961700661381223602279451399091636683283448883001047140773163404916 n^{6} + 3684103903480715984258985855115620650478872013527471014447771330580485728792691433512828728167010 n^{5} + 3171346232236335024239409172816756468443742087353551131761623684350076027723094955000308131212250395 n^{4} + 1455973560838214449482251264254825434857684496872327631672054647361460097964972762086146986995125134780 n^{3} + 375997680051220663393424328583382472682266630398051209735890185956851414265597170155866323032278884494269 n^{2} + 51786301624684716985968021081422361755847482948304342773929771203824482475345326474439352969854449492702230 n + 2971889922797469256291328606238056116822903700867029165636322299405687559684492801026375850336035739608266840\right) a{\left(n + 344 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{2305843009213693952 \left(1816862847229808959441193240399717146324745208751749052175941072168791254413373760949106986240 n^{6} + 297615404120504273550922337690015286213550217856632241044471561824040194705694169003085232893176 n^{5} + 20258045205543920932976346213255599037218418381206540077328694184164567467170525094059175188041205 n^{4} + 733284228997285430141157578049195963545605298270759223115828149553590513719759957663427424655516100 n^{3} + 14883433995188799965302256342196615934323996514951227651112151374172957783203130831923778336344766845 n^{2} + 160563989586695363631770807116290450947809447340365686068231304358556838618809058389219833248152222274 n + 719047801538244300304044711914975055051879076752749294624317250963596237912676640571362600726430313520\right) a{\left(n + 28 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(8402501497905186088048552320810326348211883184154897150377995445221908974951639771073200744332 n^{6} + 17308559170360921370808734896299277932065899316535253261499334699844227267264543395419409106895728 n^{5} + 14855978306044961151975030941786856502842353236059064762167892827452229883151216818510733640244735795 n^{4} + 6800480399124176951326104890518823537916280356337481059859476810507025607376462469170872711767263380480 n^{3} + 1751054778880798231953972532138962528437829499201241664110663728221914984838572765378142198214542954939643 n^{2} + 240468327163118180278320919171383539933672842818073369201389656002709320433002971200358962302100130427598082 n + 13759545202193660775451737824195241671737761713762045779406121724800726233294870504451522129662508099415910400\right) a{\left(n + 343 \right)}}{5585450698599254065152000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{1152921504606846976 \left(23829145713501837299238115851988170314839377037630704490495280134946162757701785947271518708028 n^{6} + 4066100643535744473811037195124093085293483430859729563877219992238519331383018171886425653077204 n^{5} + 288480824576125366274292516809166667192759026419546510408599048917385762156534084117967802387681145 n^{4} + 10891386030087030888488656124482129152170315829456866030617873802195764414236825914935145994500284080 n^{3} + 230749650743150745181496194459760943379154255181375628919071098730449227679048326953658582858814728467 n^{2} + 2600747995376815672763294712162646614614166041255585620359002471837867357707806718460097600642074786076 n + 12180507472616605513960421534548908702008004982090438944926703597176274168276853533947516927811313222080\right) a{\left(n + 29 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(154566970629298283891024270211271853360473458255069148631123369209853482296292572493266431444833 n^{6} + 317463379938745372045894719345631162051002910623269307730950575020738069637287273770092356741351662 n^{5} + 271680551720249682372143772154309735806495930311790912842261033614209376613955433224926119655134347085 n^{4} + 123999923067314182951029389905613312629779955399023613658852972406242713586272617129198016215955563264270 n^{3} + 31835086682547641457709902989982280226984225140405992314225702386822354118109448536268725226101194814611242 n^{2} + 4359017587185127373066625728342619797819868496811566379446331951288969261441192772577604273156410252640608068 n + 248690506144995805951958136384940778300736578111448966629661918838536969638253914102732566348189159922776471800\right) a{\left(n + 342 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{576460752303423488 \left(292004661905059153980080342722095726527582195357671328137718665454017849182933626548525792563184 n^{6} + 51772390386129890925210270339934782926390180361995261874451842101697953183076782329490799165346812 n^{5} + 3818170978865700834924419643121867751735918255767657006265657196416591892560436973075699344879250825 n^{4} + 149913224913908272894841467272678579120273141747897811670438905953316100958481584873579879824369929965 n^{3} + 3304760921364923271953947322676162033159218466107625841259762800093539880889426658028249994132244676831 n^{2} + 38778508004827483683168126767403123103155025499257962423143196846459753980757501145501184544852541630893 n + 189206674699934525970100635824552231034672296866126252096494182506255001550791846204605498837286170628070\right) a{\left(n + 30 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(2776058190012490465182849356862155444692219933532435244335214278805070093541569116485062008623905 n^{6} + 5684943188173618506482338745942550598048429341008905453946379886567180933696851525876975212861521299 n^{5} + 4850780438253488074269866209778736586384845728594735212683640772304596129759242862188421183740507418065 n^{4} + 2207471000751789108247874794139918811529417389941276222399154325289694086431074403486850486539262511629685 n^{3} + 565067205047943268584039050348047271664291341451195824070825832119091028805567735298353849857368687583156950 n^{2} + 77144170284150518674402764863118671835518350284283718116602426889072000294319191006217111680957334239073754096 n + 4388277395331995249406930946683750606190610741333228481251179214930997410923470548477605814244770839499251587600\right) a{\left(n + 341 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{288230376151711744 \left(3349098648925560179011507050582378151914828745728320256685820607396893981612373908687946936619862 n^{6} + 615692144045308332430930152950244270527436130624381614584529145829166181739485418536122465601884840 n^{5} + 47094938100711499312497648040163092756849835874197505922109596698588077317193378103786795565308070835 n^{4} + 1918453928795299399019254042018396812231317874092365666627604048933432639969885152726935588635510118390 n^{3} + 43893250553692858409192001395407530544427258609919169611597240170820610856759383696686834481420875700673 n^{2} + 534767996963986169077183763768345703817790387090769588386346086329296090138491640188949847471633646577120 n + 2710296741835381477857340616632842850732131010351850947782187886023285004930540840964157178851287198061020\right) a{\left(n + 31 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(8116013304672091723619527251502849918506068838235286798177148316722661586423681615995700931518191 n^{6} + 16571312678301733091890715999460430493428319525321399814596740525455073160851804797440381618311304993 n^{5} + 14098046747275102187343254143119398108203933730117539518045678513005903243620203896022832140215388110865 n^{4} + 6396741921952234057576542260717136121462389975751870393769763036428953958532695214028907965738528179006475 n^{3} + 1632602158396661778801777558156113454592813013503214474310817079233667317363244242891472837722923225598442264 n^{2} + 222228505045295265328488730166182765664234454017127337790075686655958078767898889478261963805187785658835161932 n + 12603961308639993553826598572894843215653871863048266401689108533571250856817989853253263516011718343178693679840\right) a{\left(n + 340 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{144115188075855872 \left(35978280463706173686867668316173073802176177175044425258984424173460151897547867364296134268903962 n^{6} + 6845809134785280250807299373268352220322672725151385604617988585017057360274552241100997685155063794 n^{5} + 542091959965882370967411467081299469121407119327475970247013032359870176033758336000886970166050136855 n^{4} + 22865727173651450109156598730798234613588630430163008839943497859230767762424619800814876444189704478185 n^{3} + 541842489241426343189860365949937789061449981984694746632802963443153348668145100565956532033107759597593 n^{2} + 6839111072980587866441779998086092074992294761600217236953460237624111127813938253858060548276173631790361 n + 35920226814634388074171953682710993513512282293839088585027460458047364423622188220707136785024978340262690\right) a{\left(n + 32 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(104319806561952578534035057896707358873381764887504365623489782905534746469754532583626391753124624 n^{6} + 212370153679773226298147899816526420830587884991326599733806317378189462298246866803044623323603690649 n^{5} + 180139107762059154276295935955367345335331403843242456660488869792833809425622509189819884813543051459605 n^{4} + 81493003979267388809325705998383361861604542978935360490696487916792772531473317404097483278586508666764225 n^{3} + 20737397162105212697923840951316147612521230301059471902535665487597554447802523936745400725764284816300610171 n^{2} + 2814400957395744043975616734406142487300974046014270965549505243425904587902821702530858878336341871835630602086 n + 159149594758520577566939549716120085396580099767824125516396444914373172366525280029840626865405136442906176326560\right) a{\left(n + 339 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{72057594037927936 \left(120634227924325001635295519673385720204691660794517518100603089771809438998216192875782672640997066 n^{6} + 23720438686870354491069679828010201588963811867639939587937890729688506920621863839743489037185752878 n^{5} + 1941330391823507958376658239685229555332675373288146147444635198183046510184650024293644597319259124820 n^{4} + 84646052356621784270356945329871582338509891833144362663007964074956684403885296202261282786764815822155 n^{3} + 2073781363425744394837001257971642587738543290250335145569370313743266198052573551902358497493523863000119 n^{2} + 27066851725838079871449479260270645492763571997124285387055043452954391137254150422269451363177569299368572 n + 147032354734719369796148815494241804312410085558875251411498723301823405373181963193096669124593277328080640\right) a{\left(n + 33 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(1747289335468557759145053455713088937635995944070992417896490083357695718062146721026571483511427301 n^{6} + 3546500328257933932979554148596870670566005693800727891163273621621216974664300853110144246321437783363 n^{5} + 2999320960166941593958364258269566131043417575407342514293299876991982417607904150782996613372354818113035 n^{4} + 1352831217428574797657316919483828590297687434894672401776879216931838898221468112697351706747473125062608905 n^{3} + 343230466642123842962276515445933269367745602955477800957920135530746136746952230173671799083938999908560852544 n^{2} + 46443591137573713694083507290818854823978106633795012192297481964043508263669708596417577215363313005137321450932 n + 2618505798094001661866541041720559649732325227749789660502376156636638533656299773528015920524145032313184550528560\right) a{\left(n + 338 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{36028797018963968 \left(3403434131396121061735681828115556799971696925345414646490278256613980562746231798535920135569702857 n^{6} + 690603069404056962760268972911166293434684113247554035021791133751771026849354917550221505823083222944 n^{5} + 58331329610170236222339745075938924363653938830811197167738661776234575157117279913714516456347453395780 n^{4} + 2625111016941140651906883718422609852071827779490940018252264564904133717965071944253411337882179317578105 n^{3} + 66387894073467428827860235089000153292325172527123811431487451045979727654633982044829193217183424891297153 n^{2} + 894540155517317722934133689524988927565087312807493216622681630885750852293048051585919453207463253968829551 n + 5017270661940779910566955781646866494402137428968442949971061470698945497069006456141159974355723158400633130\right) a{\left(n + 34 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(7152709213630087811318295604322969136406694891864406048856302086334853741439253620548226634744126917 n^{6} + 14474718180646486081740639734087213173630912127750138611036865070418566797250792649954196575858702472517 n^{5} + 12204988186029709044524661994224417544304595447336845061930009457919781387291573836952983792448063253295825 n^{4} + 5488608889354708227738199110329455802345857484396477103776151358644024554529188610572768453323860126148703775 n^{3} + 1388381076121089347583318959296241522889262133987898176236010044452620635845433676190269778624456827878882115378 n^{2} + 187306467375534958719848112430304629125306503666568981657241746329049417700008304722335306939528477244168514504428 n + 10528938371858332784493476645633527647528516741499075788161602097666875577329233477475934172265985764788442540097040\right) a{\left(n + 337 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{18014398509481984 \left(9943264345082993173080840193331522086391985940730383125469053081838869544275080679610734291916130197 n^{6} + 2079419781302211538370957732693656721687529725523200828061538228057377704779921693321214856231125890671 n^{5} + 181022924044475297431395817731278204271240759914028439307352901281615684551803925883773296543444846948385 n^{4} + 8396855016378971100012065844568064575446688630949813922052553466274680428989859394452402077041767117100305 n^{3} + 218885868810497745446143178118582615532157965458667995709214329822908004818009532227244121694039404382378198 n^{2} + 3040286615115228730472375051143063433514753756360684880668193674780787829970206656608955427166953847741535294 n + 17579140464250028636478615373370489989258896594513687079145515480370702176878142274237069382200282498693947500\right) a{\left(n + 35 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(38177696191092349632278642879845411595682704540859194651916818340736081979810047708044018730475393095 n^{6} + 77028157622850592857599803447955750499122982598942991693003447166883649329813500155849065843171991112983 n^{5} + 64755541400224886697257014856756293752608104647738753947123140637189667414471375304873840828408669131129705 n^{4} + 29033672781749807974836350594020621906788901719997530497692608024402226068084823607759537094408649649773344205 n^{3} + 7322315414727240132059042360058174941981800385425133992234088451751690046427976995302078530016748052409318211320 n^{2} + 984900843980140518019827254941465212016038371684143316571335979261601047310103863439017083541219177191935376194772 n + 55198114783219904212526293663071418530546505593776963167475369626375901006156315134562737950993887583861008618877120\right) a{\left(n + 336 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{9007199254740992 \left(242314866372737118246208981417005793564764663074359396691233928468360000820411391142147393467911539461 n^{6} + 52164042766602479534597258046210769255029876619243778791123537524464066616774230430460766181143618146404 n^{5} + 4674473128107808401420320618463554168725876977683803546851903354837723402413281976626804981581288880587715 n^{4} + 223192890967863986433746461478220846609605699569815612496532346157680481629508201660289460707181305839711365 n^{3} + 5988845814553675430750328343312576518996192415765314485630908767146522750062656593031935816777307334427467684 n^{2} + 85625118874398408307115144936917862276532880911273768778879903336172594659125148702130056365452198658978687921 n + 509621237640284588182856365882907238997622659970087306284968965594534282612354767805488141342763247058450447290\right) a{\left(n + 36 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(896969748540468464941034336426876491103403567324628154472162256813639707082423724921787010215098986243 n^{6} + 1804320525226078608802181980305021371494470097598551148756551640876340942556931602130680591693432832781831 n^{5} + 1512297212174185908225072986893461390530611533595237793699516282204007592517122861659869633076638804999037445 n^{4} + 676017840690783380206350272854337987970050299439257020686665039860925750157416421717144863864754462471445224685 n^{3} + 169981051602933192841979638402955263932269600832864035619882572040507464990536883075388672585587786213168750015752 n^{2} + 22795043271134378747266115617360321620393070656278555269594502431598538280034165579753990998599253878492514569716364 n + 1273702265115756378992457290093125405677637496952225980026260127916356296785974813836614588054366701272874297251858240\right) a{\left(n + 335 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{9007199254740992 \left(903506260293511061863057652606408446931311919305927713906074567122884423692965989368882930584552634252 n^{6} + 199980137909206048767181313125953359156261246599936468802472812236873011726391500200994149206569591039054 n^{5} + 18423514313571462371877042094321869973985998352330391301420063661211492336199258534788995403714704808016280 n^{4} + 904286440312672323488140030923739710047677990963462432238577435560392767320800958400235382075850117556868865 n^{3} + 24941240386181663770593390164700088224706164679119354211644889026350335152039601542544548692392188373189618583 n^{2} + 366513735279454505842741883019237430888591397229107786767162542569839861074277405532101238768784203565364852461 n + 2241903380503049109975840752667312615934463344825548114786737041712461833138242454212174959354671334920651167010\right) a{\left(n + 37 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{4503599627370496 \left(2026859837863766419672149976350205696163137980758099494814468533283582739074276902956022793019476860912 n^{6} + 460686012491375727375752898946415015728740626046293859204543804080308950208324644500389032684507853520495 n^{5} + 43573463753310856802080334441830488632703511383603939130726912271792724601285507641476332239490347582746060 n^{4} + 2195300557743563380924343165110480658814315730863516420128000656407966178136379896010149614952778732828386710 n^{3} + 62137206371030507797964414931729551416062189867547387064286226220523472257429352619769914118239804883221426943 n^{2} + 936864467797776930051812603904843920183074907160601845620386434017116703941195422300009107874577763441678311440 n + 5878445623838732378759220610568594468212505825675876109757382496172444235712958871841431939410336542245594963730\right) a{\left(n + 38 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(6873179745523517974223755766475543068987063020988174009692578786583237637977864373371687121944934929543 n^{6} + 13784325834982321698711169440790764395644871241121380919889730496663698248433683150283205600138904106898203 n^{5} + 11518630793714190015113377816376052097128793267552951421540548471038015844425432967973835413226373269326194435 n^{4} + 5133501100263081319849020835654732284096711364606553772206646490788798944662864226765938350740183093783831405925 n^{3} + 1286908705447936000311282147150253761379212006226848253081873800361848970107115103709120314526390439098644828613022 n^{2} + 172059755898942514037781052390537883116255491551239608089781728794319906514547232699633539916616183165741994679468712 n + 9585138361123803999449417646672671110854105162383068656702985225700546940993142300178962920535570203892152332526383520\right) a{\left(n + 334 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(25772255307633087689513581836961316580557628673115127487761110231029484090393094323137834985502003376924 n^{6} + 51530932933542096871910387435331441504721103934897003702293919251414322441258083791199459972033621345649537 n^{5} + 42931000627122654281652341539547842446907213226770338941685539853355190497596554666678480735295353284722617110 n^{4} + 19075301776731199093901142041309420623562406580627761060748495728885005656878844879322310953417626075524917325975 n^{3} + 4767525536620515847356761100582866369970690103111479918591085526994298049153333037726912093441793777422538698815446 n^{2} + 635494870108625708937827351417372445777421172259833001638408131547277427895172702174204733054985579674659744974802408 n + 35295433183492410332879515651121920491186376164834143544511020983094249825162913659197435744550325706088119027298484320\right) a{\left(n + 333 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{1125899906842624 \left(71401239190399903436982091408139744005260462364830435911756550247227061053849262837978657383679647421394 n^{6} + 16640491897366786933821047126974633378853671495663329075220867220066713141889902154598842090983029151486002 n^{5} + 1613076903832186992025207959106141121943745841337805226465640420543966796334048380172223321310284935983997915 n^{4} + 83251064806159676030981170044332338078173384966290911425600745332002841647813071644223087538676136170619098210 n^{3} + 2412668526417258376778002932270501496267590445625014545430872054759939124637688589803701219839742010196756733831 n^{2} + 37226700405098847503753225933891005680991161617532599199035479915923487982551414473952835079462180841085231147298 n + 238916541626155068753395888254838061650186759673002606531125110520055097768220322140371029739632532689786033024040\right) a{\left(n + 39 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(126135591794766379003011127168403763787996471870820656057040795142442776889682669120856705304897666788269 n^{6} + 251441395436155945068049813781133702289501850308401496302839128392219437283779064914999453603013518288243323 n^{5} + 208844603044001584476579687486659340421095494148377262217977087820194597478375579681320669827229865843352132005 n^{4} + 92513914829016892515920413972897395125333415875664951594831494392470300941853980212171721826472681621167817517605 n^{3} + 23052179291807049644763734933756668941206009232766907524769171290178098247547044247468417218602360025913529150643526 n^{2} + 3063474374211397152865561298250253468189451649420912777433631069945486383062055520390897236627231257448897615302075352 n + 169630477089357175131890955110484598400431154336450612011282053242989268227781106790360903755720257545965431479383669840\right) a{\left(n + 332 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{1125899906842624 \left(168339883920443712436775560673314035872059899194142835323858568971303291072869587892029351589871805579964 n^{6} + 40130994181766048162820866452560936949052853929278336308869568243935577309370438474525933737663378267158967 n^{5} + 3974328445167851760395055385036882567715090684464599123355319064630367407807457097680291888771138291416161495 n^{4} + 209285370819510493998484162803999443606281842229257803935562567075926653978616808089861080088818266981926564365 n^{3} + 6180269929847743262096885723575592668069240161029870713580018378630080250455777840656468975005291582004465377696 n^{2} + 97031160996002307048980566179635411944862555490924969664943069697537408925392459802003937804939738715387246474723 n + 632691098963649656298404192882762556929806436691200174605159511958332345559373570739662627882807177534793359278960\right) a{\left(n + 40 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(906709617533251881621615289724722391985821659718001046389889268709912329925581121670234661392913282434493 n^{6} + 1801966363168428423809337779567633532422863745915263687186917085021057906652502027276141529904630257896884489 n^{5} + 1492149738455564889768204546317511292925696772851789663730969861680056138253811027060643444924303526368775882515 n^{4} + 658984771042615831257931984569558496702473423186153157450827003172968221539172870147708085792758491574794886540955 n^{3} + 163704039729719214643127775561852652781956897506008839472663106235769094063971470627093202881288040124108711643513872 n^{2} + 21689056888220727824847763723291770515193100836616223578465492460566172182201025514075689702102947285390242696329601916 n + 1197317215024595843748622277073285612222714755163621504179181044290874738755803593519570123162971518547315047238256799840\right) a{\left(n + 331 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{281474976710656 \left(912632910406501828145207895059977975194642818623170114660454187966163692949669701842235053230071112477052 n^{6} + 220532894452996615228101246883195927062942598370908385917638798461314394552738930332890160037402686170499866 n^{5} + 22004681018234057975837627381500658083531714128320166615427587357344236893135478479554238433621952339680408255 n^{4} + 1159753530993538037712685081813762784108823630144490417502569161097557812722702798439109340198258185004891791885 n^{3} + 34020604459333550231427287933751390700034288172692800494219605249157821412503125021704423901816374072419456783968 n^{2} + 525929259704995778639858270539794250381616083277922155110860707121001146439604816233789072247505746216263968648894 n + 3340868972663721289073215013119050575255042522277776082881876570952292190848831543907996700163200349711079607544860\right) a{\left(n + 41 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{140737488355328 \left(3820522882081743749696012366636202175720441590908784323319611477737627594509510135180944058408175632515789 n^{6} + 983880397686669425985030124997123295837100633748101601547265724338910188061490702713943903402927846829798434 n^{5} + 107063127255945729763246109340494257444333604865219659069309478469237246729499565207175725401298533146767242315 n^{4} + 6291588308275014616999607992702844021802620630461999428233624788185800528595859883080951086820802685378269664300 n^{3} + 210197518891834185230503343766736449108406052971567491308344973749741907673792634483131387241759072599654767686766 n^{2} + 3778051931653664131625613991784289469127965141212091507507944877262127120590002005967449869332479475166934223552416 n + 28486618986761060552813095065507704648656584968628463791139818072082368614988049245654785595529464500457282119373300\right) a{\left(n + 42 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(8804583076278957533398213363797220808903601256411062656524602361196527453515779601215844132352760577049699 n^{6} + 17391345175905766635795256764776214613148041595399706317037151423390762062116156229738745088058512404825746165 n^{5} + 14313460853266270529056698619108245854446980474428477183813480819819792110501441843016735083882585162078086207803 n^{4} + 6282799610457883465138420400762696903807956615045968391941981397784767974389832067065264382381053169979956687969619 n^{3} + 1551253013580353261488990898755909680942959293944854917607179034221673259469660707569464368305046341164795880164996578 n^{2} + 204272145178837395708819109595103428154224285880552278819145883454109663371998730664998851073411585160714299718865496968 n + 11207862047835814837371088269692492483846919675653848036885171389158138336669075239352528662667244917831483947549139437152\right) a{\left(n + 329 \right)}}{1489453519626467750707200000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(9575071109845805724541754537412785450969746693747982587563209138132708297607302724501395983620565556908582 n^{6} + 18971232877399694935870611387762559402470470266235842408128441037356058546946983998233741413032456530958139395 n^{5} + 15661605818658073880935317624241385334600092218909529205973468093023545344013803887582470387719577618006613879490 n^{4} + 6895633704750076367973821487254995992232354484291436845949560065199053212689959817925337745850175605647491175632545 n^{3} + 1707784399260173731532085247967756906619512123007588754360451992811011230006283313613353812150944226961890746844828408 n^{2} + 225574014662572720572748783561813614271656422513009188884938027118628157344052381417025083126262350724190121978902675260 n + 12414587662024237496867534359302502301652274336853771963218796004509937910368845738439357180424571891947264997264696082360\right) a{\left(n + 330 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{70368744177664 \left(81243426122648730209696815452673505342295896456977727323725766529887444872863964073259989538788246861978921 n^{6} + 20945228932836501277009958308517232255508420208791659213508054834430012020290767756430747894227259809575108965 n^{5} + 2261759761955711106593778141419204359232854641409856958804304906434521390913336999972406556306053965618297944515 n^{4} + 130937236832390910284792065264046836135535643014088885332138180690017288680327517427410678751106760931752542793875 n^{3} + 4285542744472535798559677823346301123634569595037491536493717584555245409982578278173221366228063264419578451766284 n^{2} + 75173755297895975073696175463888591131954365414934681698468328058301133334205694033112175607681889443968396671557500 n + 551979612551406784821457437291459216698836884513455965621821994508841853436829754387888499095516941793823356476840600\right) a{\left(n + 43 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{35184372088832 \left(709898000500951600685708833810085276648346517993668622574321776478420729753571797160437877868427880733076887 n^{6} + 184850113570120016199365344271604033862841190593267280156369501403779311749277663219020721070630833335945092990 n^{5} + 20137370588195749527139758269459168093162459062396409378620152167815707664573016484419194866772349068788069001060 n^{4} + 1175004056563724788423325427547264851098816477086922637660433053071345318109301916898261507967085161678412670009480 n^{3} + 38736101596997164192341579879267008566131248701528653571795557350439151979079647152443860933806101285171319791637933 n^{2} + 684142991607615408316888544963015281086175358653733902848245328193560079019230615188138187035302829923146880110776810 n + 5057486510144969324755858824366589273606680745619609399354283534335583922896979372271466248817888648004886683570839420\right) a{\left(n + 44 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(892407243769647153322252810322839253430087253683397523888820879738703355865485048073618351356092178402658877 n^{6} + 1757332821318509011459924558275258610034404540344395837783811247538982995761373554054614022816792690408877469063 n^{5} + 1441889450963835515365587766486725939776557461960650483949999501294231246854760417378387511882884430642136391708925 n^{4} + 630967357957658073275932608521669119994865694569259481890696080744579607534340142659612538202275371216398167456614265 n^{3} + 155311139489014964457602666209197772115511790530500265775950806374303112508266047201851915279587852822610784018737427438 n^{2} + 20388971096212813409100550153416404200490030382966453264996813194727198500253764274646988067985474386226508384778185743512 n + 1115257207333791655613273364002583446290304920174207200687587594625699959509583856105926353215644982098912566484801337734160\right) a{\left(n + 328 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{8796093022208 \left(1219109560911404468333533072876568156882589126916352065763118457858021431614118278650707000741843968242905412 n^{6} + 979223245657870660422444545636216069921723639685643063173680593020689943026073257313313422323119196072213414754 n^{5} + 183137456054340083573119068927087771705053072713905343671717324968870199625166466423350868511988481749441669133535 n^{4} + 15338798636083110305986109872791369844721188255052655160796566024154091432757837932434536082952378214554056089518285 n^{3} + 662900500090585899963814160097717261467623219731802889712513490369357386347477554296080557202419613045887905092940523 n^{2} + 14504023023787342978042220303637317419805953663175521868407768007393799625754732205712268409524498518378497433440814461 n + 127648522973466184772800325157476844893034379474428194364273086564878197729312340232146884297752717350086627932491262370\right) a{\left(n + 46 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(1969814692085383244794693919827479304397197774370697689016170121797999169064674855213229884943736897976510843 n^{6} + 3867039074189094161256754589067107418764407673193880418075743063646903019322407828938974817462186586201772026845 n^{5} + 3163141832930094933290312634214955845079056677477462682954840344844761023853440962130893918468018569557155774142135 n^{4} + 1379925566657722833749441083889998353151314795766534803446600425989769509939232727981157525622015578623923075308497555 n^{3} + 338620579182261508601725980906282717932840855631358342732743423828536534595604700806142354440033731417988321352485235422 n^{2} + 44316752804535727171344358413671731260860563150271368652992646805530550625905029143894765627572800315659429413824952307040 n + 2416625996805069193936328509592628140252949210211224693796659331868459645552046498078289498309030140776134477435753482824400\right) a{\left(n + 327 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{17592186044416 \left(3654362895773271783913977079582721960249105360107070524138413956447295563118947702657756575725690694557747695 n^{6} + 939103763133024483870557935453627700110464198509837809857334746201643883784785334767790783537103559898060662643 n^{5} + 100871124254445751007086042532867106896597134712665079273047661778208036231531498167682345297245704387532511183190 n^{4} + 5801135108521240364325403845207651683741166258692252907264064236504629933626183975320322820321795930591541250726905 n^{3} + 188549911262621017903039413824071863070143539011386235528258241385392269027291491231135944832547613625414196948769795 n^{2} + 3286556460480518977626623291312559382205445041295756810289141761094481507050236137073441542854121751952221614203973592 n + 24021337966042446322244479498387274933319626276819314256249967873345261902136679324463349466921732961415852122103456120\right) a{\left(n + 45 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(6392654210635800325107660837660828054090442994070719615890283056031653983311274883337542035291845279637505813 n^{6} + 12511008870165920531952322461670918787105747561866094175396066897915575958294389806592807976149730948839568917346 n^{5} + 10202116327100381273251335245137878369182720408921269979036874919369968805770742494239850783928501350306814445108755 n^{4} + 4436954783727925685156952473203442297590494828729140498313524410851391647212312627418244922753000163881078138940476270 n^{3} + 1085426270516288588624436682383489018516963547210068753736386217581267492617131546570123087138369543025688339272519633632 n^{2} + 141616041856309545529397450803162379870787364126039635755915896062031838842236715168646403175716257751498785470648694690824 n + 7698593794800410376463486459794020338940886468978199335170897838428149019729336612876878078998765269204141817415510286844720\right) a{\left(n + 326 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(122030628106655637928702510397243232302619645170758196552952258038716892630255433683499278090731219982839450357 n^{6} + 238085828036253914525225581754857759178470233532308895315071644733118268719301571408147193630933532245850537577843 n^{5} + 193546340069221903025061140084598945918441908946288214183927017613877309307451625910135057381337053300463103329474180 n^{4} + 83913739102256840538509462565315669147445418997645681394102508077968356127184005758881673848651026821505905496426228915 n^{3} + 20464525317787046030311409862231400027719956473986974271895484871155516368116494969221336842091702312140118034655629022043 n^{2} + 2661748225666908885050920971019066089203499715199022113884652017046476378541209434009603789036397423578363198732790524261942 n + 144251055225828320203781031812556064462671674221618811568352234480575049162093739826673917447191998139477900309918584843785120\right) a{\left(n + 325 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{8796093022208 \left(152492444357285994446996425524307396512040890054145359488063756813865201307293997523546970649131600066786237638 n^{6} + 46697036388923546918207147636689376551366157727973206738580361826572118765852373586711145598506699305835319961841 n^{5} + 5913094230131835602599311792933773073095853257467640102872730794378015564238134235640980007461596360318029704103710 n^{4} + 396717300318523296990262343811649644155801164239259857175010685026495173654001409690203190147225124084232491103117580 n^{3} + 14885541103256222293422322027407277225616783290695388094209538376414865397307855188866879429951855035683100703650061667 n^{2} + 296363128727382624883446870347018428660359015844374145400915152476534523650400690748338185343664625428779878081539616444 n + 2447256671153221171113994761511299312184980631561741021607212110161027873177166140631372674269709683731048973969557069120\right) a{\left(n + 47 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(761361073560436124517670014751392863271161535467140806411781106146075805039535551655848909450125919192266919552 n^{6} + 1480827822127786461138539348532989381645665215875336957106978104032554494336123246563309076592177310391359545486396 n^{5} + 1200065851836447497381372370592573878863313098044703043958686004269141670165916892953758165077295460396679000680266805 n^{4} + 518683194912501728586186848503803926076074107679849527285451456754052317877946861108673537984748029420782896923863256030 n^{3} + 126101328986939834441621930339324533740913421189299938784574884654115989457617579347852631466545609864857021155193107283863 n^{2} + 16350601711978866109675908377693505460386263558321391998296792286810015641102027578790499515546000798216831486117834928700474 n + 883353302195539694772329114205533021754316402859681319757856321654682456301982654417842133294521479874584308890662807868281840\right) a{\left(n + 324 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(4658431267986058910873991858325746241801985903635584514135071456516339861818144930128792433632877617523628365579 n^{6} + 9032300379019622376319125838023462934475765109185349456843634960661277709890734977835331087016779985444857727632318 n^{5} + 7296986784965192588174656352602175065678553932916363114260068263618216768733723862830632525897083510409302490481660140 n^{4} + 3144019460440949662447016709708074099848437369409485583051730075288910194816071208441544917426519502208806832913859627840 n^{3} + 761986310518600709231075938993841950112187207952384928218273512876692267234254763614588841287672174181920041014449398654761 n^{2} + 98493051381447481085817584496707235548007041766625228688378345621682630201287895076593538348130958190662310829437966479660882 n + 5304574174845553353396874318182250693716179063808612027486877054727789740162137943562049133185832773966155287927486429432230000\right) a{\left(n + 323 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{2199023255552 \left(4709386798962212990220975492314400354581974705128667437165877831326067912936605317095522313293781772710555239456 n^{6} + 1432393380025603976636620248006871316273897775704312175613974759643183772125353045773591576284769149494768895126866 n^{5} + 180988491632310858416020704214461169765543319423216788851292351080583911556219001431180521573807730429158426776283055 n^{4} + 12163017959140354146783362442347629016725754453900492981205622245263367775127023019210758811235376302236820855260935635 n^{3} + 458611556299578688739105391774324855819197199554061377983946798271880888807001293023947446508000623905928102198667412319 n^{2} + 9200569659906635509690739153213817181137757180816919566503066408983530829223292414614572454784697793889303970752514275419 n + 76737530581490408629522850396995534491423814332696749324904759137142216232303924333965287792048893907903264418224158407330\right) a{\left(n + 48 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{1099511627776 \left(51855259395168517807332538842292927738029657607408066891873029998176675379153449018949490153920662805335896206624 n^{6} + 15964537583847429018976930151366108130292213076118262092398801828542657045828796631178260417731957677538688667358610 n^{5} + 2044244827483300697873976060094509530944740845997505996042058916866580319368954540481680301883966252815781845765320920 n^{4} + 139371511167636923246281687038187316800000907404924929244342326813204648650666930272997573201531831915392931590700934405 n^{3} + 5336312818092972555183357253169010715569827049342249986830802312036127852698712712739879452315067952279883333786280781041 n^{2} + 108804156973819715751137380829896595004784180690330427068865761103039218244986005523362801690813781358714014035079491954030 n + 923014095557906539424747268043583204577654193016320221756262210353006109237826899763279241555799392446347955141928942538920\right) a{\left(n + 49 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(54861869257161334587590736192650870567871209633141900616131877599167381906314823686646225157762618543906145574488 n^{6} + 105707412996618647233458655885282438341618132867229138381309616066661608328738187254979914921634294919610671339456783 n^{5} + 84864599785360186570875720665110786106611625229116388059745176734438850902017205829458381392291682070387352387368848835 n^{4} + 36336570812326698261593182146036763378230103863828494370143584560919524214148198331899659489166258254520530018514438490395 n^{3} + 8751477047954135484565087688797890157306454234590668628385987624852061717360120799517773428757849124019502534253290983486997 n^{2} + 1124126082522731608481796882004686860722436353632892567129099923437003463703664101661184385494811811453443842892858576368660182 n + 60163759794616086127302689056021671502669258289150994658635434125686210358263791151899499318814134164965859404865867511520044720\right) a{\left(n + 321 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(55913248768054826250811157055293901897343327850736375481984892562400339217345771247924599464818619710525913160777 n^{6} + 108072136412879507342684792810875117462459625489617196111446378880153682280549877308183239112095974579505442556550891 n^{5} + 87036043842664015203922128276168207759500368623123454399755292800509377537838778566579221512612891246517310430927687065 n^{4} + 37383582099409482841877837026657855578149972563802656020365209114977876962262909407952008648500061145864058556413962511965 n^{3} + 9031977532763648564038350455472104977188378342777566982459696735468721254516471756823768528928428268895028877688890796667118 n^{2} + 1163807495224896986079370545486002349795069621672490435499228161321203212809121285487247867877204804520528652454201185284833544 n + 62483571784859086812918694195221770040795810492715306128462352650571933031254089220612796578949242705335800070550667123800232640\right) a{\left(n + 322 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(158443100456159081589986467014956943509293116957648593460871171753172611343782798377435019126746931446447661984867 n^{6} + 304326286145701768721135279594393452006390826644493445508323043650766934198859328614259073444207048440638537875239016 n^{5} + 243552033065288076550564286106981919221962018536026832671453418861536607876455191378447091333924437838140905918086712215 n^{4} + 103953754638057517979683669244932860475213309680768952107715766701553521557067927436429987606142955400039213039318625004660 n^{3} + 24957927907725689985194501328204077746175699998144060369669081512024223954991948084997736248262603751030495129137270624532858 n^{2} + 3195751467068041040708411424392257609338671311737092653042504335178806336473439909996782370830897537022117982981345603170743724 n + 170499701200694390701521412745488786435400268451208622153943238805267578471068997341553444908528236743162956781405104196431796880\right) a{\left(n + 320 \right)}}{1861816899533084688384000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{549755813888 \left(481141212372834136188724881791289742918477974583267338136353377531637533516688720052657904244845095262732553941561 n^{6} + 150660510850797750226338683251951547831715229666894712882047958420833100398578864398250088598280295290801716475451782 n^{5} + 19631345391524275240905874437697416114503968652709689243519612380895987734409582544111464654248350906598666326815096090 n^{4} + 1362565210728754501603504170068395218853429237002892148656660736476316920182603774040516088662030453595040113331389753055 n^{3} + 53133265255480423207287036105065182956741837560701384726209736242184581694460061030492212676614521321063671663455329161779 n^{2} + 1103758990548805945237489584877239539854763525429520165861797021028410436504363925277552461024695692943191895458384966976723 n + 9543107216199874043665451124114008735969800046109609943205541486025409513594065972771525236303695151650914899644190291814290\right) a{\left(n + 50 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{274877906944 \left(1323981364866531818589060505478507540841042681144509139377055463988150283072994286175612392973592478689183847042615 n^{6} + 422475182017938627368558876077328599280591975593109608183549290382129937751476196615628573875625107000385104405863911 n^{5} + 56109880471105595224680937655861772927929784955234986315650279788017567275437257246135368282349603326905701360457914530 n^{4} + 3970289521381645268081782393206693181119288920523034281260530144937609394437191880668174358176273276783204506508516546025 n^{3} + 157866095660626933853038054729151959247942108503236169641282221786099415285272115891263320377118304291123974790939739885875 n^{2} + 3344494152885700927349759939337520708262761702993246535470752575150572068490442768265432341209418445763328931852750407900274 n + 29495191367326163046403586585375514311341271470867776561659881085131152927205414469296645727224838720059249015364880019368600\right) a{\left(n + 51 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(3592136330026220515334033034190224456868382161424587028689591904939004920011711096891162704364772155787961149627425 n^{6} + 6877738179741422525907129251827038352744682333247525793857654342392829213869085409323793454348610259958254552987723297 n^{5} + 5486867868738147125821152905020877141335567502230091651502574167086275168880173693086957297978803512538719449428829360955 n^{4} + 2334529502550833002612420740938016079412200389442799396311877223512752976225036521492478543543438809311755143165433207886955 n^{3} + 558719758919106548784098706813819317825498508994724211779243841713436857543200508192495324487823419816561716750312054967116500 n^{2} + 71315624870201357336812174005340449944503249489265212205934203934772339758063699215464621908505878428159546271723908456088925588 n + 3792812552968620711990103204280180437087192823689965007878974781020999508699517308986580226176811930817856204319512756275156114400\right) a{\left(n + 319 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{137438953472 \left(9959976391771979764570147749021697160739931524701481635969175029402585109588822874994625502889823012266996461086133 n^{6} + 3241840799407535447370599139857770546389210372845829865492466928911016694866739959095691797850136768437866118766038234 n^{5} + 439217767474682692731602549227879768365325155544748643110314787509858879052347140033652639509282770106648700602199414625 n^{4} + 31706389177695382447929551333137834962090725086231717633121919083119702639880036854334503313020205954377726278921359122325 n^{3} + 1286262640110701524672907364090260147182540779061814940407016550277554886368778610985684826224462638324625030628096642328942 n^{2} + 27804677683557481118551225949816062988681470365402068585298050591902178576951600294083389649438014649380647234256289114019131 n + 250215511494276087869000740630195946810566577990409995923178500324138764806451379398866910024447168609133595683931355610411050\right) a{\left(n + 52 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(54545131582214373818400011927483024759894648646219224957439171712427808346571775437033749316376064783825778372139117 n^{6} + 103773911418852853981082966613547292248416218052969597126514996174202162739827961569291846945170343841083878971206978118 n^{5} + 82263304181021105822384964538788036384508714491391663501316274047879533660784005144098286618404816376988067876144228333275 n^{4} + 34779220875611877475025111595960359840682749910719208745249041869050643761578668463212879676088448119439317271033259076008170 n^{3} + 8270905894579618456903783995175933197341919344747904769854622354428096027718077625491526831542457862876886132696129155117908828 n^{2} + 1049015823301767483773132158473500340703655665369971705539617349491049023034857166561240749844270663323668370241678084009670817252 n + 55436621386867734336434141322913472844180776699940627914210221305517930921547334860967343886593185293604055608168248355445188428160\right) a{\left(n + 317 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(58467135302154778564897385698372314994023509440203276030840297289333810152521525937699529973540616932405653950938902 n^{6} + 110880849634269447540070623930401095580588393107889074852401624880798746957188900898316644474979158554136126071699390289 n^{5} + 87616702760483619490568386956656641763174383471841665236663872789860876336220981863557855221008894934822069167446073396777 n^{4} + 36924350233774899807453397237310939273828842451932119568042950293005718927380827595492071602604150502704522821586198637328005 n^{3} + 8753025781157837924359953287538980669128823300832412869692720488048759431014493537509278564150871777212874791462196469070330165 n^{2} + 1106621592285016319920604784301443389369942420145204699293642695933905129082190239357753484646663386815440423485265813849838460534 n + 58294245275445966602036865238147250609044030913067490566373440996314284600753783340497448405983375962562925017007767286850418256256\right) a{\left(n + 316 \right)}}{744726759813233875353600000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(59943113057717527678956854649515879263638123023951391153369021316967157947325517709121702075080630141469785833662419 n^{6} + 114407412298306512272761676593364105666459466899888615040183129989232888519440805030334834490745359404363235508015165189 n^{5} + 90981886292119197829537011067115757863656208904701590183570077243756357837440585820513336810545349168741534376685845837445 n^{4} + 38587938906818435507276147712776483179485676580744657688069501051660597467705603019518387576686672892879409135437415083834175 n^{3} + 9205934817845565150561875952386644535436372453504970565022361355599316038188628704326960590107192507573442345463900561044831736 n^{2} + 1171332180002464541449230475739735691769259666160086479985705344821647683181766604854350751114391278178598823091959193730776819596 n + 62098076420692970304404919039555083804413245697717606007366863766773465759888770894717755115060394479715471092624117238643023763280\right) a{\left(n + 318 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{68719476736 \left(207165811290396254669409999459962987403297812798489174367957378377553815389088175407798795067681036617243740721768555 n^{6} + 68824941208901386497196262517857659087435858575644920157880504285483035111809525668890638002750962732787222581722419447 n^{5} + 9517543188619566650382346110444607065088342066882426897464888674556141745527747265705967909066511630637359538501617612695 n^{4} + 701261331542679746707513296543929641463064247154501090798072230937795791375108291313502135569131026450641661140645562917325 n^{3} + 29036825174194860649790531295394911403510839499449913627219625227831398309743394861739582145826823402525636424591578989074000 n^{2} + 640652754101027810780156486592436956404113188655414238774710405113995348715398468339563053206415598117838919688345947061987728 n + 5884425977470138336343162672431715902853404380644656506491824416787824901158247574312696535628957716287180040388504227010208940\right) a{\left(n + 53 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{68719476736 \left(664657997700100929524620547196222237881667442059848493816465010499370181185125756566394938230923305887030900912275510 n^{6} + 225520125574639785913333934113308313276628419820347030685281623723451339476299979511324505432206334557880349402955966659 n^{5} + 31848172562629705525726003819513895946242840504653461234638289282336124857170035496773059969015626152240289634499523568425 n^{4} + 2396207615566968887293256323088257148073273946832880003307709426291979537702716480912701714862007900722587695121434450693375 n^{3} + 101308679954875695843477821828908274999545485709180367580192164478259431534916222041910142760289832129155217710960574587295210 n^{2} + 2282150812730702556647256258651606334315942773942097590032560535742095440504472514500173811010862690123206272051014917609441051 n + 21400492102226999803901738138324243397355160711226125206024723859088277066152349723135246796349612496241225270813154364242112920\right) a{\left(n + 54 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{17179869184 \left(7882169865411855495899560187336636457673591963558145344432075071299976292771932816938583427909578930399463282996544086 n^{6} + 2733664106058714274510961804966945776217552389014261847759326875907294125317165148294214482496320365529040414304083554028 n^{5} + 394525299070920865022332300547180802452193460797105313315272774488998655848997470137720888371740391597682778111811677381075 n^{4} + 30329916601725189163240074102227647642121294307341634646663356030205145258319979279399750093374094215717012421330044451562760 n^{3} + 1310034363729655687253923907981071914070793758290192773589023021240599832424374633577358593195360380094410581843768900691311159 n^{2} + 30144536419131864309525218601239768843822837060087300648600183427342442273722340080792015936145921680084199306011222170955205182 n + 288709282407536397117601526914994692415831828057512798448604922013970228125609973342597345110687580327151362059219176745266568640\right) a{\left(n + 55 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(9229331795175882978369196735993089492985308127337597492831949028364890651428266577194091914581973649295596976893542845 n^{6} + 17447076468423500655940247734647299982372005794134372753274437806155261035285480136599076058661930161078106068958911643003 n^{5} + 13742335760266018330729918524883111503159517100349212676126055507280505420012471407067050027683586465423273332582857496957735 n^{4} + 5772898149142115589741012108212896115482782966793429274776396364104916141761874922574359872853666833260328504615673912416540865 n^{3} + 1364100844901853799772539996403650915842539248438822544023590288048346650387049307816709130966253528925133380567066976370571286540 n^{2} + 171907370900181562556384974989437051905151981307952655324453817743182356532228986057773629633982070500060194038800107000841234710212 n + 9026678639510959139534920112126705315602888550625378304575051653872763282829823156693145625982200032121106786527782497165800384604560\right) a{\left(n + 315 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(15894597517164539331331567879730417699907137838189694568571759519966795218720277739463109207190916081599271305736850201 n^{6} + 29950541117639570588160247762632724924168154878087613872176752049273448765494680205229966203301015193326638094971076394697 n^{5} + 23515008782872304293457018383499542723094974028001774817098346809932733667880092645069317017090617762956954059968326939678665 n^{4} + 9846477987376617686326340527695742154972673106217886564256204930777174397799519253875331393809914681371215317316860212600742055 n^{3} + 2319187023773869947045133268862187294557308781161439158673641890926804585079903160966301814032076757847312858817180860958254582094 n^{2} + 291330472896916665422100819670073474890743525993888706908944102512210795227543838096522683116172344659884173372256719662575204518448 n + 15248297688019715215511581323193305758437465004775682205781069804547874861776747548636941167190588260940665672962123251418120091316400\right) a{\left(n + 314 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{17179869184 \left(21418227899439044780446950380779797168812290440107143744849166670892249539726124724867503668358523965755558394805991388 n^{6} + 7603105106555624940121054101117881396610632728339517366058900498052236382748438799281308711142236504281702732433335571251 n^{5} + 1122741246796541808819909039040348873240958428781559698062916107898554513262958021771310472311842003592296289190256355273300 n^{4} + 88287875355949799836056818896994697545440674254917495368511960994897729035971537215561671098396399835531643009712656115911490 n^{3} + 3899571889833015564949155659878259465839089502628062834405643640581294806257463906812188229383219453060677652370503671334424157 n^{2} + 91735689064843650024281658072657339749879088080864534919587010709302515268229706954450585159318915871017384963607716957175039054 n + 898022811435203409822309017660736971532905556528968896058750019574985622205851488614692380895033673525526880073055341150908639570\right) a{\left(n + 56 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(120963761854576709971740081122260979701726797728495669999366245541090945758301852131359834817243288124889743587021710797 n^{6} + 227199894055086482359656771396171886465468791843601245420451334212747481090555041749475247351368946032865145693033222658854 n^{5} + 177805888985927879848883775314827593039759083649494675010846858428939890732820598735599916213607199390434900948388909380863065 n^{4} + 74212881624189068223405011695156068733210209677007092148576047315824800793328404837615427906665902963839907154399904504936666970 n^{3} + 17423338675083403879306377724013527036602541782102688754418130368860378304487083819904031483236298974905551223139644103316417085338 n^{2} + 2181617375726590455430483693535551418696698696606988315925116482251341718802006453083291894089169270875900078924764284467494047624096 n + 113817995739322911721392714935197193442211759579693952504693219746186660414124497133689870724953313759530038455703713171348368287332880\right) a{\left(n + 313 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{4294967296 \left(209274518291473900294806855528866870513458159946304641830005659870078148367376104612475850834248456012913473072099829176 n^{6} + 76247015571826165856927291672436433903395811672879591940203210483265962437512691689713370248764902202886559647023327737622 n^{5} + 11548465676738682871497911974559749592780311687049826537510827106896100638250653370541307368457662191273583602532776943302095 n^{4} + 930905381222619560813216596383069836773860965812688003505108937859251061103570535655611255353264768224368848170457528417416355 n^{3} + 42126651837027084396814813786651445373159711684387966595321355884543494916635950233239574799206212042459208264531199120825223314 n^{2} + 1014878644757366316122273026284509737471637374594746463921375138348961126731551886541766564525517980809219036532184677141207179898 n + 10169987137481670488853587020595495997056811626259251231502477676974708086296622156556064063630546905943644036637621695013473998340\right) a{\left(n + 57 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{536870912 \left(709426304326837906262860719569012213922930880552699665762175452814003375614090808286448043341945373732139730789397024785 n^{6} + 433929097941594768744570391255003634302698247710378267370099607842751371049560021167654031145603430566917306405535734960802 n^{5} + 92754522552190571310145949306592518933518770797734703632381672370422976535265864820228638418463507326907439689049407039696715 n^{4} + 9704556084586695890024124634249535560816488314667989612479350696991132818795180715208327606616830436505523553347473170872407810 n^{3} + 542698333934349443972961806143404685486612503787587675737761902654601936125442950752794007068894748489231248475092478059067268470 n^{2} + 15645798484924338700766877605300248581631778757012883229004096900677959360318842327554179215406855828581665846255216536628000413878 n + 183443682618469745469846103513050426249159100253114951125747314895695360948716669900654798395320090246070493279112399732744251505000\right) a{\left(n + 60 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{2147483648 \left(878301039357798514524987051808171275083430892388573525366671070154475193658190027181647990225558423764264783068048540033 n^{6} + 330637044415655363181657172718526709393737249564710271183081881292224574495338130052657912081376544764168811493726004887758 n^{5} + 51663997117899973442562081211671386704225159211884781243108521478192250188074321712610305936917364582647458433069241729240375 n^{4} + 4290756050169547919216584610723675507306230986044269484160910591382785841353283054138177100118363319999487443562858025888916190 n^{3} + 199828741008836578524555827558987805358085163994340523661290942210817626809236280735317191822286163655463217752860734829401769962 n^{2} + 4949496406362106948407291832193389610845936951202943192038374749497313640407948450735584262851777346260439305081176167834330349722 n + 50949574239261106576414275031440654226704789334012263286587474665365053205953876658696336232550009699165506623854819343612981272120\right) a{\left(n + 58 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{1073741824 \left(921079910110383570375839826841381267958655345740310025359353441573600402079340042575463747878273347499690338852069724855 n^{6} + 366874514989796439943524297914561601154289602115583940670407557645402809105212516713852468825397007977553367953271106431327 n^{5} + 60310259561933293990426692602105987794908604523122752729063468743254464227483229246405470806965361687874951521247693365350695 n^{4} + 5245745581230253163794096683052809375058493036072439485110104738617296980757227163455441282248753476024586699324007214866534135 n^{3} + 254924469107638011085199063735692057568302940260220119367001242259606533163122504226104121561788245738784032288761087919367658340 n^{2} + 6568869691609311374197673159580880977549239305941746737603986161797011463313097570896408229027075108748131769287980970251616805728 n + 70171892907100309267957623382996809016297968547688279687422498874435282956250376851406699818161808909667322746015180364365199032240\right) a{\left(n + 59 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(1205488660746011313885695310965761869335204027727798165706560921655041684148858560474971405495160137104023792093644350679 n^{6} + 2256880408840245640798088613373147484654221878050463704096446172892494760494847046336229538643095889629437360298765175814745 n^{5} + 1760511941320585660622827729008465475310313954600101768195150480200583390504259535670205044738399768614898614203407854711657655 n^{4} + 732427050968502059329555635590419294332448766853678320943221870357667206803245436465217391057132765308368305368059865512487034375 n^{3} + 171399100460959580695882760622264913311762016836297374447877668118312500800757670727420478918942122123712095569149152704658997699666 n^{2} + 21391816002447517672476038963786271907373663323381710330715659139768029054566885157177248277310155550140125254997546344680770303701200 n + 1112427573806707421738613978289752255434219527893174806818765432689464119008994778830626764202656494472736481951663359242229073636205520\right) a{\left(n + 312 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(5900008751716229884822240013236841964701506242780628530113326066841270285956372233484515773906225114042142414162284973217 n^{6} + 11009951949850260929467803870678598100726330373664342517295827645833644065394172686281157126861143442404054301203469337797543 n^{5} + 8560576856953494687995423730539211176225663033690410972605316497956166608926124779446218278015009537896678167247830769605366395 n^{4} + 3549894418647822191058559622249904043756728157013630145080779313444529349588073397757925134468532343659493433923453879675673996845 n^{3} + 828030681038323505467754191475920358804568813919488113120447860859721715253369130048180908178444422532251990361004276724447283768868 n^{2} + 103008295067831101512616550007519846395635714103889589737832272505834692279757999112385302774410960114326308063542252487020189501774812 n + 5339280856496884442483572967056870365292903784439531777625113655128538680267860058850837931635466748570423797491840145215516489652168640\right) a{\left(n + 311 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(14183102119673892415877751331079939656511054554411679538557826458104320928592786567767505169121470188906078524522522624541 n^{6} + 26380681699593503219717424529867698883591277719251402855953815838494963614975565382325938461959391401636046590162917072974602 n^{5} + 20444921949500993757049077225422830558245174451668532599464142303899744132234626080879911287307642318223796334524118177583979040 n^{4} + 8450443779869766590192408457366594829297174556196748036822192983589944933684835609182837546007038309048418140823063336130839609080 n^{3} + 1964680706487639374159209598349439403651924616135973296107056928933585006138461646321239700101782833943615076682405139805876466565899 n^{2} + 243612201621403406916753510124218148998136841007008320917047915218327389296368652654404348230936909653569408803431014224758286480139998 n + 12586086264872528499717573917110041435384535397108539180908893135254476657702496977175811228704652251763075842377638958495923807970366840\right) a{\left(n + 310 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{268435456 \left(19684316504129661756427920021080139922588356816032042534126136299301184103780845983497317939801934542450378520366902582669 n^{6} + 6546779910479079967217377718854275240007705138636415032504923589643145481484839559823320527681029522207132702664372955728645 n^{5} + 893965683889444063797525214755477041399130913266521305279685739292123374957758565044884526708408317581130540058846145239606155 n^{4} + 63879633438672982753222396865062686538445066020830194974765176108316125563926688179031695144374120100924340231162350269879362575 n^{3} + 2503043018703525772408382475107312543948773322040181086709762266431852306514691813266137091989814782388019631525465975853087062836 n^{2} + 50459221209000430377387628706404984065064707394492398429761107658082650113033747905775226241166767551158566222681620945673691255720 n + 401188516597236919151750783001373791032709808730579952997825224272304802392543591063730366438382249480777452205858468480984251991040\right) a{\left(n + 61 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(103635778468782461695362325862729586526814617854112369355678912329804658551317009999996998101384886616972078670385053634789 n^{6} + 191501445635703017222865712501398248769277334104872701819818186212844930600284212286435546885919712904606926013972650715778558 n^{5} + 147441136759767791327481591942415587980418281971105908995176716041327606309594050302170417852099254270518476048387754528968018010 n^{4} + 60542382852099853604488450187747189783713407141885685624771363690427395530997394586980002501612848730749097727430327716776807565040 n^{3} + 13983579602471540875693265447928982840388620406060957399558795925201066295620810897511707597519097989487746863195175782035633063769821 n^{2} + 1722548279842106341113495184569377955200847784784488454083089278890658807049351375330190176293358496111206387854879387044634720671033262 n + 88411479393205194584373360917113822430985227736299798518432174507810593714370802166784586933438793078342749199807758282071326708971347080\right) a{\left(n + 308 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{268435456 \left(107613516338734685252388125521769809929756461385468071631211477919179691178148261743837345999346693568061476849814795934008 n^{6} + 39183705810399131392159915429382653879099693660605062551304102104619755308153447590731023861485872881100043387659775686534067 n^{5} + 5932988003979805569945335981528662108911925798123343790927550339017307723606256949583982052345302928265610603353624034598970135 n^{4} + 478099393651284381470535028181970669939985533606659553154592102224113991598659066739905927759737504335273325269568703043622841540 n^{3} + 21621762051505296361871062598977309831180014321111513127463831440633708532679202768125340695965095106534137818389533305280725452222 n^{2} + 520216545685687663721421299191590177042260528474108776216561881138006716830048082785472960099532305382955715033679800209960284247278 n + 5201026849342464198703234044883937884237439612382855609439703438125735801102355739767683280561123313594634550925434783128486182821790\right) a{\left(n + 62 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(133984753347690698021291069276768455034277307707242412759962368618594109487359815873172926518239748094274297713117441238537 n^{6} + 248397220140912544837728420766532416716581270213613264688254574562303313485520440871199584788962849253640522203725948111471719 n^{5} + 191876837232476842811649362636269933274968545979577726542717066165032634913839035439500299226189830392847542778707805410184859785 n^{4} + 79048347836510121780796993278828129305606880436904561772986784013624822591914455020629771105191035210497748874643327837269660806665 n^{3} + 18318134980617876926156728971080662861357838273507999783353062182385966761832819076107634292772272648089703258188854719375069431008158 n^{2} + 2263935822773849238265603441314169647547683267948253296303147493391398964247856674865359874757383128110052845405045375215689743922907776 n + 116581968387735994516561788923805625124898784415632037883962229473170373082123029462894249480477918316529796047362406509244953379104272160\right) a{\left(n + 309 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(2835719293436656973409322314100633148615373100844097518421688865309946379055179886173898643225073230413607261696351740135537 n^{6} + 5222649354203603234317355400943681034090350723541034493766796417866164448019501408850600240735425359340657108510699493665573939 n^{5} + 4007767884275724366189812465796704659563808912748362148100183679325272319006768024862084933021651538218586882542948881139149613965 n^{4} + 1640243282196663567874140803197945374627542467580654165002052666516522504233794605607319032969876098136970975342193416417146751799325 n^{3} + 377599813654661474016492852620549461192167109440607074439903301820694905163984018854680234587180453107487419879349545259201077863538458 n^{2} + 46360622164235705989224960267032740088499800755820073310960894994088501086794656152324100231993999302478017667902967849494079149059293096 n + 2371650743026095275355318290953891216325981317727047593040540887792381097044575766802508291554821391203578500703035184586993505693352534160\right) a{\left(n + 307 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(3177218003121789422258151503533896104783172950747326454981609877719366508308823800074921220563143908007529336942173455403521 n^{6} + 5832222554865684661649484071303400211707336925574535032342657850511949974102947647101226633879578707712994715577409328950491755 n^{5} + 4460720402607609253733691560478916850167737878818480540801565900905393357172832182530054153989423326990836207274947352150983354040 n^{4} + 1819573943962522910957536625296120610541702334646238680705789482014782430192376699907980798250051442898563719676931277242540883700615 n^{3} + 417495681835479037067023309777737634580697526077521096379575970368143765338459855991553802238660989010376027733417728662164051026309909 n^{2} + 51089072816854154849792898081503485540351883122638694473092314468512241623165887158231836900432967491151673029006766328712045037625628380 n + 2604880589837888182996729565725240733442026537123559220718973085103141865373923648997829048690051817864199992614712638237596821159779789940\right) a{\left(n + 306 \right)}}{5585450698599254065152000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{67108864 \left(4641458924176526616549137255923772684944928698066486305933338673121523892897878330934941355627777779476500314475618564162620 n^{6} + 1755299326966720707390987752872379777972711943540298691280806204468995271774957823031851351313654746144762312339789888014881764 n^{5} + 276364568484050035657203924141342661982127753485825458743187140469960322718826671870016913734993545476273539580566898827639769795 n^{4} + 23187408146847695467521662377081602564129865451384066142580810663641626320437293700570319717249676781879930474238118540883923837580 n^{3} + 1093395729790443832796018720045919468451644785404227818735627047155953493844440904345171237745547949037567977834304965221488908087445 n^{2} + 27474228521168126332666997487821644219851274195843567544489521371028803566908896554982516419989710413839383701514375022847899039713336 n + 287393249600539406003227984028430792813709231883794557123841444344305980044343062366752744025021695052292965885427780182648638929513140\right) a{\left(n + 63 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(6997561878878141456296774520016259478661935399339521615647805640794331820312247149733324103877891026297948716787280510619127 n^{6} + 12802278486969741637806662814185997199579315302230430019301951128189059812291097582409751510493251282539478618335290724946788533 n^{5} + 9759136684446530427868111886372663657221197429404583022570485144468264857258808690112398576296773386684823348218216601530815311850 n^{4} + 3967611023241925467569180786772013994933701544664571536492878946757019993329279491220167812593276560217102294502806752582793852910940 n^{3} + 907327576516806068245584527654937487456651364455607090793436075116715358019477849834531003392736615241839831703133105487094877394097313 n^{2} + 110660505079056077216029991455337489442564754572492092273425019436444051922067976159616617108492770255535513385744272897493259408550668427 n + 5623474234362656938087703651001133272124943173837299621868742595826702165962465220950407186525141248299821519605380100977006950850438220980\right) a{\left(n + 305 \right)}}{2792725349299627032576000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{67108864 \left(13377907737839592992173406851809871724459554200725744902523093966509339284093918407002996718671852927274099139603761272862717 n^{6} + 5197050209276159602079040386093813586691793636338131120922320884022673944717232587315201565120419100632085156035111119354306646 n^{5} + 840615978023154099357356098183280838908604788019634551040404433629462100866151630471342102742832428475338403391071978584250185420 n^{4} + 72464133469301987816271173127841854069404048543552394297634628013230853148466061193828608923022651022348785095935675975828983925245 n^{3} + 3511226978868048272133499302586780707478600331311794803153408337184817685646780390063540114918710224360610307294189780005324818106083 n^{2} + 90673863431949865932893204066065148253429794961526644675068383665716227000768047123803549696132651003962762014786551592164783034075909 n + 974950873622588808544524855190871436271973470926574747691814815462226605263410616528317478750700886882721256132896865754749646543265920\right) a{\left(n + 64 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{33554432 \left(21077924086385239488119999168100993092537709575830531263346677217078297047778389798115133843391293868842898190207368454883345 n^{6} + 8376822303235004298675796764940645753519918266162779976899200707313537435041115951931221026872308172696275798353878503283522348 n^{5} + 1385731725187040706238675444310344385652195147950718238604209312033388797237946765449909619178706582870753943516529830739025240235 n^{4} + 122136986201579201586253221999281640617103572529480173652841937386278962795229049352568973518861566279221183920790772815509135313315 n^{3} + 6049444487785541394314585505921832270728084602184845872338167179446169605227963120571285729400580924466224382054202603884685471408790 n^{2} + 159649319695290099225324908075966051486966209468306644652468007108932151778316239261811638181302143271818137961255262282271092438998307 n + 1753870013619604655913176490678095761352862516248931684341896789377407385766097425873497808672949766742700405655210172968419433480871680\right) a{\left(n + 65 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{16777216 \left(75283964666527847921142165165152376469398751601164162676758779523072959518278065001736454042306081005352075985134037995113417 n^{6} + 30551575710416528335708178105471027931455809422974969676658280948270979201870488112123404543603755332979510389218718260749377345 n^{5} + 5156400998956343990192510707349849365109104816760832926642210752397183097009930155369650855216555216573794559069999366167199263230 n^{4} + 463316629127516764072866197166666330274828649608625737892686035334927328755681286020442026763946591762615961216181891392636772936335 n^{3} + 23376130924064573259994540132328533224987745468245847550520830531438126972912888916455525019017189719539179334380150942695655609159003 n^{2} + 627949176654700409835455665157057346232252044185520367634449134218910664521778727821905519099559239159564110609229073211764856298459350 n + 7016765767585588738695648535914596913566105400247337742540672826340822654878267220858261926308088578275486315080284172323296299397571840\right) a{\left(n + 66 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(242379940143773866401290863075028161980492731537253841367789962191432139891421908196771829641937934109368891059476319722968853 n^{6} + 441961555742532205116214736296573348376112985087274626106384293757041271086732729201954618382505011672543007421916137987446072765 n^{5} + 335780657136917160125064245456414819079980573494104371536042422082725234626433791801620302814259496996126532823524856806648224108935 n^{4} + 136056772264421662419773469357609267053341659925981447240804172556024799406768808273877615416287288322636152384224439417822831231269695 n^{3} + 31009997885250832063917557092458415121759296706233464852598525622408788297353334775945612263111138139304199231085938086893512001492733572 n^{2} + 3769437710258548686825171102837718026403986997306645201254007550615016956762852841358864568082082265647876362860265472527812756971450831860 n + 190912635824341567464240796297101353322339893945821595229753136580438843865282793250352778141928640323548430649371590353482671440681564772800\right) a{\left(n + 304 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{4194304 \left(672595186074202584539048812978320513339943724317250555348532935107610650269861127697299850864018552803347599591171285315916676 n^{6} + 278848310106698296584803717632419695060052992391576489969232065393150460206025972815112412354103440387913540754139460340285782114 n^{5} + 47809957349894133336148737975810825523670799523378713142375526684871476328265271462408460621965981241630810380588626229818399436575 n^{4} + 4340356194700942479324485385130028063867575156092578586656191882061661631266694346232269958259149725939721999745044491593604740944630 n^{3} + 220067056634393572244582490380825298922661144218304753745890105651666921646236245754113039726261993179937090132405457155519186427104189 n^{2} + 5908270146739286321527884178427725421624936006632701494544354227562925359764069286962184527807850910412582084487763991432137457334699276 n + 65605630063297270831410304936095973885076570157540469668181089722327461958002220982038110844588379081249546115325915943795674001992442300\right) a{\left(n + 67 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(1031646675987879553319094378759446559983689248724269101112941273914978221497224435557646876938930814961677904268285523228226513 n^{6} + 1874820872717228500826241099591906581582385243713231472164822713962208085029567725388294396788463306826783901787423565116202152203 n^{5} + 1419618585274457581058483832351367536119702327376857336381106796643046974354154208814681019924255148172758455044360591138642917076525 n^{4} + 573292970739086287194693094824048933708878860953571363239531231363348873971059728255287721469102732339848646034408003823531330989028165 n^{3} + 130226201970406967750888889713722630531339490082129440340747988485228650492980081464143030477678102371635794221898940296073204118853559122 n^{2} + 15776589481779501129169506709528053648955663050675962140162660656771540164820220065008284785560645329700005298901817682229150648580428026352 n + 796362630335628212624172503399811887839953919276574917219873050364224089082730626258343892371145079465254525082298797106221659016055699034640\right) a{\left(n + 303 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(2158508997118248318322574172849545590644031816569737800008360851562491186871399403096726585131217743452009051117235032144832449 n^{6} + 3909463275795173603125216532007280575107284832660187607128474362917665310678101985055352382469732441632236766581124463641802084106 n^{5} + 2950279993866397500942863028383402506595636572284811573599551426527318950545218058355305226670031125548832406321593954223869964244215 n^{4} + 1187413806251755151171468370237804962528518644552871757661096619781631447818528685676819312237962864854594351459402020355938462402152990 n^{3} + 268817469354790776801567996867214394460362690704895812907071351706769648126974581696739858207092937564052960424973602242018300002195820956 n^{2} + 32456791769136824650943338607877101640559969719316515761013543950980223709468929090460649737598456407631453461217307345305860806149749455244 n + 1632812808571597998034538431530417688579193022822317576406948056692198051478088294010691495195577255068837367392567902229974811170894627055760\right) a{\left(n + 302 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{4194304 \left(3534406064230645849757513369248680055343254474907855520585799414845438524112641595936259397894010787754848933214212218189089360 n^{6} + 1487929395140245507395223358858175855963378144590628606840088428530248198071698996408719229533975415233470793372116751681182799647 n^{5} + 261997695072984602528287984016353298418134847629405019175174287847233329821895362564095951374950152138329062543231434215271562050770 n^{4} + 24691860376985068519012706527129981015548914182466022704618283154858180357844878085934422152826659927721407052218034084537906447426985 n^{3} + 1313244931340803326584078499663544864282300168708282563020154932118071880049350135684314818104730622548291962951284274815499609315264110 n^{2} + 37360516163279682866594124753451910762684430029117319233129491899591123030981040553800929220237373085700220803768565475891969060435065418 n + 444023010729413492065142449763338685074420947617270926026992231739294821822791154697062168191259497063389582867295223819474971980537413310\right) a{\left(n + 68 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(17762319076800273841593716416468710575188431541869388730883129980046886703492384108271003198995870784441351836679802983149965147 n^{6} + 32062008925216002761959916250260571369566871164722955114303402001888106949555658840342094836651985033458151008724371432536189973765 n^{5} + 24113725904651236633682168195248715949098634639196619555119652909969686560578335309328815068378069743620376485676829271362068652356065 n^{4} + 9672313721151006932956183357587899367719237254497025742313613043364036999874644688649180647385793513316374483216206339371750469011981935 n^{3} + 2182290999175977880876362979188309218070058925762597552124112540323079398417955807178225732963619056428320878099904562582023611488197652228 n^{2} + 262595543163164866553606773169439296264313049836844026579615921531586158729468107088283268828471142029098415621934274432322121701805700257900 n + 13165714747800630229658405682129002365537799851560466991491189261400741732939276516966933723821300431344520388254072395911178945969114667283680\right) a{\left(n + 301 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(47659335449996941906188535997759711083310922965007289437965524432684721959542499344788119924754707123877024136206368681080982641 n^{6} + 85442458296869334127642403093707247390252913080263602465076771034504330377595868279813136789109962881382732953502321235167465908955 n^{5} + 63823609515851782025383509548660250442680241278206385762859846245059940039967985600104188663690149836003432085374471353214347368880600 n^{4} + 25426161139689612010181549884344675531000894675687444380606873305374640753616440234675581373747274686453878606393736089669510257028260095 n^{3} + 5697650369592652587121009100537460672174036634705486005417100627634319130360751070068813323018254208027336807250757824030325164011680779499 n^{2} + 680930091589148191934779622967161156756101626430233146461093418577879762659671820307646780817348219153521253379118982526924479292053817979210 n + 33907126024970547161807155668594467151804213774815015218324926045929868359092736010312958826898962230864456243560204088585622127161213329133760\right) a{\left(n + 299 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{2097152 \left(60322594145410869636005316142347634591023079984484247466335422250418527941145850247426883231184705718696866152114318019638692437 n^{6} + 26397681593187645060370137320084184441123088508523211778091313714422880381194855931994975892799757140483052148651301775595026996184 n^{5} + 4816326442937241433967629922403922351495248454629223269114927210380978054235182875740787246127206538528929370513515255050307516567325 n^{4} + 468925504357759967546576900898813289041482473599233758007679340392952184898911696954126472101586397088146855992744226832058051801815915 n^{3} + 25693211165166186473589688175778836789344829165805455894106494777043664249781144519261280699055830489531641539164582217611243895870709553 n^{2} + 751107907577988724232171047304019350584694894401606256166819184368484851649921822838531256834815728745030171441710980200867490372941606326 n + 9151959475175975266873549072895584944270255568133459390719778627793872318251387763219802050490049768769517619406680917976766224759248359790\right) a{\left(n + 70 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(71865935456516746816075983746322580619079299890803365464760680341185778248609689175702372089703097185872691218530331754736913597 n^{6} + 129281101564102799828982245307904617971620388107402595253213880791474166307898529787748500676590615378632159971803744296675313873289 n^{5} + 96901213459803471941792140672169397917812675376238578359082146415855074243382298025325149134644707747628282077992114174195373625727325 n^{4} + 38736067938201792672683748893993911309882475048997884113979077298158685699938769665693127170339619567855278224599750233379689907871705375 n^{3} + 8709992140432867795033429369249059363731210116115177667108436510745310350155413648347126857746749035864904032496297720753582944648982668678 n^{2} + 1044508720214874780585114432701180581734131787562691580648758218045839462417778030935613644172031742766847835223395311535335638051053404962536 n + 52190138585514070933718423034320687109258313632662492778453772889175406317888835561363881433829832223260021346344384803514419483941707985860720\right) a{\left(n + 300 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{1048576 \left(92352175682317028743229335816512053172520641374455105221724221216820647133614581638785095719856628708570335878051500116016180097 n^{6} + 39647659182843244258648738403559271913146006220537950989630013748693857934743042622910150747816226967353878295939322971265155235721 n^{5} + 7101767888581534485917443624710268670525133972548532521974660475837625804322055400344408328146465023472546063716937050352973223207795 n^{4} + 679284147377326922055968627900275578882247550539562171403410529250637410714061895404889862486327339176196730477909603229653461472309325 n^{3} + 36588465201101044542285279721822223516837160350398270398563256277289944515336138146153705077777504092084741102201360342880881492356052688 n^{2} + 1052130056946565463285323736168763711311033733354737615600492329103287428813147286970067989311600354448183696409798375926452710658747975374 n + 12617319715808081156281700747819396283923464667785581447529051140289965501267023318930329645436229222647566280737310271847584748519842711960\right) a{\left(n + 69 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(1119112755402102881687016111338414160147821820095762049300783358930100847020467638293817153668479643175241140755761019694616625791 n^{6} + 1999429321833310255571976415080802700978793561091980591002439691709298164147276147526989980811580380045594383574382910698813509310183 n^{5} + 1488400411930692604590164043122985527450271240727591313032091903248392760142573408819759902814523682831009844889352315482701334848583715 n^{4} + 590914910517326913511361701994691111644636021294937872591706712480087655674922548944717245478551076822754431062025058842996864281991813945 n^{3} + 131960914151269459505169762736757518903488473672191637847235515294766457726799694507190207312180342758040961162140369430420855318013941191254 n^{2} + 15716543579162406678742451963973485672477212298572402365459290448333552219327275720600952134553464792864615630221953149967055836466201690777512 n + 779920100830470706190684816345562559456159709194763523272940916119260813068337929782195853489492466664785475073524114460792723178235099629419200\right) a{\left(n + 298 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(1436058578604198436742663995156765931769249081187799764924666005456313969598729294783517486574749664482675299029663634260286591487 n^{6} + 2556838219761752445987838797544733216644555332124478204162345173948614749191471244269313740860986392424165196293286867837995232882339 n^{5} + 1896773489214224026156875824711502807209384204514405834716401336856557652712685243818923320204045968367817376297520428999758371804758545 n^{4} + 750444785930594985720854438865585056884609880939007149806913273883863071732268780271580330768948723350579883007962584907847335967846260705 n^{3} + 167007826210852806056904746238269516380347434504852284556744662702696943859123069352392605269641534649264906745631053684602526054346884770048 n^{2} + 19821926535381731709540439140614763695314730347592319781902718024779051766556801154056807668067587981232121622122305356776995227234794513822476 n + 980247729347336649909899064042575199971640306614798578752261892351879358689076340380464118955783590657830720433917404413608071796900644311508960\right) a{\left(n + 297 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{524288 \left(2291085910626076618172645615152223484158487376654489066183945701962466158659269019515623835965358192676209276302006548398499064648 n^{6} + 1022436591432377106071441570589226223550012542358305513588134939221917368335867342078016812021780317822831767592973823638490806269181 n^{5} + 190149524598253001869159660152341068377861781573724103788925129149639460873152852807995387997068797876960413675408572866981386094622070 n^{4} + 18862556040190434429699425100450918429604049897620029402012975300905212356769997204024359342518753589962026394548815555520446524087013635 n^{3} + 1052569082546169085042819378069455604759793812115966841377611793350914966611994609650277054816022590759838967518110514125366442057535070392 n^{2} + 31325502809049307008067874228434216144379132675955759117518798652817136048734834188595254545591489160911142146059934662553910373315463874834 n + 388428539204803466298546327418118526826905322881897230754107399942069059341403752859622278418263521253812649292726215402215620144952913377660\right) a{\left(n + 71 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{524288 \left(6271095236869845773533862133034667036260348697915009373211848428975271933324705631860503208298837823669688280257424957251228908726 n^{6} + 2857206334761268156639556988507814636529303012476098299546322885444292060605140806081045217577641932588060097846717906312851066772049 n^{5} + 542258316393634179525747027739005186177569241413395793965567610036888939072749836946755752016615317449830971331363766519870200752914745 n^{4} + 54869323987695142893920874935404321857733599108273422718941007263163647988405876291583934473863567424532248439968477586980728767921816880 n^{3} + 3121906495682233175997908793482001726339693180814820523641578269752257206776407138076821217858340979011306370318573916412601879841657807609 n^{2} + 94697688772884902961567672356259111434963882022785195639082779324106754673225619905849362300889004113378382069629533285067735504961464062701 n + 1196370963510939401155704003852420679760834464119126714957386204318704584887289694831710963816311627213748533646283460251848694550693935640610\right) a{\left(n + 72 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(8157842953366076961187156827480723750604180511459951583326977356482382569751534810520187037413957420264523859730531990364080836295 n^{6} + 14474297181042633994045619332646416080553859321016637820137657491928222739044821728428706372874747526404654869521319056143802386220854 n^{5} + 10700408134605876125722944457328868370938700518158150939111218742279429353883374476131427038280371282336323307796836248991301135458034695 n^{4} + 4218847562261793547865738600700629077775189752197917831715331679930413151549346620865756318978721749756007723067075177231401318071625736130 n^{3} + 935624758708164604805063669289911040075363111454171164032907566643763868802927452953890816145262154526434794122657425683080585822525028955230 n^{2} + 110662406347410081346350399527182807562860029491984046904282332651542136927207001021849914931182889751084967963177869467208186629901199429809196 n + 5453546548194334872488751970586178531203159567707758773814794832453373976685422763063897421242893643393479845009111143000161083212998432354210760\right) a{\left(n + 296 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{131072 \left(42328191763772032961325765361099358158833648679592309463839132088169347014691044632074434346425073359213632501435187703633834097336 n^{6} + 20294946482396734564306468534840662100883563869416416946574893309956314984151644282802459272022770993909532568058622180265993068948809 n^{5} + 4046134823736707366888260447015600471346678463351613606750344419169859462001393986373773606519147742486508429386233232383610974614810280 n^{4} + 429383809442009186838737725916067812226149818648497969222873667371325962194037510865604663298833355329844598555610793097635009824394811545 n^{3} + 25584191354381042313322704805440510957108868112255529070117342799330604045988026846121716045698921415965892692416111197991940889801234918454 n^{2} + 811586219268994945841309834060679371645215454891198328602635539034160106412129943016242287017847689246881756822128382270937031810611247454676 n + 10709300614426960662501223625293011160809273824821361751693666529516301851006523007155259458475940613757848890127551048123423409065747806690420\right) a{\left(n + 74 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{131072 \left(60447418989734982138750778256539954237326941167288691329773664590824345967047654573352769175234907316838290296466147502771302312718 n^{6} + 28182779611800644281642161902427517084648467887480570299375470981128935186136851040214141824426438671229136764069388482112919078971588 n^{5} + 5469972394766435389981073931081251008336622169399874961281310533842949524010047649776720784158615143217349648250287200192370560603890075 n^{4} + 565707478649114014227402201431971573886543162329563707486997117303334572473075970248686573092004614378821271775584774590557689618885613980 n^{3} + 32879801936850607257929372240374817708622348743824257151870280921842047423566076051665114731352175924312327679597411503643473598518262266767 n^{2} + 1018298668307287086624065782686864182095186673621459832321750177573660187694828535026065633531777269535140586299929002891781108818308202026132 n + 13128726569259133906633146612220444223169276356212869002158484077197749931475553599380445915468475306886087088859322103800275173339702304589660\right) a{\left(n + 73 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(60793636213947432514670911325721966842695345231860736974846527388688955576371243165231392535506559275742475030531750722546393227379 n^{6} + 107488799391751627024129394766327591798234493057292622251680738993212931464473943026925312471482950371829587731907120347898331929331647 n^{5} + 79186030126058675626571861222813091161027549935476094646244477755830287937841668288843625321617690905022408302410499253695319614887542015 n^{4} + 31111726455985441858486037509093378159666832297588953826662440885245105290573029559851514564367848149174905786683309383080433712937984328465 n^{3} + 6875647103979309589562412630881190252656505407398007845252994434583655016020325291170616973974063019734663888151640411508829261610661781068006 n^{2} + 810388212598400005954241126149118390415230821081316587403267232010493011766935632097354301798164129743142000149206398457979151802436443111122488 n + 39797216434546847813154246641756196110477506316557835577527383033855633049623128115541253829839259900270794188726296002679994233920679125336186960\right) a{\left(n + 295 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(111447805804993758803734141287484553650234149334578105974921493852049128105694739492456507855963059099903974258334542872640136393031 n^{6} + 196359161732762682886693485637028697271275191164887543321911631277674569403285550219709173059918841554647394522264778523523223997018016 n^{5} + 144148657899220207572244259175117174335916875796384828303584958287877900352141956834676930913429167277344306949812944500367445849732825520 n^{4} + 56436455936205636517945033431413420432534967648762364440298383719803785082642084469116816427899703131673976406711970502538243252590026058870 n^{3} + 12428602480964971017163632831029851184175090459154720682646762595767699721854322936345906919470600255611553788595871925084690562559223992677709 n^{2} + 1459736392654052772323554326665987843300483364209339833311048433035515760728593013648343032376333816528193392803030711351658602166173404779213294 n + 71434188386236634441393756599528081014973948118248282312326048949297221328405670149053506274546371662680706894046905861180948999562288313215749680\right) a{\left(n + 294 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{32768 \left(350255865365182104346030057958288520167205788118551196527089899985800213646880270482463969406641426615951983764510909788419349710072 n^{6} + 192066937461185956318025164465655326856134907864942038573292756300207982864784997311800949885338039738863677328569758418939135694429872 n^{5} + 42996865316411198846712951300848960625969339980590760460803827050568430669088752807375851765938445360229147938945093424513717846074616405 n^{4} + 5053154083292702840159005711743758899396319538940246053626257906529833735368532935416168733537936200696531846743581642956028618795661296010 n^{3} + 329866657010500773305974520718300760870179357069908604325093609960076099887676753526130511385810833107860699952494536999710330241279883827193 n^{2} + 11366684023945753673389619103394614888760202462608196295104638624136975642555283903636433524298193786366183344445915583394052666697948769612588 n + 161798866427532908718278877409972233332823538221759522418932442780966868289529683332778229935696915284148267395866888795833411987105593580594600\right) a{\left(n + 76 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(804241930541646722674281572331430322580363538363062439984039204490033199436663301543512717079908900956520655607164403179152205100425 n^{6} + 1411991942707019297967998983756652998539340569974185263781402780936193425008854690653771502978882392388813364148201186640291943843988737 n^{5} + 1032896946826113589917606795140077503101451626986000904010188895411485442814120005864658967707202812150631870873068626125992196368504915055 n^{4} + 402968353548118079456076820776539533215022479714486827580107662293937729307982645430609077611910665538563166731016995976122345289269925923115 n^{3} + 88429626707152587450836991570364959132815412187868163575795841591083692514333920211569933855203356839200451639649074135286700540589503579165920 n^{2} + 10349364412162581206013243555962552185062534930523494902657004920723700340461138854831891920659442483092550274756580397010852642226744454645350828 n + 504671250011373367674987955336990265251090399710996313936229469899107380964319912017748718487741576676368068505607225294758901514906374588502983520\right) a{\left(n + 293 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{32768 \left(884633227342215797566831987802424314963370138627598676059247022135479932155315858345137412404839309494449352513849780079289045959526 n^{6} + 441786717858794003377747997080523205945375495434115262186496050493232852212564913036516619264286323265163727371388588574850196303784724 n^{5} + 91462167622329274042274224966891655218064855632957198324954398060234873095077813961640005352302722985146489400708958037406463240882235505 n^{4} + 10053216921440956268956884115466349169517972662175295600930607209790688900670448868156647577520865769944639294069746214461040383870050345490 n^{3} + 619056700332461293511247183133336203579139126294304145342627873989811812806016983701501922194623296911351925559632640024997172431356639121089 n^{2} + 20256491857920771999659815646378451152148415183099602229051427314875460872556076510142822886988703543095753558890560254284657207350358362399186 n + 275258571932503795759839512949914528334214498260689703974479160555042439988007412008092534742730130025794402262908570743387189647175170238023520\right) a{\left(n + 75 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{8192 \left(1217435478307054100855819456868116087222492941882840321959873468857332294039988981832402798151189431449484305730797618703838770896405 n^{6} - 214542024851598391201367638447890997070690985809438216635328311936316842854317245159173758668099015069722882166203309312375708386708409 n^{5} - 200962494863606148443511308676508698714736869202284357054167741551636259557520581001777004762019830764082048836064003649031752563652511140 n^{4} - 38083724076808227627752320598633597585859702261034983710883264039774629475533078717531369341786370626168914733795902059976770496688418848305 n^{3} - 3269656849943256590119284630465319548736237652654939056055361673584808014684406783664256283623476893432116255684234608332892978499953934741985 n^{2} - 135634879121510510105264543693682638828321664807660737740122377164682508747628170337625394987647159093405576107492336244486409969428313168649806 n - 2214583939624548989986140425862890221877552062471218487703757932086697521349990933608189657199302949324696695784018640756355413767773866116907000\right) a{\left(n + 77 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(2856054424964358126167263336218557369527024690320581003209937565737951562306342724431874794372906078936347692812860283688302902098847 n^{6} + 4996533787281138047565694400551605388981702293045869934632966560896649285107126125084706480030094712128709248061204031382233446228675775 n^{5} + 3642083402604931068104750218094744273667553352915705676007861261259574215355037757057933995270455577796446333445121660407599046779285225895 n^{4} + 1415857515183108995690075598232995201569595037963505115037504139590301266817859098493494116901196096357382431246545930785737428184182193326145 n^{3} + 309600421875247367704966292104285778022642227050031571975651412325592810685410050604100842279385191992059583278447018792532166265010649520585058 n^{2} + 36105386065416929957773008045463385417331613464268932976539749755947820091810613540508919102354810796852159875896679069817873323009908860400659000 n + 1754368627715218897736921272117935212398676004730668790841946083743696894828226582838247071288461914531015364353210960416812997244844257107591424800\right) a{\left(n + 292 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(4991893989588856650333059224822083666145838812429985954408997524910639969496646902862909960751626301197841922007574300796087003547642 n^{6} + 8701922121967977261591223328830671526278159094776020383459444346218115448849580406149758668564561958380649484828606062491977166268022479 n^{5} + 6320379176285896485978247945547783149023064700361677377269481315669864286657537859190674209588374730423997644387007122458706150419846199765 n^{4} + 2448268622240580311819762886481227025031544598182334633516973194559045586142410621215197013283321243937711593758845089927395010377856465153675 n^{3} + 533441388029067654080111426881073281724926171237795397454723516234679435661549568709920651864328652281073797989228811459034074249484626510801913 n^{2} + 61987222416669104195403718588370394974109955251036253087557110273509786653433712026904663119495364801884806160927386691432009998054764355890584446 n + 3001203315629209699386576333979484547088765863968045678872559747649083564771160526348717316566686165683814216526905835695827477829111037758154062240\right) a{\left(n + 291 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{8192 \left(28352455449880063914712776626310756329497038780353041653756895511796554659716699472806218598593518078415657491304472097169183193365683 n^{6} + 11921931795629125231170960991648498005053595241859974338207434718206955271004513454157113355487571965724277297274704598112538900382792847 n^{5} + 2039643761870452103562149095873249739541400971258204642724610767800707365362707716011852455340496176338476995056227611846060520902306768700 n^{4} + 180078987490099573380531847464497304042972655590276193681632702206218808223641050563732660660693467285239092720172239828783595176049243038000 n^{3} + 8517204802940146833959166359914633299334625031484168355758232659078310483190490885504577508286909120834824319244560194270128733798211521932107 n^{2} + 198246627597315068847101822396622576918318484239052024114697844005348310642663749976815435160499572429383690682178421972918409948983811400209873 n + 1639612854695962689445827180292889418341672207895645652570880276883298027800098711113733120312360405955828624531698086465704401527000482946837830\right) a{\left(n + 78 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(34358148460076912251257117784194626155569978939888018276715416405910245533200095601361552620469811760526674913936877478825913990951281 n^{6} + 59678427497687944795173725686264293927769926739881802036791513235200076979944560288914755302209718543862662734473123431429178223968740159 n^{5} + 43189923675316281274592804660480644704256052367578791284632353966541546235597209713710133378855773002078432656673993686045558257972596828155 n^{4} + 16669970393966136741844319943968485434668811663899960102496862955551555034574390670718773481807893596986920596817323438254231137611025443886005 n^{3} + 3619080598904895141513489634513350378523961762604703732028992869499071738256762252676379992969984551761289700465644092418101150307731300180214204 n^{2} + 419033578545203978058090455053901051635478051082832525436437370351336237556688422964360377465584350410472608670487288882772664253573003404040993076 n + 20215127157277743639067050461883083337442500398071574006939995994150630216516660440222871822639446194910714814980780829659814079842000196846249235920\right) a{\left(n + 290 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(38806715080775412747233786639650632124239305610704685951860149822748308144440314224000812549817906653296123941319475578880086639764747 n^{6} + 67161780914278588960378809823913254528234946315134121452464917796027133514210944376180727092632401221419845925947240383643261233864121099 n^{5} + 48429976564782743950305402507417381186837982313944207838322545460527319495310510038284008789388611256554002222475442907822265786426487858095 n^{4} + 18624855772409742886161412712627882848556739864577945264270098591271222564500873330499435383876981411959462421359274285949945244263403815812085 n^{3} + 4028857256864849463335792226213871372401416072925287191175072259813272631324575435108022053824406535084463289534197760839598340467964385733365678 n^{2} + 464790502148319442122335242213503295272153523881338633224030401327071961098196159557931438313502948983093480306918504766885347323100214255422519976 n + 22341325609183818979293234404890502366937653937345674201243212954158447399876829034099098359127119814260166112655677075588644953695278776169074086640\right) a{\left(n + 289 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(129488087056352014503347483921541006781855022941545815256453877893670551664564842905770927215094375808387745120921383950455440744622075 n^{6} + 223286453150102779354963470026624534583744224980202849472163227830269651163167144183653560508003721548465776155644090042354194945872193991 n^{5} + 160424573792395755516222615732520472601444177019842208750941242469799290101082013377117295796074888872346688279567900612219810893836390247805 n^{4} + 61470285783295938826423512681043432754496606400782124224132575561118337684370316997900232446107180614038547129789898774470169397184551276510125 n^{3} + 13248572201317526996069016551052612901208739654620125795561505927126545738941358015769308001734722669460114912581796354665904524255697268726396080 n^{2} + 1522854869416338811417885045666406939390594706748731841048630898294230563366467575203578759312525014644829854203550466842760991091048101295596901684 n + 72932897255672030606131609047293301378105001090595157839184506630759544055437226770674637499797209104946901592469511409748436492346718346629924822640\right) a{\left(n + 288 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(425539647057685960256561174660553994664349839574021064885629486744921763023736035252878377973656539325016552677320647298278372294186619 n^{6} + 731103669240985353383282122107189175157310591780027547326069582041346412008896680532317902241016265289147671380295158567252586984868299019 n^{5} + 523350946811833122670719751726682126560543993553367251703187222530650639006605656768420138643659564609879507508256793111575119172196864649395 n^{4} + 199798410586365321360758494516551354062895478101258696786609395251998501262792421954889256099055027536170728711508299976844176584570779385458925 n^{3} + 42904187646440950323728872857904818794943232086204979851344330929908501394682129762965093337808212201418784252778374821014713737998527489072396506 n^{2} + 4913512360412883709623547147722226117057536868495821709795749733790748679102423870176976517565124170326148319452944363072655516011330481605750136816 n + 234454752469597809984666605333189794034424104734107012877695355288182844737565994205639951323760413551495128396713060596452072834032520598379120451840\right) a{\left(n + 287 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{2048 \left(465146953108902558495196612006917633963922961566357368854547305357067723405186284580370413015492391728471705471343792186400181469596295 n^{6} + 213303211419293483585270317169942200919733008964052404076585538684831144449712927883422148332680128716001130402414823778734635687397382783 n^{5} + 40521774634504352944585160037634213748344496481095834091514985724316310122421250698161841249802847188695475555779903352199148980704259524475 n^{4} + 4078868753399077839534290300351538595704548320914561799996335820238851011280203910735234427572817088639364000749302276184581497552948734060735 n^{3} + 229220212038120670456416021428614647781644330392224324516540338852917568356614889205691035678876210582894734708437933968891194401854720425552590 n^{2} + 6810210693425999993877721548825747055002917261436325302692788168825890526278595145648367485073122365206200100382989377539289890533963573589396062 n + 83432891495313053014045799575799221816580394133103609250948103140066289157148408040247221730522333214415072847884355758414709767275176454086138820\right) a{\left(n + 79 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{2048 \left(1400080955945099493710899823772246524180457246209077694187860245088609544862069376274512047554379201809582380971661869850771889281635982 n^{6} + 668815154523183622931673089364038670858509133312125509713137779924822490607459960005043286034757394953784503562671270144158853264237657990 n^{5} + 132751192703773044734239631364652308519549718398086098430518072484170057481427097477944499878152337077465407429558376354951661293675358113375 n^{4} + 14012069282780140011789164116642974039995901812815141145545080595638757977125207953714725123227807628357323253232948779633492675657438868534740 n^{3} + 829378111066427501491333947785386356257817776238630431367480945575455177985660739097954223122082726889844581225906952329507977656110845478944453 n^{2} + 26096583755989573652172216913057239342137528417509976933347254506091199530568113244357386657439255334403698643879597481765059612123657885739310400 n + 340948087139672118290203827557647771890094136554709027560120873230940083515360250837192179729021268140037619958358062195818087078505582208495303180\right) a{\left(n + 80 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(4132602909794894145983282913481150971132465992018387470169825975845960037322622010574618170838834304081976115461577689288973262319518027 n^{6} + 7073880344144344720752616419888472528778814900080868748850563511356393313418120408413387085971561482122330675339247267493826838084144600605 n^{5} + 5045055400316695727522011082530524337000254319631180748111034829459423228910708862753652661453293234833322154440234820033187520642889318592855 n^{4} + 1918925890057993996415567563806063870887917686358217414609124414093371039597065606960865888924668719256189347100820994300705891252138039316564875 n^{3} + 410542534444914193697339294725486463713856744724232483665664801103057664678911226820597935140823294109119863653282903827090137308322937773550390238 n^{2} + 46842694769507005793785159089838660343295621556939039685278874571657598596275275716566344652585810618559481752125391035161802573712620319149505682680 n + 2226892370573291357123135814205141879259880338325818640349387972755649718764063703976985768640990757347505107909013442339836128043885585476407722334800\right) a{\left(n + 286 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(4393230494559514726699074924656930408908221520588289574290490638335743026245139792531494012201556349640955701646451126949907768716323943 n^{6} + 7492062975976228897159784189703313721491077811065737309104647392705834868209468275039386444092695694884371505041011515875846564624611807525 n^{5} + 5323436104608408736737435003502701582002053178430574235652742697435792373408201992957778944308753579832964655229920305415653520961221249606355 n^{4} + 2017277702072673772743617351964852742575361150261576799154470076017853612009018906733649298139355962902306020990673669181304991260629630281892395 n^{3} + 429977759247119956092768159753701432386411514286576137286878706785321969356796683591049634321316391836229014100467990349827753626295522831998645462 n^{2} + 48877502142744539410642845161416608451537108947860682359459040654807935455599260108765017515298286467563427089999855283397965597650605369811740867440 n + 2314965878657409525849171825375809616140195667911802321279622561370460852722735440476986718672602501376303697837844419111066002103033704688600833346320\right) a{\left(n + 285 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{1024 \left(5304337477731616536906831395442719749792113203411110358347169922695774650985350712741585905227144233943494152067193144762544748283553378 n^{6} + 2683790177956268513819675829966368692914231412603538620903432869558703548396552837047989744808044925922387362379600674880290893005966977116 n^{5} + 564690851023785075562120276909998319015746866461867654303883420652864386456695432748607617265339793955654507749777417177544220929367601923840 n^{4} + 63251206089742995661257251530827332510206588865378576776829529295953543527549664955075508195440162472129854934757857354078860138629356712872125 n^{3} + 3978173536574024072519765178970394977620344894897264502833556214516204095145708147141056996464373298231349881157172899234751234552797799123763307 n^{2} + 133218797603177547521964000168055433261861578913670704515225808345099538864916031847301532889896154888118992407820864793106254171264140585551502664 n + 1855816923587829158325797066014315024982033557293106643464576174584070767330866590159459504266302152807057667950673354417209275603567692351884116180\right) a{\left(n + 82 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{1024 \left(7120675759806576905092569386937679988837093722211852307861418824167098767218091808348522902878658474607613738618340203838459733633275250 n^{6} + 3505594187837990628560430421635160627685371717513031781266038769780968461371576807589689476067487281155973766833457574390667202621974775249 n^{5} + 717680996916807803408927703583125829446672006729777927821085590845625206544442573013706290904699563041028388005344627717720703728590298741490 n^{4} + 78207246965465497797910900390309056051703193267943384569137331318413868524047440761720882330709109170681598878133010017672008355868510505982045 n^{3} + 4784486662548229919246438265234062719965141461883790180188392815635645894123491996835519670501553036294846922398484739906923862956146287034870590 n^{2} + 155801943015911606957616290826625397939231418719614383718143864752628306246088463895542947957200395765777209366910052680363600944421462296667328636 n + 2109826268445010716392053414682212416675542631473265456946898670675820996561357570138693169839101237740032082419805788474398264808708297399099645680\right) a{\left(n + 81 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(41416645655887543250284247875427539953584122038174353817007101474653476005474811435964517595870764082987138294725458683175441256449711665 n^{6} + 70366122077528827687961815796906989645384553188904079755077577302306960567828630009612910203270215819098413191134200916296486745518710696639 n^{5} + 49810903133738039066730533031927267070104566772698014912103369931132318713347112202095041418570021889848224955636703029555365892223596177148835 n^{4} + 18804730781739568001355381176491824126311688403862834364925676617771648081044382892097583137311141430935064811769803022148551834291302210774447365 n^{3} + 3993147549173151471391177676793121725375957121017732672214919746146967795103088475754612640157347264995344616656200440449353098814264020381853343660 n^{2} + 452215200860982210636346752296951260731956830988299859371555451301698781067334042658741596539946465704710317151847945443012409058775134084462495728716 n + 21337639343423625318143267525928099978461294739624591569526233073789777787300453247784265056694209669211664386884434999310797522180032267718757729071040\right) a{\left(n + 284 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(64131787372359450603024518199365217287939629214848334617937925231256304371291942304464677866967080693025933464251922634704055646003677986 n^{6} + 108547727089204155315952658267881532034088285458145204891817319573253903622966664462032939233943025890160807542149230593615566663393480640613 n^{5} + 76548913934524542867511344604166005814846641626654559363783403499509643156335098503988182716739567385402750299261884612149117583673429254279945 n^{4} + 28789758651621192086547796260659302495284946882518020578079394411687836006612923562416925689765369142009340892856740174976797381546027818977149965 n^{3} + 6090336861906453132062274341230800734364065145461828825280335989693974277915019034486277517070232020596831090795624336443075169231215160879692888109 n^{2} + 687107851862646524456944655252055484892415900272956106291262670554687514614577155402639426315311120139295428651029686378254126397593408698633663868942 n + 32298224398791623731089347588892109095665734800360156919754593976202081042962019353263560720654401480156118259693038802269179323914735883211100003650760\right) a{\left(n + 283 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{256 \left(97639705943450054150886310653237682501038693076306721759500426960553468090604650266117402504509312727730800985448601964612595208700409651 n^{6} + 55821329381728380397971447451452667223757040857269199979512464552955089918384159152595714011854828285394336588522806341632554513789677021706 n^{5} + 13154759762473378474061397588024890265487780200059950566133229623783030385212759397417791026440324996915450227408156545464262998772701536127585 n^{4} + 1638795206215403059617087242422877151596228610370642707815942436945365891345310361314622276734328440243875028691688960532995078090012024749270675 n^{3} + 113994590007224439068214277499933287343478355851043639974152730635351319906280371742356004546264864182358508162192618888819380550893634570143973269 n^{2} + 4202716484806412592611520036819971939395558855866758983679617767080558981536780347174086150615285007419071173738157055209880158525055315885117920544 n + 64215849530892570526778977308444180090810091088096783327819787038772753526391174912789545105402467229759653214423555446166147518772576725683042313960\right) a{\left(n + 85 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{512 \left(107375944832732092324440229819122021493057292223251480823811444369836458976004791178355469306173599468899562429719441657188216682026485832 n^{6} + 57929011654825386668635180480245151946607997016762594795238341695333759649800518590631865056829731022731029695093815394129139614132446684753 n^{5} + 12965067734611069791644496672632617524993247879841019132190924451306158206161523395747513653499858073354245150226847674738107977050765581618225 n^{4} + 1541615501729793015309979714725670452652724375665975274099339877324445948329195199811055048304759934657782226082250409645081984629684306453802760 n^{3} + 102756922504735449724770914005996346559084928644438121333179239730699718715354215974731358249524329727188458425261193820051990430081412311983387718 n^{2} + 3641792956395587731752875502035876006297830015384992424846748116122244821109289482689671535066174042947127532335521858165725003932815640444506362752 n + 53630933901357575275122172213313920720828629481537026292732477203534573330062575881331470992208334658849318983546668230492332291060472119263509122620\right) a{\left(n + 84 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{256 \left(125722560080237221776968003191693334924572257986023010880082865190799734769981208085495078451949861827648418895401816658589966544514037009 n^{6} + 65462937567364690843445129509262611208252009908018286953945920440967227093774164203620950568259973630094226588931133444265410661479517374967 n^{5} + 14166479893910313219989154046151445512709850569396796131189165180128954989664309381385275408366214128726421425138391959237092276816615266798085 n^{4} + 1631221208278822915125882394304998237770774824090239975998708699022634350474410146434826946991654637786644366035182977253251513155895417727508465 n^{3} + 105427041618651800102345452583977142254762995258816480168913471814002876929548467118389451887256981627051760252159165065071555640814978870268105546 n^{2} + 3626829051396044792547889944739825757676258415117674153067241710813146707086907942994211943221652557253976517307774542969865324438462130442252251288 n + 51891043445151985470734127466997837162553835539434800727178486762274528269406883057595011003086463945721547791659770019905123179472972474221189048360\right) a{\left(n + 83 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(130509219143917755294278050094856108029065830412625685868186471713126116752102315535733806003340634494250081206238911163698292943531508791 n^{6} + 220056532134833074426960351358318127225734538876457011169987032006994014941019192165558749661807091414650062090071279551007913467557967324199 n^{5} + 154595533116832772495326222800883052430889157142376601525608546179090000633191379755705670928475031217003585689977775206795763062559334426929695 n^{4} + 57921390744861813085871414939341049435675462554472641003897469450904741093432486736421780014093538407992399696865863138337819494796673657028964305 n^{3} + 12206298031076685208252045077244599907822135558098124948948840378627529027088320909904769170600193104272441774219129659132031895802086561235375020554 n^{2} + 1371853988468343576150604767522044983740828135783167164780643094802302884979624414104077194011384751189234216242186073844723877988920542911683896657336 n + 64239263327637045371686449395649081374466070791572154586032919282750033534854532541778818403405723145348234595992574482208860487523350347306185784182960\right) a{\left(n + 282 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{128 \left(432532564244531025712559098686366939613535813669597822195160118331421683481004796322043792591235536516230609132510010518794657937442684409 n^{6} + 301017027743255032023194240053070947226794619111593150924213186784418414865581726290091306034377019710440637811412007117366783057951960660270 n^{5} + 81760895002428055609263989974866525203244652138458659265936238187522318071032503120252008519348814472919927438731664522794812954995658944968305 n^{4} + 11365409729216584557537685746570401514191620822960757955449145709608217537802323240096172870455156753182689303657363725184744886072728384963195460 n^{3} + 863802517248370322708573757464311744959704066735392292054753432633323270237320980002893216571770120945506970352250683678463174361103858603877835191 n^{2} + 34295480695711584949289915241786534002872370467044365192804518400327528649634330742063203560933864027878171431339760851792314019595026165665283915605 n + 558454225252097779543295164955521140152927409652815138948471721723228267582439994923299178761773741712069991538173797787671881355424223533831169482070\right) a{\left(n + 86 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{64 \left(539295215925377744315536045675286722177722289555952564357378001437334876764062284974017876669796163617555384430636920899267039528203567475 n^{6} + 179529256351415133400364148939598082385904110849986671043213146913913754675518160793732382088093316465152241237399722067374285958454079223882 n^{5} + 16256558124817593217766247047808719885851291897162531283602557399967623904329972320411849995631670397644168932486547928391162803459759041054020 n^{4} - 830226143830922236659425847679186401992113651668613208958963769947525225493821908446393513545352104907341988605756991238415215610527052117256925 n^{3} - 236214557371390146244592185139256347305678880109151053551011932540325372409475821588245249069540136493059503315821151926794456017830169483601073945 n^{2} - 14727616316018798888046790669277983146509531205895289316242600919646618155641701027938159600131523571166201342266962971192853085721158353775488062817 n - 310476538696539363990037549685910953061006954823360313565265314082458489353097301378689346834978733803017583089878772247108398127174391756510584285710\right) a{\left(n + 87 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(589108129548374845115679192570635390081102646911188465874163706851320301572958413430675904555120236487429319864447774524314374845889830651 n^{6} + 989510299448535054407668559159605047504975278539195506162213594477494091472885251834442120361840658620114024848270487410037911777864878549387 n^{5} + 692490462225931969755020852778804343047615672665621221662582741542900469580591322452605270042186030556155814291859378785777511950827646271008345 n^{4} + 258455145204003454679066333564030920324732342276848456447309767289040498640657472348162235467257958367915546575650030915360849821520809885976525145 n^{3} + 54257282343587420393127477688189633013479651483256747704400687055050850458036527938285760126267256187919664875962424788400993132682206961478928700224 n^{2} + 6074468957469143138494353456519401730700302215968906690930265865276030947934712458225050791610898152539783691559456492842884891553210680389811666057368 n + 283351688066066524427263002157188877037260923341790641863167011506796155242439940080958024942477236857684760203104267749546429854401184322808060306195160\right) a{\left(n + 281 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(1704905885894990606345030725374257805478655271712092221781781602318810477007148175097169019436924008292135372654177898108034050592894184265 n^{6} + 2841502562432557770532174021122362107911461398922447396409368941219555888336141758348867852378677464685326355607162776834453306346723513568489 n^{5} + 1973152217698374257806608036025072185523753452668921828677623353763284451089071728024207890060245935562683260177638742470315655813451517255156740 n^{4} + 730714452654935661916046832991226533339575291549915890829963115005937821916027825802439159774528784454901813949152592831958639917850091486015975605 n^{3} + 152206384684212661179065905266551982606674987407754053011592214880564939400727344239547514107656970412851903698133710437535615330035727087380731974655 n^{2} + 16907990760618440945234798818322583373413736639382910838633322043632457116231657851186867565735361265768933300766553476293201882556565063640351752974526 n + 782554884791322264428095340083391061459836653534595130633835290755085221112834087665269597233166190942805577552254042512532430267572413014815397625530200\right) a{\left(n + 279 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(3495940075523923366424317497059462244630075549217662193221715406880055308936072174021123767654394811824943042188038489165500133069078034151 n^{6} + 5849350130225273406022463645974793750465953935013753701206058448415035170120813403250349097220892432661324637216509098586072893911079176796711 n^{5} + 4077724364972957729989204466284240092211844826956361353179173794105182430961223421938457928611060276569532576862755812974683649126988900690110205 n^{4} + 1516018251740161389798192967865462083828227075330304206831422144144283117342239945931607420680875679079605135013622650759428844017925479325217659725 n^{3} + 317023049628875103420954372567741846150001119954506476380616491397528959956126028927982018564537603548652139394368340981457602639441887081449053124924 n^{2} + 35355177464085688246006734646826257760050839944730733285230883403781860413342896725403374689098998750024846113402539452317490897040453364028888656090764 n + 1642784992914645474396121865545336291006983938287220868662472714845767578482639150370007445225304983283244936348531134657113005302820253992134405453726480\right) a{\left(n + 280 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{32 \left(6542186463353635287954159378105279288175446456516794408421509964331320873562529324279526529042454355890700863629968375615206070158826285242 n^{6} + 3091231580531928673568965845743834113297794819083402515145914570129549777373520124902205931185771297936339747947624499930679624723380919837244 n^{5} + 597112617204823626664582336667318508721176399523663133513869831293734219598190179081201406335289295942463866213797354172908923118057819803714745 n^{4} + 59956113072989732755400270658200390900603688375067483657017347235597286699303918962778468415593936400924110291531630858740973756095775121620874810 n^{3} + 3265010031869423553255285654291635749182450634377391131411826871420957761100142150799113070828267312291516594811625934729159747595860301567206522383 n^{2} + 89656008739042629237619306248215664425754281772544595088584054450799964903525393974035138187704058094482816858297049073168616553043715883839915561916 n + 930534300359325467131072206746645878111458502886179559946771982513346041902216206756148637617003174342158278349835557058059291799681393267130317761580\right) a{\left(n + 88 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(14008834413664907092690733804590861609195915164336020313783333558735757962804592823877633154759833537290561660419951147314315606616610080958 n^{6} + 23163965987896642337528613372692031599535990990119293779681102474982738450615138466946732890118162588978826799422200485314774130460341367723904 n^{5} + 15958232775152140649939595316390659065589965093316110158658066190925787468539077603733880105255456851563055004059516161011278856231774366280340275 n^{4} + 5863098989957932332559174580428543498107352755360625379184330833696059700856627155173484701305996836994753875429282625281843494060981743995109821770 n^{3} + 1211612167754311294392108899506449739880816358883368875706657161918414789673785077703815343789102675480559087898047670731818800266917488215025564754947 n^{2} + 133527218404408765748452674834994535051638952517014925319917829194674423909278921477286369343017541423802960805647954679687148569000771138296741639695586 n + 6131057407248371458573210370076965420980593556059799766562854670342897627928019141363349211462778252792611844484759725056006686242370583935287682690688320\right) a{\left(n + 277 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(29522882720460905047854782620133272508010890374948843638883671339792847622192011932870801969568936608809402274882162113414235689730582349795 n^{6} + 49011234349685023675186244462366504409217158243417506384425833648683156837548326057436652784353731543428956362978715145494929762211684749290699 n^{5} + 33899675250674850856435679707540694546458376548813595790387831835545573711567594049042892488849738125192557186363165913384328350522678324530078905 n^{4} + 12504550641944328587294840613786570759928857000383867326269316852978278652967061902344610946316606677029130904215610282584178873666810319906432338065 n^{3} + 2594398916562389955756927497566021066598124226660330391953414802929239716576184353274436388171515123368757198577904671843157826761636978579448468460260 n^{2} + 287063109305150814245099884824641641427106243589663449854716460407372418349655049373195070504968322457537175864310675994404662969353946502687401330345156 n + 13233650330236226391717921434701402133659361616815363634248835312048741613306413191847421354307514017299912546078019534025537812422763969302386989260225680\right) a{\left(n + 278 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{16 \left(102856231347745101393554527916298252356713460771265599680104981623574423975392812311608951304930625198478957000176001131013564427977032443491 n^{6} + 54101240106948724781812861975899595875819244857729634133971365014952976167789440078258011397019449228707262361472544778002017361480308258854476 n^{5} + 11818967502645705805465825446923208421853042919798232008146558418507006510675587509589001853932688530000482284461096334794726111049215700122395510 n^{4} + 1372158605574404788294940881407387940362459004153213827469247497931566999022167686826274574604922675792612991578908122720693810875777392723513678450 n^{3} + 89252519330924839809207967478544488524100400076312980936730358851523046173958967649137473732091079191300340937471100692362900520710423985358387156994 n^{2} + 3082330724243972191646187254493769968512445315179641959721259932996936486258391836812269169343199758280558547940638680231214616591630015560362849321199 n + 44125918326127791491724090120019776577693533507770700118714966947476472825427483473648611673524935101142167749506686614404608880528147281111479895302010\right) a{\left(n + 90 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(118050839114561537146245699291972508083131669594510942074796579640039414872922902652439042394501719587328851181182718619444079864073683118328 n^{6} + 194418862121294770917895932145916439686134712298455703695787464980473003886267624642776032530574745534132804921728555610020369595726109363569831 n^{5} + 133403252924742746224763503936353131969714479533635462545303630706935918362006051003781621405253486883952681570040900209566460197636990160897329440 n^{4} + 48816056319362280505315346486717343920435406047763183918693071368147065167321986185151601446928794444189215593844499370807724993978516357105326247225 n^{3} + 10047327915334283165416024377453754160872733721353866132163456642013861252113669145811887142833963327941007047050689029102423864930817960229172290954592 n^{2} + 1102823042734875401546330777360622915504907745535768122841911263485511450562875863349911651003852630679558730077633915666761006269070216938141241789480984 n + 50433375006037740152268340460126146801879647475078152206182461612736023589529564042897568875760801511807835044391732725856249231038416006369868001564252640\right) a{\left(n + 276 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{16 \left(123163312266244069387937780408064400577833670714564233595660861075820033179145182772609124080146347545910045902413207859471539655693279910631 n^{6} + 62357127142250328770923017880871420123975297851486220261122673070818963578633738621219549712838334694112958746603878893922582360346954767815878 n^{5} + 13072980348895603991811765203953009419328744191440945300957459305435336843844016401777144631948639836875863703709191135702682745340655445139898525 n^{4} + 1451058964514496708340586009996250778540545812608357557769988742299301013443333355073445010517131472277654597906792242783952229147477346211053137020 n^{3} + 89810757427189476729568900827776248719684720576136568055741214668282368429944245713756729451803173231500799040920246022256401029446369356210813081774 n^{2} + 2933361312788142762767161394612834730040938430607363553561762285785086056510985159137152425890794271703175565233159909839740595561145869744577815605912 n + 39397693644414957589309687003404753116140947667916096871457592388719832674858158456976962419255994361376346938830634826010056296282025783792960830876000\right) a{\left(n + 89 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(218139065705145948929240894843966455385137568525663237305633998215488413982392127127761503898169572539188051797242314245571163561564870038693 n^{6} + 357803913692615907584177453396187220186348904193270342982828886958676164727576864205448161997837068258083568773988218356739272669652791074267671 n^{5} + 244519193078000390702238308439037073369789402614908153368713584626637924574859392378822370531825874638230603959153278715363669556461916261450921465 n^{4} + 89114123583897921171059263844557809790639992653626442000201993524274375547213721425313802962944024859601323434851501954380053622933792617889319711305 n^{3} + 18267080925639188982369539261884024193587994733697881784288751593225891546311658778322884008199240170722450613078433248004033232740111024973879092832162 n^{2} + 1996900790055972752053981796281748425029112620237233353798636672680612410093219563030867716638187651894641476010255808289877160169355874491787044643248704 n + 90949028120257294858531793935955953922868507854824012213104438799285064917389344327794653190985630045127161582493451531495989858051119979270179302935795840\right) a{\left(n + 275 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{4 \left(539581760003512155088770808346175626946686779270528822110148169231709273526845950575913329319307823678811212286972909810194587278546818144543 n^{6} + 292235597639086880631517600965709784466669854623797031305941171425267455458086814834765991629498715598268226149372237295812628193417834242822441 n^{5} + 65805658164928266264202831182448481875561760007709297253122243430358935384241977241428320608527126130387629552794297023108482195910480892428120601 n^{4} + 7884878335109948482963336631595291166971430609689372477686710158719929228962651370579155131955655196860365665434090009605436074036551234731171067169 n^{3} + 530124808505672317859690349488800051775663952015888746300162686928980491940965711070406738778737898236131170768006052354200576459214322512799457940036 n^{2} + 18958380421054431252977318803110622469016696395586127609545010640648080278463044507166645611382705416097914701750401299008566275402024300964119421152894 n + 281676466198021929786150064884815373336250072396693839716444127109570244587455873653389350774147401193957424542075274144186658129980691915017763381723748\right) a{\left(n + 91 \right)}}{133167521920186378125 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(895038268085860478478672677714519362114888039401164798649858494767514813600321253065762984007638981174419794546382457153948176832758743202231 n^{6} + 1462106506001010049149588520699091195613120584399134650742153717208844256287639334369503653126298842180214702123484164291225364824501155150276916 n^{5} + 995107338832476158915208395484116234045441142383223809750720828019424732813117592832339298348138047533464489127337018650266833262077792601141733860 n^{4} + 361180079274909559615664747687483440682613340536760825841242748531825268431283268930606766795309147322435950218936401585786601706674370256862621181370 n^{3} + 73733327015988389119486073617807761304015701331906365757811696581764433370795360809744529056921320976692580217578396410094138040407589094897242362353169 n^{2} + 8027229577591492747909184814731447978721627802564209082062887081425541238083870033216125682503557011432803638717168423375880966415023244961493453603039854 n + 364098418651519803592131628532590235267540722097230614163548953910918011562245122852815075549512854408915934939846800197511276846463976909500762323390114680\right) a{\left(n + 274 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(2416365189521269385304514225321518459300845647521508566217982791999238636650590454952894964307857329357907043544289781943832766909598276934004 n^{6} + 3931051039681543023904111294864184645336082629519651387301967370628114693260277151660133512923812733778309490487306652518487178405957707181372331 n^{5} + 2664436214727012295553041110687184304027578750022867009701009939414317283002386139354059188889861943078284198175992364284740034898274877966403454465 n^{4} + 963078881740656877081443514795835023181691833788207821581575731924385303603002488979327544495782560002712106669288863141532214640661568351663911901035 n^{3} + 195794931271594920997511993506076468144085966862719549976680450774454676956457637590686964266514437450860753672367033325837155158636419727498568585399051 n^{2} + 21227538345720718067838229810373649820027386106133622067783507353766387767141075501364676860325319900740085108171079511475297678104398526365476622691512554 n + 958839223772846703763988908331718159113998091140688128227707850047468795927934788135473074167029466019490960675256191167240292708444524847043332331253154560\right) a{\left(n + 273 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{4 \left(5298922032051239286402537917887628076475478131506898608536577280932660970424399118143953628778192217629417510528041406843932744648261217207061 n^{6} + 2947140739531841317344455293172418759240238488967856662378991978068184383211125962960952500904322282825313996264013759101178966370804561457876918 n^{5} + 681711206998006688600837338633867478374492251498887761382686975888536835314994756310334077310970812992097938873137621464356703891734849327894975200 n^{4} + 83941290257005378318665798358592900283766290454075550435765201965074172486658892207558648785169244272843412392044538654222013636362762597227410928400 n^{3} + 5802611682833165303488234289769860283774608626512664641774958507480775944895960040669299076532636586041212984258174691334410871629867553236588217991709 n^{2} + 213494480549863918926734934377957610266314412555728541016307460973954701915066094531635458450559007433944485737242417630264947069747820127892049298537332 n + 3265983603935000695904374011345666532159066916244487718532714344269852332122245283404123775274758243135514364413571882944230668124112291198486452811232860\right) a{\left(n + 92 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{2 \left(9973113256026241098096461088494090499741715868310691981094709039400383523477886119692387681444614429788388208111191539665845845008473873683098 n^{6} + 5884151312976049220812519755006455442751327299038013067377389012206761040462839456450780722070049722155758197354276624952677810996085873613993641 n^{5} + 1441921103712849431600653613981759071680005495217269197404162138269334779066120524168324566543794998811541432298601446732024272606141102585151392340 n^{4} + 187891628192238874379388891016208131358447778819400367114176904526417442595993946255853474871005787067456689495118521887830504774922672740637152781100 n^{3} + 13733551667237619768250518865637651596639063834058604721351895227451532608235051314690600042669278779105814730524015423416555648096024612603785836235987 n^{2} + 533958719178922729487122752588521555964375248529034021406202329961459509546605444567688285731782906037922743815440032586245184361478663641644924395983384 n + 8628270662262839889781749433336406084070382586008857259814055077012902012587276189689181777395862852114597712667724031102477451230218684382173864501202500\right) a{\left(n + 94 \right)}}{221945869866977296875 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(11291281314843126182679550013903426631768623177246886897182406653226007953665074848198981588699843513436456614474063978639264924359794213628881 n^{6} + 18216007525106365547545711722751504094485574662216847425566737963486760935929613719691720758757775948526896722196499610754930493401254441298355911 n^{5} + 12243534805541953674993479055794423170315873164840663583850039235961404858074604019771016070949886077447576932482031020048597842562869410848162270115 n^{4} + 4388471386379984574835013711587536995090651737833805886245788639161109143601327338021016386207909967948110701988828657513547829559200106815770334252525 n^{3} + 884698986523225853306257743651534210345660986816382168987799159224016719458938859899617365588199298156676460116082772825200631664755772809585187255997404 n^{2} + 95110607382124558450974345629462011236952134373528742568412709603547724863631610704447899220818618034105018426882025618813728874477960608677905804369794844 n + 4259932428307774659204055536235778310784063812875719802084782900087596287038902376341647501680204423902394122949613411920331597578297657463401843972794135600\right) a{\left(n + 271 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(12878048536821713627190606290504328127765852831373255534940175263537750105037582015475429246351424870503137216793715370499728267968737450506555 n^{6} + 20863503784763386964507272685604159246203031714617793006423380338468808684978029130156960389815568837838474252221659864266208890708807024512646943 n^{5} + 14082238326522775348194269754132333268212225180755102789319091804251448748536921672161654879435524250029754461989590744217569586238759054256719851525 n^{4} + 5068887617539561529029335356467671379960210972540215533261185279492165982188534765473806178038210449904920463953685754892897562105125769013958379949765 n^{3} + 1026202911450662030073545740439925290916160554013151946942988269554432455562594115888715562859268417858058449515097054200588806750284110214310882725353160 n^{2} + 110792124882059565247069452484659143963841959268315184390002209162752024498056175330640623524400352779900604175580851356451515877713730889771173219748487172 n + 4983435953262952173959510702795362826786025762265847602337041450161412422484639898528984804841900933307110397195395373327967067161768561453669017212168328560\right) a{\left(n + 272 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{2 \left(18828375407886935867003570011812653287778392888451379119173372704327519495390514737517367883264467577618397646410028682828824205213662814299489 n^{6} + 10761347420614204484283014485492360781143717951366718799277716956950181146258383028088623863932668650339543116968491619785238493070063555685560948 n^{5} + 2557407122063108115596398208859669774792321155995901358678594321418488334892427052534977367673424829690988837198370397567940303186134516987692439145 n^{4} + 323474450032278089160933054621775063382624671097724942528972460577975735259885308022166978988654622651723605661454038821989273769254767722265476790150 n^{3} + 22967920787424833447787903679063904981705399844730376493500864302978628174648237520695638866640116971667440526256965234883204694438236590876609079585676 n^{2} + 868012001318177932821219749820277111426772767638896796483368635326727400938194878560403595685327486392505389529273989080855422508406757218071261040259932 n + 13640821929661906165434982492868935752691694087929282279342644310110291287952610867580503192807100300282819456397344350120787280829002350734386280334889960\right) a{\left(n + 93 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(23484713624358575435634522491811958277982012363371827073612294101173238196016184133894603426025893871619141610243624834772542085943310396671730 n^{6} + 46800408636291999094028195787058437799221128884064497002585447577717476022105931724318373652842338985016265259434809978882217235356649269647190846 n^{5} + 19463390286176438227013858814241519800390098295186464334854724809699544743562283698963173309359634480586393658469634512212828399904025846846896966315 n^{4} + 3575939534079655782207612834316546848413047875012526031283545801987288782301724786574603894165640032030325096791477850491435458470985523538357498833710 n^{3} + 337755536516650674780972686675690531812902432579913417236241436635799899459364758809767731055213768984190946461325870331685485606685822775192366446004595 n^{2} + 16135361372810280323960559736438344713229966023652988959041466762286296036174321124247856977147138870430038552524510847843566209301927526798289690371448144 n + 310100647233433208880687099761457273807901751624199439953274864650635899101162167492023128696959449545347103286776193667900502285212370444997405814561906940\right) a{\left(n + 97 \right)}}{1331675219201863781250 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(29317118077523435327851330496450751810265383411462660458223124433876652058186790636999981372546279661308320353911843920863147672240684106617209 n^{6} + 47096099887177775728339279547753525973296695477931019424548431256881122760068974998435753689952879518795924940624964058484853668044230260965605191 n^{5} + 31520151314783580518842343172644813363492038971305879487127708277553250352770825401757577389224460496001095069992851988656110666278506918565934717155 n^{4} + 11249685690985782747629360646194397820905694191116675470035096249844856833943277483825927167919205463689974070683571619804149708480675026490851770556605 n^{3} + 2258208793203804308184463227225436071055873466691427646130150479522451932603885226592316158396135037787419740507498089677061338549309773132014704323107036 n^{2} + 241732280511468757200624441181898748132917661488335973050443956980646906991649138925903394914720018825560837339585856364251027944784144933920565342150617844 n + 10780554333134242670186255335625297184525295675515995849191049607233775299235773672587134501226684512091905522995029266944858200132206990697980998245928508480\right) a{\left(n + 270 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(54364705692639586080467310490867617171116429063397230709942549601418854862418373710636112842363844328249123550892788439720861805943688309860691 n^{6} + 33545130892309178572465053880124749474509195100053783271418119642647295980472296585514000588175599219348444059470324385841648174646062661944722193 n^{5} + 8567225416432214615497200516313938600419801310170564643933845222084032835066158186437662298599848048150957680033449911217778313443573381663613366295 n^{4} + 1160189478266016452367614618971402088967541814914246514928321730566019513745912901096900311243205189233348689943372101279547576132885255424369585305275 n^{3} + 87925192461702986984944896858628293276750078467629993873227662514578933728929991240881706418811290446882682337688741466801466401164062567686868921372354 n^{2} + 3537578452473934359304255360476559289770388982177708817821534208725908157465780370387122848203264330441174040791330453516178184361195772493262014867466072 n + 59059454134326218833004410898894732066115408216891659559662739732517428370289221081400500095429423063869656120347668758795399253918923145226671876847459240\right) a{\left(n + 95 \right)}}{443891739733954593750 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(82366003214402396291353636052510476514983676017111324801023992469497173009536114493668864652017708147664918574736388142004071242450574207703158 n^{6} + 55794382538153395623823732554244560993997533787208042567404448300297805274696353554048737773932800350157976793905216105347272652030101311591952630 n^{5} + 15395432573951997763122364226317163601475262420009284393096677773509173472148291636268335795523150346961594261161863351398785960093703127185312804135 n^{4} + 2226948006640532823347214706362332764570915391497160499458821326325050082646430168080148286388134058328456305507034457079915807944543013358625528281060 n^{3} + 178750811924389713873324618665378686307165209607501157111603822267943336546753822957287464108194344132275617566770012506481958311262604039762249542143747 n^{2} + 7568225601927201425567350288510964148425313644720628766844768310607555033952455160979864257198766927839193160742494685091343994901112807920973395012108690 n + 132297008039084423493882683888328085926254717417194978130309209176870784922565517904383827237777173075350910331982361658000249114775169152022522173864309800\right) a{\left(n + 96 \right)}}{665837609600931890625 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(112705618729186561431358929544406921772210183569534513312474501229298394377650671516769327870019921670052954079355693611865616609107737713654823 n^{6} + 180278064411400199513162856528609788453970273664071123984918691572860475278800990663567547876928331117179293039407436482567527342191142300239291769 n^{5} + 120136645192286215648330298170139023328642342465972347883325854786528669447135713925836005580751693416796452054583090983421657614770758854792630835860 n^{4} + 42692574362037368053545834097374552214181361223980564204866576983537746825168882613164486531334563032627865442170813986472321859989716863619295609802065 n^{3} + 8532890033139384527933062276417397299530840274108141123838133635748525822558294949732962627033330752774532405667097431207472460939083386503678610095616177 n^{2} + 909456677668797808071220113098209290152134688540722612230206505373545225198184338907090238456969950153363144479655481766006867143197930676919434964423492666 n + 40383024263167847622194223809203769266615095169271191198871942500457967840065098443067787268087503899718066111703041264301030803334650940598696884745064035680\right) a{\left(n + 269 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(191257431835667652726243911902789645065864352067000008915042838863681752861152891605345010035982414161383210301182101504469705856218539333850439 n^{6} + 88242776479446468557491498685553498228459399511466780068556284699060844264631283586430808124524464345145308689844243411837440859701881953879742503 n^{5} + 15572328387616777497395429775205176933921035552425768626105999078513662293540921960866388062408962711698545128757351469571074627281826423441063034650 n^{4} + 1230371996779709204558744121398239575344072945949183335334875682437507784378564396313712533844016917449613141287142658567705158107790962023518257161936 n^{3} + 30312239994190477338681196528417222832941333600925431638513567394996958170614252244476544810144921781669438999786622609989596176181733534765702381845057 n^{2} - 1205341024331284525160618310036376163950667176548691669950643122385717080662277484977195033408091779858341930629797294588332053326172638037882957217544795 n - 59347010472992468087912109649929236916466695217239029446051389852255212821355145799627286705929925539440901162976474432295273561806913890517905041066461990\right) a{\left(n + 98 \right)}}{532670087680745512500 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(570214261289981325460116897273090177869770752886388060010866063391204981825678654535377077712845802247394673850702862948160129230002342744311241 n^{6} + 908129546777179274431692499774190646147459813071410684129447526518913691336640991542868696607100168375405928186454683123712290394756755771402902587 n^{5} + 602542895862563071072363963757586872421610224947817226655252626746445980080213048619129944003369333402313961728669987187459276961196234726203543785585 n^{4} + 213190257720421367434643819236651136156139098549932636111344255481771876943245331288088956336552540459940583882447174540435978549977289175704211868697965 n^{3} + 42423699287588662963949556547062269847253951675052835543157501565612967423960924044303638141779501378571524830971891974918701796058423240660119407159677894 n^{2} + 4501802648715575772220825742033230270821479218629633629737257956698919891607324727559452245323932372892167380679158690982480729762097195229167051530433075928 n + 199016841720079367036772690515801087134067756188439542982577080518019823639229238732714770516857739131715823806614237862854875804151195773337720080971019405280\right) a{\left(n + 268 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(1169055781351799161693916330715165733258104399489914528053384537971247976696605639269884078870261553653626003837657216985704125381087012189931827 n^{6} + 1845439223366115127126605491947023424788840033286647774539635021274881521795064527828713408977577826845940554283150694805777207341895747959917323673 n^{5} + 1213621448238111035383928129082741101027188359974014067788825648444951125579580186629120800280879088713844868079024575663911677356569918463502517910375 n^{4} + 425592662669076478736139005936419462918418290467046750479247501073589572466708783479257867231141232915051551460204290183943856461543847583864853409021375 n^{3} + 83937222871283951604660832866340144491415810456737315116529612154343454839024072552252328219842619182862609897173594358085946354331324326759361706534612438 n^{2} + 8827529166798499402129449878045981455682986398903463662197764745980408997856990222828392663651564508031340814603768035317128316753435168732074359909086476552 n + 386755162855629436129778537758397308703720469909124376068238646347194076311631543266552310631654918621901430140170150361045288534933372202471270287288677318000\right) a{\left(n + 266 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(1423594293018735826811786182540764007393181312095868631398929516502659598626479685748667166891653540987085371883794223639441421892973183011237995 n^{6} + 2257281150490829978089092543858915697395545981501489194599913502939870666159971397939208065228105214819290413872016831022109421574990393745864063231 n^{5} + 1491111425031950637712316770858595871959914985364776048463104290010047220984103502695523612855925269123354122706169970709652947493580153714252229292585 n^{4} + 525252562723789902502409667423123842360312915140467708328980882649722757947931197298758890565651404378507185051312853865687050813772603067221125100687165 n^{3} + 104059634784441181565559749543488749220166977696972134828833774449872360275601704605493999680547569546054045594241677693254103366056441024467021791949341820 n^{2} + 10993277703427862720591361898081264337176031857645838639874738461076121902356188509781814660421355490170043276705163106037843330495058218539496550642874988244 n + 483828460914408329206900822680393620989553032298548768549698177911433695074452895367854858072972161317486627984344919548532639744976709148458067356968262187760\right) a{\left(n + 267 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(4262202708745470892172771596880345547107642130678512187479360096123553374691638187031338669484230321302862260669186310469817371064511576788754263 n^{6} + 6697871071590888005561927430168082159943583186260039872696536191087643630596773866600932559607929930965218768764623084905177022275026570288271517796 n^{5} + 4384818854213783290333291769698004763485348267859383333342340711977627555867529339441612663112132333752820288604840224529861643436119522413397842266550 n^{4} + 1530688743714077962965023853811802704331882929089040806275742550313127337620787152309058681232854479498728223401575186116092631948399241563847031119579650 n^{3} + 300513792403688757035426291016788166802604778536176854699399527803010841118403768008043568971293660609166720117663748889897431971381589785251534902120186767 n^{2} + 31459982634485515817915305572699207045883690418480438524669524123847463768320080999733906475014575644181434215205212142806574023325743291613174570969015422494 n + 1372009473527578878204513504792223758415555737866142422383944892239205950714614083956551209064922875539860900329117287752422478238284856600148445707116503472080\right) a{\left(n + 265 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(7061768548259255111864888277256677986944031703907242613948312506364764647150765725602785906367926162712875732813529115623960362684338788052375457 n^{6} + 3787298997040756579689131979331226313763168080983079294684035269593313031251602522078401452418182475579387581247796460186146951835294883356449539319 n^{5} + 833549539586255246879613186892525456415774045483254589579878385011651478043867440604285055257297321803692355361292579298764288847979589776638016736520 n^{4} + 95941952859460578063326227108478384621798698746468648125450200621876764760900812402030226375250752691360917518989083767773792722502090787998393727407850 n^{3} + 6049965520784522962615500493262332521857955638404061793595610529980303050760491664776044253843318831335332461637431513110729720947918652197399131844183813 n^{2} + 195989280995224776399981929412797799218113451514446117133073441948977382362151775074575497889063385813050456016715311898516905183988280315472804374446743731 n + 2497493214293205247713698853324572724765535823124559710092092286703581974649075698287927126244349673864953852433284667447941055752512738883304419531288911950\right) a{\left(n + 99 \right)}}{5326700876807455125000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(20436269392606909042661076055264646567121428846783846877835099410836466907230484507255410676030870533834530954556986061775377055567561004435144827 n^{6} + 31967789776281441667467045342926259743316420050159778163476784726819329996759762695141513968182259382697243812477582616203788750602542725449439749387 n^{5} + 20831862671998710869573887038076224486818485776707488969121899880251092324972662066192570034734464172160133752574108400115424187265291517952521114583245 n^{4} + 7238623365257537806147474228237089049388008864073173020156148281997061925821065300324327512741871348703405199355394174868816184003235027228793207617912145 n^{3} + 1414548579242421992431383885298478571387445630668456635216735389081034547234226208986847613912186833362880995174119685683015578281473873337546427840060341048 n^{2} + 147396681159983492068661838573536056007995074675847613523765067115122617258952246122594353193265466033425459487413811165803928234473294165259210129576940401988 n + 6398131652755437634025481842900450520043296399938265809091546458440153844568862464982090045374684810467974506246628529846836754667283958057794794980733872417040\right) a{\left(n + 264 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(24155002465110145871555626612463419573183623295763620240750171651566826212402729491202604035662509708620957332897517029165429844820179876964964621 n^{6} + 37609091183825431672686908788824166495307602519732713881618650620535086924241437758275246068672924491104839292931388662697421093170353875439674128309 n^{5} + 24393511398622892616624539979525889051168550099651910643711625598912979799395798554744629551293884680017691147744501575667716412913598204523577593039445 n^{4} + 8436436970030107887511838147243217729646936392603009344056959521741300050125347695140438574596084842224399043152107501972112182721371538642197781260821535 n^{3} + 1640847942551325413044656398974194377392604394653317926094441280411636144227948975664755433716885146642500289193587386032522053736202928881935912815813804734 n^{2} + 170167135305567787691639403597512914939861250303277566499170718670227600788620007025448829477237557051975598290745209494042496182978791623036498313503583225436 n + 7351371805999765127674334187623936287272023875825169830212005183824819870861448668810774351240994348280987652530995844766187005095665563511776144816577171819640\right) a{\left(n + 263 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(36849976175546062453861136937055376393073779373577903948732759740617628227452281038595407554336015404579950545664398136028613257805992183936606641 n^{6} + 20863795694318385427312518721893470647699900070783751362077455056593512781768110378719692763615500119798935175476642696761318450438910556504367141686 n^{5} + 4891049743190832446702247308092875024832430956951765945225851548084321067079477150623949532784624248847764423317365200344041182242369386478169446294160 n^{4} + 607060610122275103638137924805402408359053630860666389312457470073042082639740298941327883441762463536919209500058199946467156078643217494165988880271990 n^{3} + 42018362670325579849825264663952992566644098304893783836417574306327406331511222719112784284569162283181064970049463810286590010409803071416912584186899299 n^{2} + 1535154136244490538952248852428726065350134485274506269065339419219699320283415012565059286644896854060112562354952628301169872702474172176834201683580791484 n + 23075403560824722539782393033432335488781228799174202394568491686524998715721655425241422809420575718692164562618241157417466697417100150130068922321017172780\right) a{\left(n + 100 \right)}}{10653401753614910250000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(56283575434906209532758594784173239678774151548402312033943238134703832414809047147527148597332816021180533355478115553777187495266164104294303974 n^{6} + 87217573986436966560323299956265160738188992501456702613438943939741781574097866107712382880267926494995222411042495022851188139610682772874287383733 n^{5} + 56300461149440834336363825557071221841442462860604113423006514447494959424664693300235382897400157676024246550061463105608240709668490140364515103575285 n^{4} + 19378164566270149487662512670529842033185105722428488553975833219824828001329469356875832655644514113717961223184466159205297851358979062410935864813983125 n^{3} + 3750825666354839411598329356466343209197669109589919364332197051034048987845132437938014383270162138550431294963490161372654662487830311639313964923837719221 n^{2} + 387104082305265018655173974595205319403447208796225961058411043066865346738984612010671411812566045255664165960021894042174824421905260461588248979400276252422 n + 16641866081150015136107816196731962636329100886770645945924850543979931286898192618247271680420712826798872825594726296777394962834452045687133306282472957334720\right) a{\left(n + 262 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(164492532623897649883537421655703654520655056199852576272638388620909956845095679514072783875392120039346464076832705185127703572137281076964512215 n^{6} + 96333884802035484321559319151435741716259883560643850632942796455570926453260802661564892537892939616208271607668271826631377834643402372912858491658 n^{5} + 23424721241904570245642934275525753167258714708067465755687196821137616783624517548536657762781344735508905890829597299023093526828803915986294269679610 n^{4} + 3026136648575141760434894743173645990012204001750497738834389776513875386851891920940479569503751825016702728931546862811421740444214677528170151835589440 n^{3} + 218958010581676040437549326092271383711194868307171370260443504795226476409467167681139790725502222735772104720193694189901186088244362525320309780238306615 n^{2} + 8408998704239915021518054726793111588486684044863753916685782662401905904905602841768379358693791400265407291391547374021695503422899675853176704496001647702 n + 133830605749835534599420039696281476126107670451762302612817195362429402111110096731773142640893914880331390425940007401475790610961323768013398388784762484200\right) a{\left(n + 101 \right)}}{21306803507229820500000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(258426272885758538257186008977423004230558613666326374948737647718451370268073332216459818654880523994803795357860618363876531324899711971052050921 n^{6} + 398521266418456119925782995756502193606100963634383770040793765958721137969531271800715502073366530183824321963765255060069007060192446652658661696727 n^{5} + 256000141900056101139963538837594403063483999732964167637234215157405533741813479868292356504430024778494542769919681299794368169945121365838647402087965 n^{4} + 87681781736951349306407396441848357509002446669805492688366150040725619404206186288997679255798455595402150547674343113191073517536470682817139528398480745 n^{3} + 16888039701149885480128326777798372597816468857032017373735845225373115165751116448626237241044531058724265044507650219452642831670469223481594013545230454634 n^{2} + 1734292403040623273510020466167118232294455230044636875761611669026006992246928261216695407927176399531995437555894450395268443013728657851671694272876475040688 n + 74186476756924514770173944007290938054565644993772343329378268554521817208366402371709084141237034174147663965308454152221589224393859883943356003480001171340880\right) a{\left(n + 261 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(331718560757297563512118468471807573616563266858673775362918382274363421731474468076296957318009211334989621295189542329312652042359721300911327995 n^{6} + 199434653812428135369483120826233794107918952734115430955366114115674552484453420146570617644026624809862479182957355251516549069345346800545560967554 n^{5} + 49842835301346341346957856763519902428112043627641035052025399132821493046830833435831038135489240634139164275583325369452424936380922771222180856309950 n^{4} + 6627131296643955304000622013878675990909578827732215538041330175114719137189435223788016709342552586653644618647223265692093669859330415435662253667842500 n^{3} + 494335941112292358795287519881906948400696312023246027908677326139558798653329819323477692832541449773629156723009248038719292336089943978648383426671636975 n^{2} + 19610377334584685371430846506537596491326402790760141846921422111613193521957008838581201026939962377149228113015260760275402682799131772297422680253337502226 n + 323154069408657926364028427328544515921674191448779509169499101316446814899944177574862739463497267354897283233113368894656394743038937601399095078083546299680\right) a{\left(n + 102 \right)}}{21306803507229820500000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(584237099355587264718222926698755520572735911845316279062856684110763813836916929498356506073940416836134596017937301741493037322150370263407103373 n^{6} + 896488994745905050266094496317858087388032476763798259605616842980594746053728902555833375902344396323152966953899751741035161763381398187995349437759 n^{5} + 573008162603195868798626323111298870521536916123901619010472077032008930226211998172270187443818955599072308463217848743898205640921329613618065326111035 n^{4} + 195273181783112991303085650787002148373570461057618606576557645103234132374990332103972712238659928517007246639817783514152856192238629821942605868123007405 n^{3} + 37420527387190855025689249387208543467877448472935730276251241881597084917886475395881665804167097584716013217837764016825827299674464368895584638636006958912 n^{2} + 3823265487051943445206901573868081923449802453711959046219886153591907623142982490687483712645826434560891564226928329946266153314258976610593346679744689044956 n + 162705262870356313460868785118981869404894461187409732816223505085963583466116082221897617419336889505109056307518515778256391564457982635444151770244526913289680\right) a{\left(n + 260 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(616702736428905025667306725982465812481601131833716477647993763972745876466735766225825467941720593361184091382754247499209557572976913290893925365 n^{6} + 379346089375066453590634287208488460580526804669716410051923368520522195081225257866229464418129013114341894314301252523530319680353406129073221780556 n^{5} + 97049728664145435336236114091924913435983575504388370670689015334198012196247695619326966455926933368619525356377814558406661729908280130116404125679690 n^{4} + 13217289899124238591888164396187869683500646131283737941396011065916491642249533129651464563893974134673633492944963909074722810721970822575218668796245620 n^{3} + 1010600547318965294457564860631829847465607650355356846316324611599242873285841292378388315174016653624443250936888160817966749388068551348223179772612608445 n^{2} + 41129430699171630725412782050833641890606612947811295433860555568857148270143207151562886120297195816477815006515466585953880060608510937881862557257545490544 n + 696012780981786570754043662901220300887256115953262032982370517611635084276413505654010032808754695101588573450547343754766746771712248586227549528553936471220\right) a{\left(n + 103 \right)}}{21306803507229820500000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(649944018313807517914985242807275065917506498721183922426113865728556448930148803132912313763940843228979237309932200372213913593108478295719440641 n^{6} + 992228457078162709152989839895686349977699411997305583338599776141853819279418675372095502294938506116121118058859714538330729691696225736342830608180 n^{5} + 630944097905172562200022688452789767269005565247535596126560396639175890172072579464000992644770729198594907565324473607251493434094399592099775712920100 n^{4} + 213903877403291915129834024898853464521500158984156349567201209732107507751743497331751608093976826316514813005711752540749697819273720073041064025715843230 n^{3} + 40776849153456577083400588126270632337594504766804828268340832002196908319537049667618568175247878862606643702089968906969591341243363751866475352823685550519 n^{2} + 4144257067821521754731995537850341990973287424036174144481321312933919488758884836920296102598615440451090149543096273836857625512331688343779684911858012732570 n + 175429260127625826685793693416400006468616089521188485441919821482225301933105645197533834790448083467171092975845180305784604632165800863839383261203828015357160\right) a{\left(n + 259 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(708222604953739518479102741038264925470606106244701120142749736105649603386861879198092005538146829570013473747593764761044114276222884150135308534 n^{6} + 445106348850632841282823873367906770652619610825944669704682087278766695348793371438255952411390481859210841402403721064674006530405433247781419713126 n^{5} + 116366576465917654340500570477409920914483938450767751276015812681832479320903063209414499411508012955891079702208916005346002952164951042938472708657945 n^{4} + 16198633841362658702751995304589594607317559825420054463329882110597745678227961447737944061164321239870928035039490684121840101476128722216178967313119240 n^{3} + 1266309576904325211210055535971233617922604323405304785156355340191047856793388015440624289154145499468550117521875743433634133854172170577306744650186668061 n^{2} + 52709341990413902122230965141688819552889304112797337552696453982262090296685087177026525609580447425285389573213154821773774642524610036305615838777340335774 n + 912655464057779756268743806444440300513137824584058112734605556882549551727316282246925441421142559547125878848983267654358461223136613374723015616140708228640\right) a{\left(n + 104 \right)}}{14204535671486547000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(1123898667723195624923518681305141204022870316528506561467214965397509649268073756233775499270313591085486236789064086762241249522027285991338202003 n^{6} + 721842104002531418955872620439268558708746789600053372574221192027059053550437843079631322163147037411776226213758678327215324269146045748278391364623 n^{5} + 192827101944574916627570955439232434575560034040583793190898597712703519234724348003651980997834238955954458382362883319146618952350982193003966797269425 n^{4} + 27424831210616832089455939210058643425334029835137951793465627386387274445069656546688349071283733185595011625143274921981761055135175625073431545291672120 n^{3} + 2190375090010706135124659950840535260785869768820757116385049014212507718052531313556256340055745633977416218103980740201168760540727006750927494880664953722 n^{2} + 93151247594094200853822611245548696478361323693164968117292155333962589429489925309373685178102584302724845029791664412535740568004526604019437514605073512677 n + 1648017081095629235653573615221078506403427092295830795587909696265910341113443022089341780983870036408339402263927345853919634928748445599705289908061394656110\right) a{\left(n + 105 \right)}}{14204535671486547000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(1288877048985484680003916083398757700073379651863794077390486621550183034577259324129576873530990891956457216958679063016289346725587480814001889925 n^{6} + 848002768105158862871875081937803388348615946805822941814741941688452082085678977298590484967268168173109787518557343578100460648801169875006115494275 n^{5} + 231922473003546290469859399086331976355933204801880859028696535469284182873905147030249242880494856021743211776557384916882738906218911232777442103833383 n^{4} + 33754223332916839743617730113319388557726209173697417760516037808831088639155277360453704383835916545199619863257095921977298709329955942652966272099679145 n^{3} + 2757639276813470313113091141335023012051182787137464836116776803857756651067321666511956298573161657610970031892144379108116717849189727008260734677050556204 n^{2} + 119922186866308860391141195760142603512289489544275221056505813033739601637403558318320499684205484416460824252797349185311373734442003149800148943644661136444 n + 2168952297851248771242391666367611229009531070294248085688900756486923289244797801136381416976958557768578639408035956905035803142322462340462735102217666500832\right) a{\left(n + 106 \right)}}{11363628537189237600000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(2844298583230036227636356025482020513718021968574671752153517532752925324248155185222269820829040153309581824178792294435139408714535581990930863323 n^{6} + 4319338818381765551639428372472411413392500828253361275902347610357065504762072903225409157429275626557083834695405068594175481997282725215578836515209 n^{5} + 2732013155826070184686000590647802407237372158154395324061026140980128029609470812677361026171856293913073448488329583691870071345288691891251421055688885 n^{4} + 921246241814892073243228721059004018682127112542145960319170482474613987961196106473877219337069362168545691108899265317537224977730804655197993901713526635 n^{3} + 174668096464080646002752505020397785564358580961261415413095647992686192144822530803135245927184909616720530216338613410402564739300970547528995499207351284632 n^{2} + 17654924989695403324028479467074279739427711679246260815487584496337545062752141915661678580466062601201854581195577864874837317115346412377127400760669973076436 n + 743216836763782509750602913651012869280553641897889007528670958144019329340001082457124816456538170332528723917412653514348125923532947173037524502825137188239840\right) a{\left(n + 258 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(2907403583028353871178041805460937288879856690249818844607323567476240269838037049072439221058120228061943220020810305010591458927133682512266227163 n^{6} + 7307509328971909719323936968288522821218295113258909071111028173455387766888195882373103103226526961270548592102530958605947420416535968640289848487198 n^{5} + 3465578828488816327433945454183227507610912252713905416229439356078142397282659550986117293379070592216032295731206655977118491894804417009114280503784160 n^{4} + 718019384122002838257761455585242359166924648787464224294466246091977687352534279880423746525560950451690178333331135604819839032228081663116792636933796110 n^{3} + 76223081849060500016348106886962370835835749182830130129298110564982496749588222140153021084608131049277919995171049637848210780522531355254022765168743324917 n^{2} + 4087197992911165658629632346020411729048632501777277048589266469790000903952076821654108828691831082469518534697562075698397178775397611492623878371067158053892 n + 88118418552834028314100529527423224642644340351925012375734393426687772542425682416103888467054834031339429417839692059564643477547850113222649306797064461617920\right) a{\left(n + 109 \right)}}{340908856115677128000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(4302076201577321158216019414617402021940876673932698280005268015468870155433742417738507516987520157654596962168227426153430682721019265577628854237 n^{6} + 6460126534937609326084303783729513262389629373705928775343156029313744680243434994327152089514913477587739490602273487796425161476698292939552252316977 n^{5} + 4039908557026452845552182193093143748231236406501950876285263056313074069586995005112046199402307030349234631451767963569172532847889779926000167536385225 n^{4} + 1346697907890882903640389463969724780538260961381621404045099980469107561680162686721088909526448221321096488996658466312636410479316926047060082467343048135 n^{3} + 252377549737617918075739110403111350837268687845253124474865443866746189623620115284117262233372213988907130724261421706239058223694333645919917074252315329098 n^{2} + 25210332987109831059221990848874373838284742614980092069885087132562809042419781732223842504139382154991941666663591234086206384315755786489864931448347791211208 n + 1048654144693075639299357523326335688979406061350602931357956378971627063107349185246074997707346276341705672834246179447104377017735168795363127292003233351503600\right) a{\left(n + 256 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(6115384294835513561911460942133476598191144162937984514314654792112802684203786324559697467650050714744683779998485705582593850777577059626694011243 n^{6} + 9235964587633542837720949045024106306731477095984884966962420534723162363366581728783277570800614196029237367340555308382172218677056197851088997099857 n^{5} + 5809509426264414394911556770368524942570805741161068738272228157067978199960053438404855169780264411921999564808838784210245301602006482945867497480843645 n^{4} + 1948040156725804549891299355648212115355970696080084732291874666803961372264066732282091110542711999005816241871894320726051832536453423420709873824428749195 n^{3} + 367259893507462837330512748228176448507051445666429637774914323516696225379595569599065361173905903290422485423796743946375125200721713472445736436052936995272 n^{2} + 36909151955605744727543365749766024543701191408616843906117099433031492163793981036706166612911861728187755360030196404703666132559528462243585810826867542694068 n + 1544758820067220254032813486527622230565134741541578141230492495802431930321975608194766004217121492003189161098128907548047102903387941483059194160167169468687520\right) a{\left(n + 257 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(7164960463158616107814064569551714864940761379597827201831900739401927474559778533304753479372527591120309945143789530502899784603834616815838872356 n^{6} + 5187879560820495974456065603665941696885172266481397653824374938216076204624615371888349206720572574863115937959069300425942739449567858363557256816551 n^{5} + 1546581987779282778721479418520908326888980890328090606808881859568553740046015883760061321244163977841110172870321802046047377385897641147350663517141920 n^{4} + 243515498348155139113569692162965622974769168671428128166540892985900683534667487902426191550366720864670142491412489300251523677432094599416439749521523785 n^{3} + 21393568716113661160805187259171303816268823897869737638035471771381734962513429718282180215805346558754127418486812198513144736003691679789433252813978344724 n^{2} + 995542271973862943595712961246965009194491367438380637957442204506623749183591836923279523373083055930109610573405190931171348781863470816290192402185884448644 n + 19189682497210494925788789526603397451972071559873006242069701428894162973971977205839900967828496587983429790177936161190290017486322948518702359089641308463740\right) a{\left(n + 108 \right)}}{56818142685946188000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(7939528012825127591362456750741819115687451851663971062724662841627623083080937432426724960354763457023901021457123748125721069020668574474046223673 n^{6} + 5393299879354192867668006413416514651254366364316292324236408243171062922871547335675840978511532200282797857031951475842922490224746667096980792035035 n^{5} + 1520280708971458183355107774509126847253443460390749807608370419355273939162588606537627682295740429825265442247260558144066667496570919850561746245152385 n^{4} + 227720096519725462792715031631779927728181745471270423089196948652832523925627698333181756452421033268564214195336114639188175124898926193051891558893773795 n^{3} + 19123567325330371067642913933566852909818704952857511523720182910895995333849949632448933118724314978520526512851292250062184015722682093289992534291726165162 n^{2} + 853956150900043536144674059375150087416356906979624279343338491690547832044372174512674838493755166524348761151179636664965228492124845773771016562761120753650 n + 15845437429714961720218394962226475916484764171677393320039938322736371940266864467530188766889630354755789899434455085914745970429341648803206473827878122553100\right) a{\left(n + 107 \right)}}{56818142685946188000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(8900665448444621462807200927119776541559086511372582599845095620837436906123717313524751374458008669830497567427581936939730363226147432923176094103 n^{6} + 13284569233910664967763500507605775898572356596200916233418810695180963347034430713052662738137559195388116717441956004747499953167978833707933377697371 n^{5} + 8256576630803933547076637524547039867341207741085451567252675060917721659086488575533251283486103240474234670626754528479246167443218597518147944809704155 n^{4} + 2735129191182631146715981346995952959282876766260193171932520099872838604339154009826501995084421706166684484030376079373694398715926471771643874987565467765 n^{3} + 509321050351584733751627227140416579276290181510802579716902509133884915292536598361039020759118125815552943186816706805613824367671793211249433794057322150622 n^{2} + 50547934911094987721506930428686183658777839746365302286825008232267584284170494120041246548673317834859129300506760634156472751200950799980654373087342841476464 n + 2088757346424065163468024181152989225443930483441906791688262859894823154901652616007259082903747568410678578578502154655959220894491666627911525686842449095962640\right) a{\left(n + 255 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(18023156861789306420008526214945829989208434699184441604216000819868578666582704353796031090503868012691329343350667301523652137672840935300663615227 n^{6} + 26725917812247814584825682185127802386668582838213402636198855729280442092369368339362951695634403302409044918253547928040472721849495609128671487713593 n^{5} + 16500951624022600911568455392425655788029281545297382103600061068505139264954987236305203832129891139858622317903309708355688991744888069204942357843047215 n^{4} + 5429421981708284764485520944858493722601671774640326162520381135460015587873418366137651120402592554545613372939358478149512878678413057424019885501198313455 n^{3} + 1004089826063341029313397521521563313851235348443654237713440817320205666393862246464540840150446674588323098832209597232519740033368931094546620849420201152278 n^{2} + 98951620812152231688015561773596485386365166432325063336286762880231101774834880270557375315099103496225672648806418448776719731417684985186651291275327237729592 n + 4059511590856880920722045535813219308179822690703153001087023880677275434478134121399691173583252229333009085659441061776641098211109196566223433863643416004238800\right) a{\left(n + 254 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(73615914577854393472539864444748402920698473144351570688179164038957549760848113405600569274819333825508039079911628505952622138169932325135618238693 n^{6} + 43237258840418297866173842742467180457024900688874469682155475875523776938536983387182939181651124558797230679308185993522927421479334225373026893660447 n^{5} + 10404437714275637243702925065086657672257932588761438398671506888562666236410183511714597359841761671892617376122557121112399472266669275527782320910249385 n^{4} + 1305946999877553529160597201723642796327087694354433936256123438991055963072117954063784429232521122318909859063512254408373310131836338703409653173087075885 n^{3} + 89417037413113740411491302422193144694531280489190555640005106637895104286507152275951258422251262114252016352826439745756142518383343116123849554170195863922 n^{2} + 3120813813886523148162342307346180802736773152295567135257010895991593518313379930828960196085922947987567176507077876460517668659223442244259686181275978004308 n + 42170392287173573366686627121383950774821757676976963060616116827549147589210775025657058910493425222907939832920654811538319301879889687854344669986724293067920\right) a{\left(n + 110 \right)}}{227272570743784752000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(102981455863353469223696133499120162439840924440429049466200700996434255478489987197118305721748620800584025594258382951091685304681138651899128105348 n^{6} + 150443524377244108311946565091265437197572102602763388601980356674115604769443722321383117632619049389940362268373706910315539217639034099605182616838805 n^{5} + 91471875090115912368161406596899633046513120680695209092083353504622409140109681190287443259959729928786823885805183240899215026246819295602894813385326415 n^{4} + 29626379244759560588191457368728207026405340070107630226101147714804385539505459616067740605628749422279484059399673644537997278091001093411922208095477259965 n^{3} + 5390563066453042155227002091402169849776654167411192369330067300179383583824450822392633701575069235788319105652933946261671584213787069484354152936918783917717 n^{2} + 522384502860863982136805288143724498029961178797871188898249952961092264201225718352697711841125692302323924899370192651725127477727779521030319979444613342648270 n + 21061644969523426782805464753358477780590439656463412074509812866365929045361734654396123679469114962499822723451853088385252591018845584854704843184794034656126320\right) a{\left(n + 252 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(106932519047943728590544597206442700775786017725071948672759286381967818447593695571080019045712398337267134871659163067456476302629262674943376229247 n^{6} + 157449069263381255698815324622890531535082696709234690927253375256046710147567463258693577585038602760343314613470966738374070543445063329421253087052297 n^{5} + 96510086131003368942526367484986280128670668595492313587121157537880632630949828120509548428147670554393545248112699629806574571498824316699692211006648815 n^{4} + 31520638066263370302593022701479124470828007281774533686408294190234248108118684265395595911707236581697706629571528817716292663026541185586616314018305652735 n^{3} + 5785036394036954615525202524403951221202961013456630797024623186828869773457210193925196560101076804598580119328916693171930094637779666112737828479808721158218 n^{2} + 565659540754758535915458102472616327864768526817713550789328265430774894051572726088068900119639109241024459789264670053804671328558195755443931335125892064597888 n + 23019841071575956666005767215397190791055756692693210359206377194368369307380484103026415097312243294035396131909318037624101141724801626972268390773128782551378320\right) a{\left(n + 253 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(128277795637762589751912362277172931878837761067256261910733333143395905870190464893638864245242012443792427220584630739419949839740779544680231483513 n^{6} + 185716725330609896568719544325202166596292454964512516774736921251902376007275889897987735023358236147595711057748652215252236709870626180120550050964573 n^{5} + 111865656590363008873136805366172924874922898151422747747397415967898661820593406356807934801066495549649063673243135125730052904501017498194636315328221875 n^{4} + 35879688940951364451167005859858075499594392957011038980682620231685103148470149812817598680399894279816075543359313293000627602735405727293501462517575182575 n^{3} + 6462107626922945200015143639592091683419917408858313931140140051041785719267411453190418827890266866305067774216111219746974905654137015981851159306303883138292 n^{2} + 619563592595449141943327152451459165035553423516376947708960440231184859732972345233097268754896557353268022741045956425053391999965679334097195193326038368418772 n + 24700258493308449919650610713461369550972302515661641794236926103063358983786980859331242734789861586071912925136199969308417935576948555107242954609022030103634720\right) a{\left(n + 251 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(177137799805163551751991521102710482087024588584527311313264850998841139435082477144762769397701473647599188545974585761502065292326831809415390781992 n^{6} + 112751306918248817531637080854707725771221399401071688216686616437731505702388219989362570101781799544680880328474258856427236011772714178225644402906187 n^{5} + 29808169016873009098992053681932272063878122285274405025481929262001291840749815260669789531921035621747697215022450131685969857433019422944124751532636000 n^{4} + 4187936902623825395118384263336574475513463437201433163766457959838583573491862398870035329004329790083350891961588476163905380690477117261083305422507192215 n^{3} + 329645119586624390435241326841421987208272820748055644699771060564910794329097388334735464754919651264555545856663045314049734503843608506554849522918325561503 n^{2} + 13775848031598167383038532281957955760890866522365272239228114732597185838702106734551297021957557998711498330741442473978494556582776072296745719677880721492013 n + 238627985203644360852459156434335603028404414454337191217605075826538603591052610272822534495974766655221461708188257252418571976571966814461533199400006166908710\right) a{\left(n + 111 \right)}}{170454428057838564000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(297211560091866549497266969957119337818486063991043287563806789018476154753383278602632537667851632611743347234577979918294617476941272507113127139939 n^{6} + 373990226224680052470975746305091344660772628889118465275245382936608679368814234447390881924901997286724751304444994924037819151875018577777556503719987 n^{5} + 190500356561464237364463449768913701927727659725483487352150891107479610884403628189576807739505626414840817026153986071397472903631607102755832863792577165 n^{4} + 49621875543190421465176039945284300007430110332388549817199222884798985933917484703488782477071308321901937182745509823518513039234980156449071131577211158165 n^{3} + 6800054009379830276393801782211400600468814691338365911832154890397453713625142170788982524976925103667875802776710031646415061148270660407027536844721103257756 n^{2} + 439174923583356591803437427315790932748956608379367492456187754022614919737408051986788705636376213816058806753530136729139747242678355082663122997879781691201148 n + 8653557163221891909858144134806549777265022107942416960376356684060462670729411036705059966196576250957565846438346903360211595718781772375657562143218626214490620\right) a{\left(n + 246 \right)}}{1861816899533084688384000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(346739333288205189040057322722220535896847988527719561917645291433048178229985993061849473740153668809758066104952803848072854728932944223742931776667 n^{6} + 496617644414735461922338948036667207033572421528764352354605015286699868185119583885067823893905889735508779543876904184144919280526022078630497776199502 n^{5} + 295762244860210715864525802079477209289424101327682644613367137772113157775683372259760162220764627345570161740862851692464208707243569287116520318492919565 n^{4} + 93732867437253929584747768017349583947731059421912046939663589053180167182351411289771065857275611416407653858707232883564713479892371406990840001998778333510 n^{3} + 16668558922113513744014317883500325418465110567568511832044053088683392533129622599426112001208415482343529094900986344574989041981022650254678528210390910281748 n^{2} + 1576619534579588026265206617823344022935264280502689329805904433736974201679315889518734560312812454569381446458172980382511334492764409020380346013584346777451768 n + 61949746567610446647047518963978733652997983893899166230026367264327591599352001724437462526690596659031213985202952139044266434209910041160644428533192390655322040\right) a{\left(n + 250 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(597121700381021313461587434347166355966566594238967494375092962903739772071195901104457324428482064015843585868327841941249826193697461835203315348847 n^{6} + 843595395295598582676198900571724318302174764610578722809630864136418676456656897016018960194006455286243399083768969624784279493826320686291164173028190 n^{5} + 495084889001614157961079155919642836973841884666525658306507229871431526316106956972616390709312813623123620612201221207757968870230398004190132474019870800 n^{4} + 154438559207733143740146890115178592446214093817317646539645926969117389347575946774258343377858664713059199409828308656679850832468535334449602202926441399860 n^{3} + 26996266465819393679399991862702402021685995263729857099502456072953329967580340748263988873161316240190392830984266613442938382597900412426029698199323865480053 n^{2} + 2505996343159989146520095757379949312290807018694445323628785351797146921497223854346685900738719651482282746575100430438687444089368507816980598414826440841787490 n + 96451534720811773266857263980012820285627032864719185789049706009260168908876459047825502724400371670987631761301487340498263135973493329762196396300387646309137080\right) a{\left(n + 249 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(644880296442307237107218123359277918829299965490458157978187999345299328930678592789679588419843174891747620184657408405447332392927552686711922991633 n^{6} + 893849648945157214704032421836008811957499327875043794865744832233953554484788226185834026326659546250128102607420340531450459037431255184790991298682861 n^{5} + 513653222307913394250388557127028819591530932383645108971892384878907586273974994267660417958494792291989421647617264497474140399896462025734735315708722205 n^{4} + 156519671664399250288961202169950380268596228558845579912860408779867428092377281055810972913159430736384118175674348522943992635637466638966310060283740983235 n^{3} + 26647850564870826943682071127654088545320178217590459587585236829030787215414645937449793859879777425229751092240248014938719668528553170313371342597344130985882 n^{2} + 2400407770769483210486184755880335704571566770651313647764703031174881598791253700433124084024084103968458942744668107921159346966074185530197825605839709439004904 n + 89231821677468809095132081782463729795287765846489943213989702797693722559523705993980078340314742329915160084758070497689794410408626498665816233051134614689114160\right) a{\left(n + 248 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(714502984380178535871394866175421303487919020371642068861794149892886192382889268903506569495156326564776876524378335866404904242684812132123502338039 n^{6} + 960269890404456161199436644529228682141815004267699426723067780055865074068468832962407454587614071412452063981787236924157133041434882406285890753456924 n^{5} + 532445600067254386941521814269494800625596087762061947627280975401054247560436535655902818808872923357610150145201984911605978243714633934230016961557433035 n^{4} + 155548267971842923445276838787969066934829499104324010366675360139769250210308544851446844841413469584048540902702383381064045543865763262261701478126601065010 n^{3} + 25170887840003034947290598667057141938268565455271537919667242656919379107619703210634703390679509538313880871250856399129534936543140791821119781947684556402136 n^{2} + 2129263280536092322529447524505501320196182291138608802239742078607365638327232194940843790592518203162846954433427973725730922095853545826752929104932131599151576 n + 73035751616364210057475116849579252419745395055542776635184722877824073608395781796591761186998199144559046122224553112639698607095800970270453321936279201851422220\right) a{\left(n + 247 \right)}}{5585450698599254065152000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(919267370389359508446004595050366292892333239344282128786793513200576365248593539305955295037017301986467263227675197337187544374251138019058040192235 n^{6} + 850629339969891322428340069637889255090141173756729449204651164476773831166627316301287354297287344831664339619246313638505774213269109074610227428636047 n^{5} + 216822911100912247978194790427170523166359207179470439713945709666247316328429224993199918410803889463398518714240951214303264559129939946803447002376511765 n^{4} - 27709721584968985129255805180948550843403945839988249666150186847251576738013984797926298043275285912968024856631422038697753606966291711514412289964646446795 n^{3} - 23042592307824895554710095653295505839498716560110276107119301613912036219857025318920498581235010828402061041154743956248072862970047721915243494571660783450800 n^{2} - 4001815248241184560716666409531604549790056020564660852434674287918053646680327728622260675625898512180686126712447872550050187103356420516242897950546362010763972 n - 233958483048013943746169516365377801137497904030880192260694121779826662856881685285104097020173724026188019047206966510561563013426130829889527243238521885705018880\right) a{\left(n + 245 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(1511007729244759470756839835085266350347866514501644826341636274003489906566678021254333652635850748252795216732178871063249802985034588155895993015394 n^{6} + 3639996499971292044264386559721847140307510015719341377441146840213297181409518849647800765191804988850112298210553107847355171474389665607741165593102411 n^{5} + 3083372420503183828211880393936480341062324040197575582768096391366092355275871734765901657048469933676992998993695546514147082676092785727851345669322319700 n^{4} + 1281213780539011529353211573354967915649796452154830261636633339377322081621034556894313979860027163019074768258564364914582267099066995959013787484772699852965 n^{3} + 284855580310854983953341688252344884326035460528590965433361428845809858700085995483269868442080616976037926003048450777893108312736142129562941802797906640889186 n^{2} + 32670873272802671939682085522598238908703605134940540678708981723464929286719534873457238705925049296551337281315370860022031654692562754901761012943737526962681064 n + 1524572049987639690837980235803657059759255382215688587879085926488542549212218798629282344340726459066582340843272871450756599658341202087027329588901359273948824440\right) a{\left(n + 244 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(3210075724639970844434463794277942438229653282805248917978894138660078537914495955189723337551811688641262491501291895804478081454732245013148119942301 n^{6} + 2112876975273180070265357903986330737679442117492351580165725531176635127996174575521901647831561885105773340989167547870583779407942196044439098297696009 n^{5} + 578690179440310187775165087418880941996561701871151378214230700697206686853095508726350004635130322006833414187377312032181229017564968164678050649772356585 n^{4} + 84412073865543820002688993764185079510717234332098880013834027723538908220038638158103747278271498912439403849355148958363947649995837962931642794356233209715 n^{3} + 6915651185713658899102889356722081802275216744468897129886186224002763448578780333502183098357503424015685879063165384674982876705018984490038134882057994941454 n^{2} + 301691463646646959802323394099343540314575251163675909110871451181597831264985087910912105685045346463965878450390719308497931442606228488188892733240027124405936 n + 5474372857501598377660972477706789122341687307156685054565516903916965649233546613965592478651306322384961230964890604864533393904196130384091934042639354196474480\right) a{\left(n + 112 \right)}}{1363635424462708512000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(6114068779224526103556838724663122436329232567015668118710835373828553334119551912140305292367575791049819938929546123188192449653316819787608465680131 n^{6} + 4117659331147093690713301607967745094750284412601195563016196754051114099832698407824587005330972378814740017325372527459806276890931506533869248568784384 n^{5} + 1154520018872566703110525957273307697523612079713419723639978475503665520553808457810240179200449550396861748857912524255481522248557934460012161177370916810 n^{4} + 172497216566083783193062960571449037640522088165042879788691487104120240768209562439329885305451883134766954448057030820591641790375834882017178037579659509000 n^{3} + 14484510545052217556786671039758465505747789660885193503982965259740997598715031855948962514222238840375257607327043163321856584500087303306331765754406651287299 n^{2} + 648081506197832662561404224969978586297846666429541337836824425926507440090070213063020746010856860024949168207787198176374137715813039571845820767958167658250796 n + 12070776925601021683099794237065741138294367669184109745906659076738506730779111374143116736387795540246542174234294975872200776743398478029555070479274555963640460\right) a{\left(n + 113 \right)}}{1363635424462708512000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(10250945881491316212816529434902682442631520756266912860015925630531296530907631288023063389381852167633336915748821877789729655343787074588063452059445 n^{6} + 7038833134199379141761422726182614319389275861471895722493142197159803206735928818747023711944220724883497258427237474323647118219726557672950118899844898 n^{5} + 2012421758454814263478728334108589783649502425712168888123945763418305212795225336548149333935390174398804539443109991955173104095495205944480451309737201690 n^{4} + 306638959175196381301495572888346311648033356984029823850060827930678653647889639349839646738028427628384081457145387722500612196696858056200200373288470490200 n^{3} + 26263190277132666751285260881232827024400229106461074793006115887924484789038299939735552988880111528300017808035595321315364721595695153742067541764103991569705 n^{2} + 1198818083188395547430841434707756793444846887047563004323045132844993693955925489735949466397794354240073672638951551463293130038309497081283872517121323513505902 n + 22784107297935929489142915572341029867239747472789103276848953046734831138701911689648523686306359357493957465109459580402390828674091839405222629598214398789834000\right) a{\left(n + 114 \right)}}{1363635424462708512000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(13173738524508694629358147573409141449695838650879897644461810397464594814570298783075705365573349887431279752394292749622709388958655360272275717209892 n^{6} + 9408865274068340829686583734058398138764979189861286198953466247165005142270392845825543717081560679506589707216463934106804630256210231725174323592269760 n^{5} + 2796607076440479993119714476936824713868472733302018353750967217513791959761032901297917851758876334539467552503411979940470917536716452259396012753595501705 n^{4} + 442818467013875791728870348661982797710357992409073315476885613256799945889317401240948529620322240080325218107522192063488951480868255106452130191206961577010 n^{3} + 39397243096909894250492658815266602656602644480176199342095070610980003229744119532326627951237376558532753484381265005366578496952692277314350108618061285688503 n^{2} + 1867445998455751425762507450871667348778514127533617876528482988380977590655822468786688752937170199959616570615025558698804163644084948495846967118724878958893310 n + 36845190690444493405005466344731879293014934659984210704429361664421617008029230293173440072444036589857719305349208727514124810826202110022881569790150145937251180\right) a{\left(n + 116 \right)}}{909090282975139008000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(21992083799893455602563070067272954946000285339237356905904004721549310443825912017310076689517982623173719827649051171967614914260172343957544673180629 n^{6} + 37395557221579816911211380640396504897714953289621093805495143177309756102299611620149835291781878604083475456598870374408139955543909696109856055977648795 n^{5} + 25922496131279954394766808060414989489874633462466360311701137431448533936032724619467747620773718017085902773765385842805791855966374127294926854322992724615 n^{4} + 9426008010467814623878316878003755589597636930124852311450202635873183598679758620996302595095198740476650695515297636630270935682493195207603443196827790775585 n^{3} + 1903003633964914497072045513626606891641451425779220986531913019082793124010998099802280211056761484113597677955411358795511800205366212883490026805218297567720476 n^{2} + 202759294394448395538222488023121701510941257161369956661625148288870787451478058374811404025159228986167186400375158409772045577219231118192078115832204481786682140 n + 8923658780690050698055275565586388521761232221274489543565896789599284128209288708139588237085733643382228512035306094972543301658013464013508677983504737689768282400\right) a{\left(n + 243 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(27704813402784061785055243809513929658289720721336503775664246582031125762639380726996558718544099986577564072719336783589097533292064081528328138066721 n^{6} + 20367738812929710544489246172645469218845183645639487369349610073609825270779968954413092521870450454504262029059519978760185839684295252165682419913416221 n^{5} + 6223270714201756442486644402056468271633108302601815867802497292067403139201664709346936119801014391591052181763981238058783055430853899269493717965063292215 n^{4} + 1011776464202878520968581358277179040017986814835983351665375125562927514354279658704417627548085398826331120735057338872392028146688431601970201627792119787675 n^{3} + 92330278001912340075693074930548739398748356076109471473387048292472417142364515585144231149355212288727725776182676191032984249765536675197940481283919735274024 n^{2} + 4484805519765970100991764988271308429267128462962936441970937628362035003363289462318911371101848033950047749560753083583203986657129004737983077756279480540089064 n + 90601362923133462247517126124689899579387504783909594966314626060113863780145315413211790116588081885451454388917046785983452780960708582400018692288373226026393280\right) a{\left(n + 117 \right)}}{1818180565950278016000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(30504416511079072402209910252725743354495647163462507565229574323568333665498639542091096852313378451820992275944281734003356499799268315820899219167707 n^{6} + 21341147128006966475258200282368988645634109500372475310735075062974338783825069668103618298245548948501593593373574345694433242106041028634517036892474844 n^{5} + 6216000826756454837300592707672488816122982846987662422002922863383524596004215197295621600576098282480066495040675797728669066255565098577637154433528613850 n^{4} + 964849538170425952793608270842286324738166665421000333083981003899125676936910515827442662247478834859634854010582582586280724674258329071717666911661143764950 n^{3} + 84177013622200466993026768412675587889305251793307920193184849416992893190696706975058910458032368464052812556297018858574586425408776809808523388480387536745623 n^{2} + 3913765658380138016997844575879947205966101291643492234559471170491448611917884997360267859020227498550343483853460994971342764003718881300088132552436980574320446 n + 75763285040922107124534788187621685127186508232037642658364648962882881226298366590458553891891038914682541880231579637646429282161372153066107809305627582665789380\right) a{\left(n + 115 \right)}}{2727270848925417024000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(30741806776490389593757252543793055688875974044731065332708195932436263744653162369427153363489591225185319080227778866490330630806434872300497527566475 n^{6} + 17672533841380771195409365587408328193808948746237433324659153170807206067661986915196426919065678858079549320843898050781304861017224388874276724913337896 n^{5} + 3984442637681043073773952603642036715813512916769797910588434127688524594963744094338953507113169024798084515453153033071163766437036237393419704824030516930 n^{4} + 430178666881517326107257857033213084872223305541849949322068425521482782363294631725625468752106809450614562129096973114911248476644468706891324312714459073010 n^{3} + 20370184863169983510793009075100828850978959762206289190660061540902760378846076057827421704056988352817149495776087395944871772836014153839714325256594725491775 n^{2} + 112437129584446725639823599093695720449566808724695267223448363639612641611710263247502071875213814189529297445855802012525861836665119887812088733810032865162434 n - 14748844417361491388133907713573772308778820263211123371404942328331259970886724277578601887335408837811575791013311561321835659461442506443474140338796616934854520\right) a{\left(n + 119 \right)}}{3636361131900556032000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(34676941374440346107206151971581692881002967552147826856593667489965499381148632372409746025347412800690595668097523355267968611735928211726368122735061 n^{6} + 27557854774202479564834104814617203729440407891136736189750848403347396770994101707455170249205127449275990527383304269678176227948608983828118029775402365 n^{5} + 9012356573782776077233502083113330894698064449435259163996601045678105457420654319579768357116909950224213676871104062280659649906402743617633758147955692245 n^{4} + 1556116823968099844186643847376915875682291645395654258208115136059725834512942552751211923249485293435017675170773072370370878021317923823247386174073281464215 n^{3} + 149875197709501065707543450780591192390408437425155665097221592624602402089878331291805084811630895399365197021112142728158610118348823389043650688249625382497874 n^{2} + 7644464831186025782340787531316160353233816558624996296252082415279535098750664470462221491860936978216500696989525825477626190409215304984709587637389978176652640 n + 161483365135881292660941444640535910726189701595628136354685291305715001835982006912591532605226527557636452145483172427737446438298350815532183863404185662244242800\right) a{\left(n + 118 \right)}}{3636361131900556032000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(72379226737624911843276645907612548457387753624423173960840868259896602404405494436025465041826919933433379757086301486048906118347198660466028384025127 n^{6} + 114857868637933910693148213419514705700296757485891376089430745204072450627850235978970724413381501246689341766658439734562946676366627620406045863249806789 n^{5} + 75325319796019486046237423551493853361164682501749551657312479143469175817065216396102891491054763258267743637270805601711393846348465767956679277697007455885 n^{4} + 26165024205666713475807242770503037414798728048014516615171445816893531615946702664331277080196465993476564635523438858698349674349624702885807644778572753246935 n^{3} + 5082281336073088997132905869359515969583574953552619763606537998194105444767319611690617801755559873199770135259054618488287309130993773364357994437533486606158868 n^{2} + 523810663021388778738256890951565373470501643409009163788287913992264030835141855558691456662953830720765453332615626952330038182301267596329753997606144549211501196 n + 22394232283862097861307701289757133989681250213359127293555079828631308491595811201922394901643950912056306468519234714024275236700163638053562333236685961320078043840\right) a{\left(n + 242 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(153244974423259644265576398784672158421670632014373453316412034690332777306612106175411481967771339412974757360010316523962265285583570742691087183280603 n^{6} + 230930233237842992076149558509501900814269676292689212383718458648121608476054827483835949716805360528099862449169667305865279505201213409358137927745412025 n^{5} + 144616655803386879113019070152723405665189179347628124689736195626225472700265297176248594584693260817310659781584911810825112204863694021279124341599560814715 n^{4} + 48184858880072092919735859431695490232993691345094166559777331575524273234931403710685531316320074057714959223419047931999575295781934231110948332650063604186575 n^{3} + 9010926332878814287209689254450622782634780653410307269647355796855540058059731434211548995154406035713185924715939464694930535975949214531279807170844657918691642 n^{2} + 896907437984796962527208240130411951975381941108140894540847211005313501064602136287537100720180304579285619870013669146826405952388102680524930548152438259993736680 n + 37128052623563381255244864003894055928636460154918872713650264492102323345886036733531976676721293534287530466390309048151667516498766308789294548504596338698095426720\right) a{\left(n + 240 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(192530378967789618746486506898597921626165427374382541973219012319539130038617914347675096238025071018466890962508110137637959670321658615480750464009261 n^{6} + 295920628774449232243030361558927974848573643122639336106626205504994233703396126698691175909084125029745160001514026558956818734999293731836308651605217621 n^{5} + 188705364471461059709692480086389867991426971621498978884363034055908471167154151686921219084514034364513577468134961286518811132123894655710495169309049348235 n^{4} + 63936503714040759401031186184247207219554001527686305220490349411804480963431405988970047183026019538903133723802925724950876311570701555331152132158914590778415 n^{3} + 12144228665916239633385478502714849352545623361528846993893938304858224221075481108855156633443467912089563599886644209424483583596624680820856380618861001713800784 n^{2} + 1226513829774060328232815343524938911479034528118452913656926018766849439700476598224204105631165250891774056299352099328265527244110278765515090083118853890700406724 n + 51472206987050932429075784983969009622108733878320598755287203255953711750046952029239441577611080011850674373070017734716069952136654691279989949708359270531301649040\right) a{\left(n + 241 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(341361446496507277132525109031584617498844342994643798760841980111952951791146019837103227247709278136534978912453435868180391445060010419122763690858495 n^{6} + 507109585462417342338183477372403019850500027548395114903225794390604377259463218194115489373518966942845271961692877887428405081760472899170066339891787383 n^{5} + 313323212179619097687612532156568678545578265155144850644336395568452075221010944714403791194606770608633421049523811780517086411583667693182898724930587458705 n^{4} + 103074788093339071899129236004369164939527645102127034117167612194219377865309482555385896871537246346887019925039056282842227542290579600427299595852749557741005 n^{3} + 19043844530062063954802709677857097497444132673372915088972599679968909804513463116587433117798778764066643523312463091654084042738666458549040956102061454353608480 n^{2} + 1873782548962927483985086210619685443004631152411937545206386275550829959660447231492975280918597384090038835933597732541769131983228321321326708310398765552538067452 n + 76714124246963008726070129641813087564510176357084638218040501838670114288225490910045883818101138336024212989745447791988102307501063254724332638108075571745963325840\right) a{\left(n + 239 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(807083633849745343910217601121659769140209795198455431052489552550721014959283606815119573158768278407150839712498810677692151936235791596223164848403901 n^{6} + 576477544276709204540415050031486043580344793408544868630259710865975032683684156151481885403123371166991740730168066691264979683125828915545274846197252614 n^{5} + 171489402239384720578393735585624837817190381259798059793487106218087956014406940832063764693636507357933983520609281057843438620075919868496511325576819387110 n^{4} + 27195147849118490781938767964028525449250274169595276137198847054739425214849590276844792877352187991976589817396755682294741807114615624988590295705891882146890 n^{3} + 2424748950952414390173673821279509203197079160943876967782463351118880959338056520831493191937340177061995388170776192979433442430085645018274177592232147881720209 n^{2} + 115249130511936652445158752145851015521562446401535688315734431570458908524028759910162395094698387406658132927801720437389787861914122324206989011953625914619630056 n + 2281351010059127426329214762148255520838871599044576816085897906098610483243017989533809243033069597235087226812498993727582067238984552398253689913518054526659867620\right) a{\left(n + 121 \right)}}{7272722263801112064000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(1007008579407640634099834381958709348154757926215163629705284708723475216227630214210267679295814796547948600506056727784901202648227546992192904583518085 n^{6} + 694070292335976569725925369719724986874585533546364085276605992660737175791257316960670010531884887177199799968516336470207885431790248501587159173992775573 n^{5} + 198878913496087543500506749707157795030227927675757558595915554519070716991503018883314571585840665892518308693804487157527414241645533952650915588958318221025 n^{4} + 30318780948494159649517261871320709260142710517946987284151199091343217467668432689094036954569123544440600330609670552595081541820041766685923565916025798354235 n^{3} + 2592957726142951118100389616248288624205033651977484713645737014123035222477234263649701642994382393072779302486945696385322131412695773227170766761647199201623010 n^{2} + 117923056180205649987806359456359583500941777756485140135230915064200264318269629455159469811401155388956575546737694949360112477419427152878996047449901635504007672 n + 2227275848900163190099806258358136351473237187097759729840834078822883638958046734733768877198443368437928941091831846712614792074523749621820235698542865071185320320\right) a{\left(n + 120 \right)}}{21818166791403336192000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(1083684898588236483084671531055944754557546471429054086110475117534116973314535619655798587851909244118034955489083487708339089235559557628188769075597142 n^{6} + 1591630214913125561056884833015482797507782801009889680256637404963592670155071352396743184356741243776135504404566086650157875000693226108351813396377000242 n^{5} + 972726316251352023896057693502440493888338538728221589730366931673534448290233967497621903352085212522856172313005812179152112196925182181716067907745946844005 n^{4} + 316658922577834043353705112449945895965063176483080700956812898934830929727719752984391098728634394750321127806782045466385083213148139219586751858778682194526980 n^{3} + 57916070200162475507204195234859888249063510013908586365895441024656687158761927310663448052285495495932937698683181774551467692581381966788013826959873445328085413 n^{2} + 5643076178448193555582757945520938640860016403449548997216597472778758201827951363590632396320364317840783143824773197680305283761069031919831822978811369100031331258 n + 228853007681876245630721613267523152122670029377281239766844026820389142513946720098022206228723130927233511936501458286874948210921042532771135957836385934802855948720\right) a{\left(n + 238 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(1100524026299474576837212939727185776753123767297132617304286812901350643521507891773086084681615506809623700082733233523881821355197408415837098976415221 n^{6} + 1600770758198046980125452128809587829555683480509430739613107738530135618717124984472530935489351089776411602759029958545640941159445443694132315569876531601 n^{5} + 969159026748571928110258783036800485160772025333144486049283644833866965419496051182312287370427187803072774252783419383723038138731863295590904720826182473865 n^{4} + 312628212117527932368765933513194887047761287205683109041972731232961846631596050037003876418665618397698594207597695164392321269102915440067723869380431693641585 n^{3} + 56672365586521697109166869553481957551759003275975111027033396446319752539212164702435048601183641645461572607417449426276218410914428666997608085743126162337893144 n^{2} + 5474167452259059542345163446649531809487293876667236885801934984106849970987513141614751420194376004116566067981626638381831564591619078280302133228840500285076213484 n + 220127431666025517112725727848656183268256631526621450361373232824469256635585098109628701301481262467415155980122846949045209502065367347941031066060305520087919449420\right) a{\left(n + 237 \right)}}{5585450698599254065152000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(3520601085215793184583263495944530565745615212692883465294007463245341588947850022644848966715009575132916518978443854066658227047071316427011646658846361 n^{6} + 8123268915327801975748221177846147674008436223319732093261858632453454185616442053362927959652129808526885046968418423592067766252738718994920699358086415850 n^{5} + 4358795977857114541672671921407576501182536465930806243710130763779162039339369441333105424578908794963459246464861546109476192190118231321111461400041039192260 n^{4} + 1048641711076054930264987606591368999747446404221273971782356300881650659976908292076366616733130094380180853682985501841767170089625408861080737314551760020733920 n^{3} + 130373217962512064386281296557900879541762953227456138606431128359014728720463960106810685452679633788141664230483586398451288614197040792155999883549595500286729559 n^{2} + 8219871243978173174011097766266818175391495576242877639459369404818731956814435003548291104113817757750358416305143063965515104493028515451645718936383083436268664290 n + 208844019234268404733546233800823992053417909165380103773587339292675173572408494097982712998614563677172860908587120212242132221224889861163005025209815396472689610480\right) a{\left(n + 127 \right)}}{174545334331226689536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(8201627680314820327096264389398627034480597849113591723121153052718425939268361305187053181351321790736248768891361842869094805151239623102217240467888663 n^{6} + 11733630231156274484609471020975191448694253888483698791034007633904237864377712327550235645635547540870194329825943742162166220432223886655086111456381565559 n^{5} + 6989360959608951377768228218876372233452629366394099776329085912516406113118982394434562721787528518935569354503911006067073347432266473303430265754408260219335 n^{4} + 2218881412724787372724455005903165923516893645789676822611697364580515076474327495432906993745527384713797244680845682262201964016666983656288470480087497711759885 n^{3} + 395962555337317873774421535763027595287021596371993870685176817280524763064393771907802129650229466976578517362161376386079800682495593721268289770399318931550219122 n^{2} + 37660064554812189265277140971508534150061836047919756403903753084422159167484612346809912874087029988385089579693749305887150929250901481115840676622683050185984782636 n + 1491459847540770511249312468549017886945031983132412175729951301448029465164620181316599912642143386067228281641864931717173930778476603056611473483518469914079465980040\right) a{\left(n + 235 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(8632101181029358266930311332445179378259063536901283139920114813347710555650118064903299652935413389941318753832968145469590039343410217931434275095035433 n^{6} + 12447959367942267217671346440650154344096140225095343980728559446413113141985370257786629182665606172912955169252691386712449427250883816931635451503569385029 n^{5} + 7473054971717534804000325202103877615893065162761613685019887014182653686372068001448567289389671328179518442278484912266070920820060584869121143830758800349835 n^{4} + 2390782895289446801571799002332460596027580616851551021765640055821554417676434117391895871619261475328309450005205514309605503056489527891226350238864790572697815 n^{3} + 429892883425487198072061158406979184307734343475411056172858836965538983350926745285750479865507094062090547583914946010665198852977667201439546870583265492789098092 n^{2} + 41195145282272131822043557184420903107679095194390116435263840766923473673314533898709674586291078923342151468784653195958043386097010097308382022933208471980060940836 n + 1643606440164015095367522906749555894829028965710179897259866801074874302080915336961226931178724730815777284480359172091561755446966892860618826734337092712142270693680\right) a{\left(n + 236 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(9022765953399422019753381158696829191343800800437419560463782629352178978348930989818378512002797608084926565491278429326840132923311027505369681186429637 n^{6} + 6586672071164980881784107114014685217093452464316314055218842430937257181247586857763930071079175554622292839090676282978824064783999125667084472740024081875 n^{5} + 2003250451971605093941962296045520781339807111223275592862275958995650564169447941908437836131251911859496070701905198004984869387149801221407020567292284162925 n^{4} + 324909175601423218396118093926509541660484755813627255019149227894125101785319689315667814676264739032815385759635197976051466307631365750987054624210601906688525 n^{3} + 29639770327578865696688079696406519842325227459026795065716470048026396054151250229758263081075724826709236231404761027014491258958265365749382752532681352887645238 n^{2} + 1441965790344090614816722510551751706872222071273757294459872778854956129914268976854315111898331201056782963443370325237128247341629501131265400137163386743419194920 n + 29227887536897645655614711666166799103507608218510107199684243570692511686827455542119444656943042110379457607250541296596103869719173860299869178477913582703307175120\right) a{\left(n + 122 \right)}}{43636333582806672384000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(10092723450143294960831336654223691650711122666433336491286791196195547799017062081328169534872146826314477793678455923723521517925195622149150864527380773 n^{6} + 14331316130923036784742990674574381102658982691087136204352540606478662312522350055276330482374164109249882557765265123703958894212697765897383525031597457871 n^{5} + 8473685568763966089140447535357952303623333867899924902742629894096692731327116231949529131722974442548457930503944106725762535142090311097091167708818334288135 n^{4} + 2670439272560214548333655561440781921375887162970980088977070194403072687513890550941930131229699436708902037021029431398147094922458716623196202645059605205426805 n^{3} + 473092362175040974358047555903605887315667331785333375671899763354262088259045513328952619336783995122269110485069934995160836773685689169673261258125596828652380972 n^{2} + 44672747617118086320994998641036111558449155680123309914062924353361670491347999607175155839338323572611327417124837772550278920048853339383348154811902761327852165284 n + 1756575525051328778659648608381682767192657620008531166635757067500502861954800320066658007008059270779684037660645930429272802333801293683787401488796976632626111613280\right) a{\left(n + 234 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(12336517700839620628557185555630798536343745043361313243961686900976872848507331908726859260154692790015292348248009702707249113581276423556675852832071731 n^{6} + 9950651808794967859783536912225986641281208585431968330019384062325652688148411210019649405384681948231404640621625880113787974985964088616910241190616006120 n^{5} + 3335548598539775259858149325426662155784755492358159002542004362631314028991901533519008223242888725757828109696858892369341399756019602203258170914697712039565 n^{4} + 594935322025026254920247196247344239023729514275604503410973743087371345069793237395094461251314679868899070938544494659056157122631855179662067943208289261163250 n^{3} + 59564284237736858770875646141813611798308507373879373391462268662420507414530965904600200627405115025678623948984376252043234502663735655252452440805899114435365944 n^{2} + 3174543741166039674889102686742868607296713526350604079946965975684666858767835220628756430642708677661029437381715927810397543060810281060862753170609858012871102030 n + 70375871513938188838164381137262327552406612504693435969329345553677362337791641907092850217581295725384834241278352269656434592086399805046073480190872415869421300560\right) a{\left(n + 126 \right)}}{29090889055204448256000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(14298850095938185482370092134762618868634739946384986417026258699587492078084657215771546950148796469090723359470008347488559139719594273349543232532478511 n^{6} + 10631349105347931611041235770919585516340125663722718166057582570272576692121900600118139426967499839401609549765382235993868717369721237322571334393797053729 n^{5} + 3293439260871622461742995630435825873474323368199021760065026889498947341599972687333430395806597376732412533935509674682972298282466541686191291486892158040255 n^{4} + 544127131684704265963752825435327259665973891196321718883160184847294835003157690670855706988478342770520775629802749264586446762888347489331570152222092400220605 n^{3} + 50567301982091371156748472987523179640368292814993431605296762251524363018685443556029732877049715470193603884676655267539541513725825256806616994747604346689574934 n^{2} + 2506336996170811805300605098988751358869686374212400772028952918746237407409713990754490221885225325257026630252543950867919142295888018508914938429173728038583965466 n + 51761258134423543643002752057222613488920796998890008291162352920742487302339985476895076923744445534477275772766766523460145213955944988959870292194373858222162331140\right) a{\left(n + 123 \right)}}{43636333582806672384000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(14967312360345149586267164893378917659481118291625784283704962864300176657700997234268198191925136136496198453850973211800200771777894795718246864760458118 n^{6} + 11591193514348720525864613688655431253718432964365734889177843016473633630187322094010347792488724397702074349570178846725400865833879630787112680035068812821 n^{5} + 3738470731560803471143187831389072580768560797763918777411408165176322808616398574155346958136494894732947363008752668418851044848457292626476011988089204899845 n^{4} + 642788114694633573457250993318651357131216965515195321497717367872840721172723009284499491503251245433957889782416014089799092485107965281388785100960297259516815 n^{3} + 62142526863231648511312914806394916533510112673445289904219265874593839570280567264508176725141869734284737746686236670632613835860242514644588894195626671811615997 n^{2} + 3202932043296014659089286606634333648114150379419788698138422474907295009334997642160993536201970141520773373123451505144507475217984517889611451566790650151249650244 n + 68761866824635036592336813961148246563947534422378978122237173510669652715380199868560760332690995725566649975653826165876207185600972063059946891535794884670947857520\right) a{\left(n + 125 \right)}}{29090889055204448256000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(19587397291982539301713852788274657771084135213269303977496834786473007834513377364819044358444259857262607672382901338736646218795179722331681942397397173 n^{6} + 14833860030387684338412477310228579640031082579914741841405823160605827459755916235611632989967889455367008621528528454798299651941573690851231269980858369946 n^{5} + 4680290285318507884377262744218455249737491119373719132135924783869150624355993450411460081369226096409619911130006655297068141510301616459648206944440184252220 n^{4} + 787498207005204485254628017742859283113749859001963066772704846977263907990648083953562699270506097938967809221619621104654763501058197019977672359898992822874980 n^{3} + 74527252749844863105888158034503444281207722178069279552066165461891575520435141882604778204169705552850992272958095820963317089807903057673059464148128855530494207 n^{2} + 3761422808167480800885855306996220178430937907416385073585732594942313343127455052369420200634901813415448154415474793385862959762910959296317606145650675103531178734 n + 79096458413644785911258935230533681282582562817712765374833274285009355928710828566022340355329880381046643953772253744607465747853845179968712212912072104219234017140\right) a{\left(n + 124 \right)}}{43636333582806672384000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(47521221160746620506790019729863834665327863039454257056833409604677363419290102145127497804510905935193203940641539641500440733424156231026198540309477329 n^{6} + 66522716974834598420107930201587565505058381055884296139333065465765974486130151459036964902087451333304980535775492052326204668583437663576434051787585786373 n^{5} + 38778892487512235730925733329315205911061282504747405104638428549608795976606391212065109684310925578644874083304499518571549196192907125996699908502834521374610 n^{4} + 12049661347290672581166863042498262305944688787014495250104005740643441335226950861411556662334591174669315368187522056196996905147788043427851687440651609613259665 n^{3} + 2104905975896912760782318028320740261423293951052524636727758866186727705241930073950035484239209434134659498343964175172729075951972071772872330953744462396569154261 n^{2} + 195995176448559965963344998394799745369644754632370986479109790621979617611692810896158700838336591861800592001950561957054180693838796027556240275256673374828408632282 n + 7599809696972929471537229881721578114599850685647229955131252131347821632339235233057754874585466829510427976443636975277179319885184087695866428631177550330025028173760\right) a{\left(n + 232 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(53400791433483974250510713490425177508700194972869961109943070821800148961242255086859462536382274925157606668063333465386187241079173561828564528091512728 n^{6} + 38813659988600045561605148387376326046542096625377869762278460099756877636888958961315605335391516549633130792825711760766831357422760691038229643485622879497 n^{5} + 11686623419645298428615444481579910101580858293364323662613462025298917717718817519094706481243768013146780773367922942660962884603323940904640610510599994068475 n^{4} + 1863906495236815659794053315424562704394321705035738836995588268877328136843713916580489750823618152627879783739514940217456906214674308101528063553675284704946535 n^{3} + 165859016488544958418181808286065582042069913013449180321645445226145984948178592098302118693018746506680910289666059970507229797178801649232364167554641409703998087 n^{2} + 7793888991846737558420175001870512022700724835719742136601271256017873594364594455178023932640671167331584132686855361921277320042070220052376655826612207307863134758 n + 150742850094990654879643243595742297279411366923349415666882074070589920615392993233087894830426294897796391991896656233958908374621827535562666054472583454455764526240\right) a{\left(n + 128 \right)}}{58181778110408896512000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(54368330736825178984125226429924104176460645546565356858408779932850843314004681264768906258824254546565131736260847898584961445717461825730663441220435315 n^{6} + 76646402336785134179145863286690320153295539226792884630201607139974093837820352525313102232665146806718460426576447355323797104626457763932399825440251753571 n^{5} + 44995450896175796138653649655425466951108586777072981620489020177764211499315265656108758555383417890235157725080419857619207434539836605943580691214371334727145 n^{4} + 14079574846818456948686584581503819967862224861247632250809569125648122905845427358116057868759069217535110463522013737027970695939261247795464236201180389869456025 n^{3} + 2476743215999375644948772279310881897639505427281206835213261679796509123973054190472660262558787476042933863691968610120582761554512081144227076092207539151454522260 n^{2} + 232231591616705971262234090959999716248768717499443430399768122799699130368723162043994547204595559332668310259980655644340432816379945514299563145605665106812855575684 n + 9067806701239312600824584096201448477412985246373459929465474318154013093241109076897190591985728862747362082819683044807935042786619001152184262745864998690173636894880\right) a{\left(n + 233 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(80893829882951812181910165443125799088651977473360775918304799476349679926941886024438427040245260301102858390815392288560108856336927485847801879580210180 n^{6} + 112449580879357440694388071491838888863248162189012697859975590492640900765542777973035938513236296477199042220739004195394472489608283012268520437108785748971 n^{5} + 65094772707250069793845085492498865820581531672849293535107896820020683403200177462862578213472007198255676285903263088435636591220501486686487516121537625966775 n^{4} + 20085807307137813568277982249092207665876554104973895172937119381849456285618295853475855971122290613030996135719303172506906678531455513694317931789362272739407315 n^{3} + 3484254503442377101871848217586850518849841560583634012324796876130064411665844258658502624865929881459490118593168935390570094241384300925416540721241032554872998925 n^{2} + 322167952723915862559252896930219328524629978804672454917583694866419147347522186884842667532891141200250734390054838963665499058408639371845088374206300531222188990594 n + 12404937761724692022416910075163317763926122371103948983844099659032181282286879215065986356021790490741056400575760121621398191048499072680799531029053093656128372442840\right) a{\left(n + 231 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(126037963225213470660253847076048162440153154351623798851362056076925700081313023870499812358049773874847176565689358143685502751978843709160861598331544597 n^{6} + 545844805544356956387253829136122070598081321192018486061037632443662868169294492863562611124544879746217986474644162043279759158902457783608855411396501955985 n^{5} + 511549142084766617199078506064469204962524475432306580529942326067726953895197100169700082597182076730001341181761337719899274343231701527709792786047362343110485 n^{4} + 212810006978860474115266222317407756844898772938606424545807129901557042114167621163564041967091809066726482055129111714317869640315351796226277987253356256763727615 n^{3} + 45593508452722951641901036332353436742425282292681848635315030865551344592278304740607694984580710765746606961384800326313997602801403928679710547827732381456388071158 n^{2} + 4945392697311894742761727592049607711936258519789943518081657865625098895830811568172693332072482532561405713338050206353280673491442699344506298463085918608657505244880 n + 215945133843938009039808457379505326800894220168138164902067255041664646376702766634537529139947165891708136253809529143101489420350597492636451671565844527024560830284240\right) a{\left(n + 219 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(134055263744648043051782810392508333488161136179936802775553939407101223622013916219272535296790196783744706732795869555659741024471497702839320435523449573 n^{6} + 185040872981079105583019663217794871152177595326497357255911663521671085988672866294661824784038442615317378528787371449960883573360501767736756736052063275258 n^{5} + 106363118522795325820471519279334353359774560549933150871400724372240510750485797632018266493183659093152572466564568785283816038911202962508577676537382611465870 n^{4} + 32588256984441126123138260958189334233825337526670884595408958689443761571800566507784765439203921227489203937949517695683520120264347695886823023666272248235337240 n^{3} + 5613042547604510291222346789132872428191910017777634254658687756912177085483052769256409873967664882946811560697662006429644477370174605808224910965774638879204913297 n^{2} + 515317689071929028434559485195469276145488232836335015202703323034209688028575897727654455583082432671934829967908743505881805050948041405229738422089745178708752556682 n + 19700488551634746142026907568335269222255943626642894105633973436306942973361597068559114223439395753406547288781255391244426185810946841593850747915029004221999643748600\right) a{\left(n + 230 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(212425207057968004661129855507180696111095712872190446003660096741076504530807514349184683004608417704978174800193456514940866822630492905729982099609114682 n^{6} + 281505655767528971659602866658117597102204259629166359573192607999040673707914428010332025615040353201576528528668790349610793920423202177377896751213332702706 n^{5} + 155247725146020752818011824953883708526511264752674769384441036961665707626787427067444153186646266273939153168279136421743371389361419345631071531155947543349263 n^{4} + 45603474974639516391652610768926212423760412809483861877263389308797774495540568644562821734706895887179565483662071242115138594379070141707683532828248362171016280 n^{3} + 7524764061608588169026605243938648228183145390092349467260868163820940671224336789442451874413976804650610344980778880943242426425778967363405800160520616078839394399 n^{2} + 661219984781060162221690909026958891300783861960814449349296620380751867968240578568198716624083909791334073889553865846817603940906927620392252488655542376967411482326 n + 24171412430732189503390746632976893432271428763446908647907679216989220603951016906183022866401600324526016690934323614850567726171847898401865097643167590125685855942192\right) a{\left(n + 225 \right)}}{2234180279439701626060800000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(216099673770714063512250352255899969295328289399131513306099217263703228043979371547969702365471930095376898448497511250986353515428442145143049387159780011 n^{6} + 296152819193129758936721786476134215353564877894724643081525994560722119447545135337417701205770387663992563416756725916666457142362502721947569617864370245098 n^{5} + 169005544896458471872862671339776424328576866835161469991710826294827693013110265419403304061649566083287606175495913052818807142239037855105887637202297526143060 n^{4} + 51406033100764685031861678568858679963610813920699865408635693905278939178683442673465254695604206010402689039676373926529692189195304642957843522459953935364279860 n^{3} + 8789684279162274427120052889825974157598397370968101725670356666190490512116287803872251146563782684105300586350052998549824542066032473406513328210638913313844759569 n^{2} + 801029094018263493272256925893270162767965312788201769670536971301338301463634285624893860256718172105652213568063935890290224584234792852788197563667943043464442224402 n + 30396396254957832528608333685304436481313185545993602234512210336237731456444122198486831659750763553290957673180919527819275478704216616995705417423243546354257571303680\right) a{\left(n + 229 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(338397888216819332326278663567928750557346812310050387084760109969244698340555841344393341389894709242515860572152390671030370287967846726430109715343462727 n^{6} + 460309965313658685133832608600580884779888792586175906455883573855201485450846230092059252584555685592692612480715133823531161099235942096409848079979241140348 n^{5} + 260715948551342740550513722211342002099863257452322672956659637935761550255642811734749891322800724704403122995629884099255508968403304497503737454033361694214795 n^{4} + 78701127840122373166447211196427732888602943960707707423189885300743909628253100548615354427745592121843704692096591343093295756820855117672645985434153158772934480 n^{3} + 13353808166620885145580000544194561746696477719191436142283857781568525717156595632428777415941674729873267892480022059719712607500832334122615314597331992080583898118 n^{2} + 1207553429984066039069704660078699436203771717220959222447640787809645113995864184047244564314098153964994568385337057589433182506930019863650573387878895412875040140012 n + 45463591817239657777401859190618007215985753005182104118592449795568703248336649324512145901686536055886772435834532843799382502289063273327437406615317590596284429176760\right) a{\left(n + 228 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(342435643581569235744373342341680762729751986590693779424372107621899220077863833006875422923462951988139832331317803937581476989498757877862459429076880283 n^{6} + 462140279913723573643075281708709946221630367927027138297954241652956733089271356785767803413765683191770098438398649389620716416396971420517240410456274704677 n^{5} + 259667067402903274986128149452857707164824509579510362112585417485719343379252827167186507674050832118507356812575615875896679331245125659103918262342868239152555 n^{4} + 77750874985144117154491997725673980772941989400751491495996724007409648600670232869114922726517102843860231459636775375150605781625586278146424042912729776210911995 n^{3} + 13084250728671641138840988981112668390523373334801154811226074857455769286626811546999921665537463019347125571518946593985225403440296561558693875316170022369117482762 n^{2} + 1173298367121757096251515225723661991859449163670065348770775591928065835650699812878273654698175092467022062155057373567616425746678567758349143722787886831639877958928 n + 43798309383871639705394302470202145824061511389248895677756205711050518687748373366745186743865676626031408933979288816440955306565891474529906357154172845029306597675440\right) a{\left(n + 227 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(376652039986835487295121443746682187064964220698546398565138809765389445680440056576922916469102736972768709290722490142908905276516448667298370186130794783 n^{6} + 503978672546884089363940323811756126892751445668085075483139684578648510105403170051204232966211272888847170851446480983425986157430614845479418459007345813926 n^{5} + 280710814765821028870648498833241696073702365478536043693342415467811857742090861263415408595469362926669340862266761022997709131875100430244790851606048207490725 n^{4} + 83305050137518858875838286689398637318081224186495040053753893412268719134732837084800919524860212759408076144336186663399879962136090145514544030849080332710514620 n^{3} + 13891546495078388538840919721799435714139465485682180259206742209599522033012602955659524779178969998728596095689670628641763745594304997061436669552616713317001089482 n^{2} + 1234096129016313425880588233996183916008562255092192563080150022085948310501524314696798009206220805431605289529961453513667328831823724451672073231640249164606951286884 n + 45627834481874867008648397771197029169265028402498703043392430933806909621104105524304975846940722859476286721920409803073393641337341852359485750652699517838188950850200\right) a{\left(n + 226 \right)}}{5585450698599254065152000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(465578863370843363827212476733791054523749057781868558385252794124695748581091122710340486191662918101202165561805047338866515377852975706530835270032856065 n^{6} + 354528410385013676044854381859624709906187499592560384021145943617540138088964921728208753497609436001989975838558946478009782916095392068523403713757105085752 n^{5} + 112311907564988542812064845341028565814548329690335738375345120195704808452882393796518442971428569183529512637906282344078047420047007059380577367277128145513980 n^{4} + 18943866359035391014274703141427698432123772507479150782642678228371237005589114897982222033151964126256028428370384688808752367679616735638153540914039550836089275 n^{3} + 1794058628478368328547416099082660088198407888723459406776688754708537682184176310408758605286341122775939550984882665604069054069237578697527150846892359199690912375 n^{2} + 90433671130267426110444749776474802373148683325888154918131902188522718285270917643357927326990421566491482974267031612882927616349964072320976252957023699434143654063 n + 1895188356560251468195695635224558364164592950714019862991290685523042121049021082403908655940624053550816979122597500853839380746378981490950568185385453926651103242290\right) a{\left(n + 129 \right)}}{174545334331226689536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(507914162031672603416906186291592358575797975565982338534783740568100794563727202725843488358605272503173977250744968525821016982736383121383497591033515893 n^{6} + 546850877120130093848346659229143054779308442109682594945958425732521511374980465924691837013515900239711816884946092430909538327024634289314201283011619592615 n^{5} + 231173536125269194007959235236438295900680264162151816286539785909216546384498741622200559735837255043240786884802036190323595096051323108867680767869309502982685 n^{4} + 46918930277927264898633195408659501858735626055860819829922024161146738837657413033339454038150025185247394254891253213238369571734867541625556740396853802613465545 n^{3} + 4215090708268788036052113828644498189266200694687976516112251189391406569234426429779376435699000093521758824923823165842917268338306177746296596791839577074213707102 n^{2} + 53561145542203507412921910826775421731382128311502197958205274188456262473099981144350897404682964525411078922903787333603098217903393121830115647319390453079137802680 n - 9932488420406733591453419935369456306888138954542861345113789390849520682310755846179917076763427055475881945664287692944466389360031423377888671733394842813472146690320\right) a{\left(n + 220 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(1808394935230800131201499911938598202043671674321206021613558657790173989944635847030585853149481551149322534358819919333807122658640690442694374224563280655 n^{6} + 2334720543843594064566932998069737301536032233006592296385503002017726569204874493135214164076692995834007786390691021995707118838268012605086636031382690446602 n^{5} + 1252692621509675997827292693806384637872831375113901161480690447392985697743047280487309271079724254029376536913673168199642239427472261216166372470951071777028030 n^{4} + 357451186130526663258390620364467222647813110661039065970348541259532483175563932704419401028286457370022182785542046164832102744211189322861033123819403196417768560 n^{3} + 57192644621348806249117199557773561760203586812118830112663755227288423885406928279616481057031705732660239625981446617311074089594610686855109958203831210967680400795 n^{2} + 4863301661649154179776323214765418913636757540690914134758258309609025499090862835312891416789642002575204207805856490377345172756015169369597572967816697889289460305518 n + 171628374561928859154463981961764287050042871260902990932979232071153984005578281809459733224909340076797759229864161425520872767027140630131660141764371870172263974607680\right) a{\left(n + 223 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(1932226073874513661639475985397470783213516513411342276508658429381234674710265920760782840009139303343298411019384661080617528832205389508286768430998024304 n^{6} + 1505622609330523533219686697320664080403490169900612810244861247653095435690184598014928297059989502486500266040135723838059837598173927075758834619607928061043 n^{5} + 488426344641931074293088985904603767609324190867926111505981904504682694375310684502243684849794295673262945552117942158786212488788141339382267241460574123492250 n^{4} + 84429970825069435855647194722354695971042914067526283976086699498953829260111266620241855213494939190720321417903702239436508679112281718533756850070589608593030835 n^{3} + 8201827140509562138862031215057817835062469920295256863876374348307700327959784739747174469450137695248453469701787783891365272366284661086012214361389250651519188926 n^{2} + 424515081506418229929498399951646303533156192685612056792889482119646202785233766598694410945656640647220698644490271776259800209556139347972755162494162965383880685662 n + 9145506872326853184736846408294222615680516572223456170899718651615309369404331945151663270460331155243254503207071662442673943210137115565368814049038526331433452375660\right) a{\left(n + 130 \right)}}{349090668662453379072000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(2101167703897262600691202318895133036940461645631629271988780714057671239769492355696244173442447102245239426583941162216487543426274660306455926749511439452 n^{6} + 2655348483903904935634450539993301517496587062571632490427456146933669681000201900727358204907876467105351598088659560786756490356418945664487490679007682739795 n^{5} + 1391791449072798987614391903982126510734987569098258835858075164710962615362871590610879794538317459490357246036626853126313383574111985987800605412981670697434870 n^{4} + 387023033455763532306162016596034999700080749894580717299132503918916769331980651116647590804483716393605750264076626976820939494800922868939161831368961501096450465 n^{3} + 60168702036915050340056485152767178251021562592331629686623779991698652921938395535088454568456665352096698887907947051634185568695563934667283510047441132502292651338 n^{2} + 4953287044783525795129131567518090373963724065908692438716403014947031164599397531065037067789978667742737177406951951601079179425267869431616990537876340281465835504640 n + 168462953723287495307895679175763440975553456303922470328377359305434560956160351434982553322175138235795061852444541702912700374979100907609570063330246680255390623255240\right) a{\left(n + 222 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(2856987805438291720882714133486522100085662082155551747038502372423280893969662550139331818857249735540236651583423378731212211121208514263847892556214219819 n^{6} + 3743015010811789950192747827046705397536427751910289510361218762068875223801389586173500776826300459960360904439590019374383666459153256505857082485175357346323 n^{5} + 2039806555565616191427671602775829862227402334580495915249453625151738365822902439184053575627971803991564493616153408579015846679977748413895270419604501417654525 n^{4} + 591784157505798053531945648981982354902073081689021758737063801870261223425441304030604348647099739454775374488747109156449767093042745969791072703965370117484824865 n^{3} + 96383663528549715976573237863928820726277356005020914446110541597989811366468137918509589133591997810925914511105958839465879736436264679840004726719819520610185195456 n^{2} + 8354324255251296322060383990105424781538860735142168634908609350017226194671274762871714152700416890011619281019825979765837513350603781166272336196235079094175604493652 n + 301017675261475626799028690039903188534284408641182280310507335340457040087647018909061215987303898750801656496112991058144281626013513355217476867693942704292065339276080\right) a{\left(n + 224 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(4230580060795581213745591592658442464037896018781064366225187363193691213707936007948920977484169330445993494239153251292437571428219204858090576835142101019 n^{6} + 5141404999960210267622797694759325420446213693368929822941622319151778113217230163125819288095438469385215439350839911330506462812313337413322125635717055219109 n^{5} + 2575068291019233519464549737419163114711969108419316227284362141656279243763231396267538912030931012220244087935929183421410638772381148141335886377046146588874805 n^{4} + 678517759373384337550414112069000861810732805066751048071362151913384713794696083013887967071957821673885994834837557783144051067735693044311344180930659534739418015 n^{3} + 98822792969042907887412260510100663792835333573477330882227004288620264106011204809245931692099706214506747015594586642027692248093387949977494956255946732017543750456 n^{2} + 7500022037159409805240760591118150853460594161141221515927601150767321325166642073823352730437872369790951631427366353783530716462482545774419043981074895202505073945476 n + 229614966605018525919633734163940413651714999744372606134063512986446821713501703771344825856068498202660374278873582480358366862096948065954195839362881905347989253728240\right) a{\left(n + 221 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(6840234371535672050841150653161760787818348016960581168511068263357555908028888000114407942114467796967443277131000102666308390523231004308252977006879965943 n^{6} + 5425864624724730331625505760965631038768411337787090501495816765020747885952315739784077609615111978965616779637675189216287145894187937253305529275998336381632 n^{5} + 1792127727961241679747709156873848289231143520118173653747673690335067144336690855782650524751879750251055288207702569652240478248933735617949158485176263197649280 n^{4} + 315480534256975381177634584170392359322349806129629613358043343630633629567232690279772186690494442801644729095169038147663725782443712683346425424946707655583930920 n^{3} + 31217232534777280896408032435702600881611835419895921074513252831786896482223331456861586663065593390882802740193777051223719234019216104025046194042876573497113925257 n^{2} + 1646268388834981038088745264031250060343410176009782897251772844360935296039189646616967074253805565804848298937240224241960665763031730440446589076960885285588754240488 n + 36146844563528385415805496024390770089454481882117289486945760305333361964054307305661688087529622460124061231837361697735410569640252730168210310791721211891367922814880\right) a{\left(n + 131 \right)}}{698181337324906758144000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(6870600932331142752617921001660124761675636854552754754034745343823428073507994714472334104272863915346240103053739896564062722087643325530659022786152548435 n^{6} + 9773542247938507995405924332961325055390257109356581744665873964874854366671288559266527927417394071815848223707137195020076443798215851990573550195335119774173 n^{5} + 5759652952274739965792320300100279482136660734620087596110767706299197502787377268829893809409057415866867438427741439566525148707830594192178282106827311712118135 n^{4} + 1801248931647898803474005602106839541782471050434957196399461466861041239474187551770685389657379362034335361284818182402774431344915877114041815573154896617193980875 n^{3} + 315486023058068759419249394672081292788507346884635999185126183693051630126053563602508008419864764870262579324110197336128353791268481787662526271229312743193761032630 n^{2} + 29357227323195168352744225897430728726567582734544309916802420959569209154139055687261837159739043196108164621250141192005078813320128983869102665207233699229610869657032 n + 1134368433568644164926548205773304624656907303833770550558983025718622139953705679410866692209328746811774194551266210136886816439044105835355179468522405244461437991667440\right) a{\left(n + 217 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(7565234533590044654878298870256177004548732704123067791599430205534994616635444621631645052340155096592541489580936185228047716375878180884611695511282852065 n^{6} + 11601755943976862170477671671929482671933950665440351861867448641528955776121209284323855311447444471768966594718127015902253877815478577038712567254573219113833 n^{5} + 7271548013975910620915244347514518757856222418731873287830488531778358537123938341672128995194967001664373659933030957494028785511873419965550485001497723667527255 n^{4} + 2394757554287858202327552023286138905082821077374060139463070639105011115158239073885195112597176033653305345098010893191238919269788265250012455095289790688866582195 n^{3} + 438407259895217601483041519182298234830815330681695620826298977834969781333846092285815003758478104333360994385716041889221786042730454957745278133669203083753190926640 n^{2} + 42394184299161245543356681217820622531553278412916760910175547579626786037289955047167212678010798259731867308870779725024474128903886796675040352537140514697617810515852 n + 1694522593070166920203103049222938327578112178602543856390473549710782942016779687154806018829803882771356817570733386507014701954194945297807377440038352546871529477367200\right) a{\left(n + 218 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(10891125184118106714734205527462779779132557117418160875049270762060825145956960136714583859728802822409708300712899241045032962183755235707214356051965275891 n^{6} + 8781279765974182565710349309075835635936886167518756431692929989286625289225021300391552123439569166163303435493812388396585076606582696855464706472137852072346 n^{5} + 2948049335827171959456664834472681454602469087259425821711775302231519145194646002338736874902183649980380045437479391371534845854952582888503881188636125606013090 n^{4} + 527487719179874831089255755085124951430818755776428613590718642029549438725071928279226871496458828766106277962948313340633061699762005805092895938277184667496250450 n^{3} + 53053333060570004901489267182520108136990381092722092215392953147681986814346616943654094928798034712794674516159751423378580806041020915884970817954908381707129551379 n^{2} + 2843868797478432205933450751554460932228044072308084719582958490886886807359051929422124604095030259726563634811923685977275144319397629897462138063086488002089465844884 n + 63473152361728559969731290972658524800932815005924956667867688129493567803004379039001745941196400963197044616341113555146470420772634413112318568267196677118187850998400\right) a{\left(n + 132 \right)}}{698181337324906758144000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(13965643276312918269871138579848945513557662041582793919861351290116065282952039212765623650482702423986810686772490764019805941802480827241870314975584875763 n^{6} - 1111546589397753575092158777511412176254314505322323607208632645589998055395874356734205474409932660964582855765857661906624820783131932361920177008810226907392 n^{5} - 4943349492178311463962763878597121706903709629110165429221223594892602305286898448036975615516392148201793662912520791304762283847812579357803598899942174539150930 n^{4} - 1783428101188845851973727177982296770932681685397857212873685784278837434339563642228545625021384782899304208014795554294982297517921556388721871072386324986794982550 n^{3} - 278677696378190435169364707424505832048201302329952549913247182976895447151312599849343602246749210493689448172436991181156286623659384135592402523170455163578700404413 n^{2} - 20780693131700438739891134492689600199352282620376271245972963595586066780215907457678473806580404970845833098976817477817992225114955096393855845028734980440057999101798 n - 606840215356330875717106797514686271848468542766854664978386135271492826185123350597136373519560454060682023432447038539058693417133147826254792279799267522440817127286200\right) a{\left(n + 139 \right)}}{1861816899533084688384000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(14075484310942259812459809159800823137064029498394760725628537554291232287692380697185196055702327297552178557676978120096985937989273037700101065619028069115 n^{6} + 19414913955986893840268484871888583817750413204107601300159590136038280263383417996036655105223450598593578698151858100840725538268914409871917754754137507672207 n^{5} + 11128403345026885096994786448059001981295139664206356125764568542592088052683569572366191379690510485769619924620360285912889030813922335507485274475634798921294815 n^{4} + 3393704939957733024967068791610075293216560392124026606948933414949934610004591969630282419157383356836727011335449123423685856380592199710022954564383200906367867465 n^{3} + 580867086028025343324810366017938709862123304867387989063514376109105158055294960283011943997693784906504548491526665373596362993092747304214517523189741498737261307750 n^{2} + 52917431054189973089879774026924924977970164795678281318167126734410282300392512865358693190007724373236818842591686212330154103196005652241908309867496983701946011304648 n + 2004940653447780655263460902751739206553723121491417091806555929528101654584595845765949507940561630360575849345117905804285326606061684385092243356762714467969616171617120\right) a{\left(n + 216 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(17758629065987067624678874727488825026745796981282439145705694867579926823223492658925164894956751173837553895987384547842993247264079102504922548964741880217 n^{6} + 15119832032975734658898516683510724305660106588487899242986675459453607262646289240743080465604979841928259993688756292113674690584105356264514212305361890477176 n^{5} + 5353047999312486355832812485275489005141346941453679662521466517697439000343618594188502955443033779611568110223390491076818674148162733597224526196569800173285460 n^{4} + 1008884040442137261866264417027958312400194057649908214319040135948452700278474212795146751029063739299463108291934780588402442790448836255075731035943191825304081510 n^{3} + 106768567443119113189461912606930305528058243762425158342575395673986731512221815104673236227240966039864567939485577468587651624235371001232613336936569310534644120113 n^{2} + 6016308900407752075898848960354752965275684230790088083354146954796542799760101711775342366496029716923727506872697692015731563392712422116369509963402244821691731472184 n + 141036829446508387901820470335702851939794828309984267040422661841287287400691843714161310407341063358114017550582375326566489599735425761235896230822948123000955518426180\right) a{\left(n + 135 \right)}}{465454224883271172096000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(19159429218835343668672517982516701423534373603666556676085577050290596649900030954414175646972883394675156011673812336751109899065739768699273396581970431842 n^{6} + 25332659083764223742697297922159962922187903416349020273003954272687150725096521887738616932923172378804618083629220581707696203214998823475291075973612855281245 n^{5} + 13946934403910312894998959277633805937231332162106671930241257015769874969213387823527158612869735484400543426166872035551557483596318377786388658493451109069337467 n^{4} + 4092601801544750232450001873326479688933319123524336181825642511743543367032705125283431527322879104839569275426670854976436451610157657775286853587694160997248890869 n^{3} + 675116751802675541176277773908973061318056795081337629064150266124155126442517943190372279012862723633269115807346595715864059580204242627173172100831453008899183254283 n^{2} + 59361439451034899323232867004133655981282274013617522238198706188648943209304982588338186359536112215110201342733873574446548796799024216113229776244523834612963290680078 n + 2173585221915059461276213463116205008972424313130149210566881365517083378841900573784610558914734482512444726564670965604370942593295245863555892423726522522203891244795792\right) a{\left(n + 213 \right)}}{2234180279439701626060800000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(23583192676515885369416264904169274254460692236757609315243352847948426266320403248922183948298692718271553626528562273600710424305133442095326865059964792065 n^{6} + 26589722288519869369896909823154804213466929913170994590209429365929254936608086243787933681785667151715054292291192132233398289916586695688428443533036059045012 n^{5} + 12437641349111029005476979567069673062434479262139600482468857618886101178700322802459334290628504820889435112446225663198317418445487570371383354764784361454554050 n^{4} + 3087686709817708936884375464431934021385082370983248099413751541525142518916014610508770380594738495667640298312659449165272933720486514098723932512079709117094506210 n^{3} + 428760225976942069492296433736236014146333052491286706716632600183480424403574620419807017890803659201032648008556633965091465307104835689123778593375606290167353587585 n^{2} + 31548162219483188073469785904496558398726476765691783229349086127023192682262884145421949678656638892002119271059876136707042474665204939741708599133190928804935366386558 n + 959877727577342537740326298932275635263033919561809323091869532191938513568207619110287330673027643349299060257497498811712511007178188539697507269005548315517677316237000\right) a{\left(n + 202 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(31841792787157064613886929239057933232864967474636369448612756062780199371306663150053007099645361759371665629284406751297550776400522132168600404145351072783 n^{6} + 26096593614443345815444843058561011397888113393385761881552976420883276648978679821518314282578640239428920741798488748253895381341643663549483626644915035057658 n^{5} + 8903998866415002939903497021387581945919175471769087494838962718493814886437005992312602985394218915522466097708080320774586702243544691853109575269468247941999030 n^{4} + 1618895312001501615802217523266201582085069008479998964228718697802208552957336632094667297049542521456909484011800738712107682596565366897971075662220030499648374740 n^{3} + 165430334329310796327256722735346819334654873018913568404633177031130017961838289863384803284864478281541915640710411513581775886215285489993361625352278584080759077867 n^{2} + 9008574410412937373275710360621028488789592046837371971100982488394706566478637989092016935852618353150628371037674758363905656706024464094182933434780412758379529916282 n + 204237904891549802301582333007563167634719758566842379320170168286575723829097485365872393990060171846593403356274960906263053568672283697835879051865434071392763941470760\right) a{\left(n + 133 \right)}}{1396362674649813516288000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(42981267016447954763893531906487368434279793085055165959575695573061920963455524765905707148876901073455732609057944695262947679708977252686805623236933797180 n^{6} + 35851235343598960070871155613796479838017033494841421131636682557196296491165483347007166403089001378431002259485821824184213600577160842296820148809350267359639 n^{5} + 12444525537906324054823522392323757379937073007395051435608311671594760861100118225564868796702975879338006050382754958091236519033902752285703909947872848940259445 n^{4} + 2301097388379397518168061226602153340368720679656476995738747581906812244121777757534550469335258688885121852660301221727105177619945335642150830079192711007395429485 n^{3} + 239066489462349098273804553617773787591799012758031008348230203628785249546020886194594726184222548915642348547291408186536840551892095826730925376869048044699931022165 n^{2} + 13231965732619156070440945682672468809156907667106502824524195525460573408076469226802757844881423225446735142135912934202553423839653979472115022366168862425858034812286 n + 304830793755684105224991063112210172828487913205229397935409328377533103242545338642105934073226454198794821818886040261789899117584715454595863743587090204299569917940720\right) a{\left(n + 134 \right)}}{1396362674649813516288000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(51236063659309598381716918571551533812464895718136017036760390752285307296085090678709909634888786241484110133425352965525716808891285155624876731405382833444 n^{6} + 66105839319158819414726777141160051638769841413289791084908100868878946033128645475630464133658217212211450830125513219904829360829385201421677092480473713504217 n^{5} + 35527715700411646797784804108513183594723351741267890011518093264328587989290169753826056525272122465179327171376323363881058684073835011597816071733849858959640178 n^{4} + 10180555872504106604783201672396791883873809514847191456401035713472076436126142067271258190560244494023740385515992665433796604870364528044061899056895642892701195299 n^{3} + 1640512231675083339025045392421789781582828860971405277252206637048003796530361441096856672852683584303177088358607462326387377177472593231416282097196028755389786603282 n^{2} + 140951764176844211443523334384628826735737410745214627292217775056865551273788827284146696661889789738481971669791383460544561070777806358245020725870565482640801778032260 n + 5044726235735961687650506011344353011057682522392096517913419673357809711699707045623429082960186483920835560501054335071525647617591501467785155132296540684298374767978232\right) a{\left(n + 210 \right)}}{2234180279439701626060800000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(62180167464396435672427577354377697180930454542611384279782367510943358992671022011945012115173212016436812825604100541845800035738939276637377865414833203619 n^{6} + 83090882343019062258089786527666103544950592831998607098674072964109114697896991196337489675222302716238549848924468326901752741532737097974474415566347653594416 n^{5} + 46219235649883268037955111869565292373072451980374104261679407895584241102218144900630779634049628203453886420799281034346245049225969503697748593480764132463739805 n^{4} + 13699141476546795016946895042257348197132096158872386801487630767889719768513766981317347803648561081895567920251753005731750729198042578437657906011266780475224205520 n^{3} + 2281972003920087585857412158225635032853131270937550487389483651913763714183212874317905215751928152485304204123597781333514821930128282264800450967614315234648338759616 n^{2} + 202567358030719852423692904156079315022198317016601342921721428158830986103259550671646928500788712184465105366325608965301233244175529127738116988005376367484382066650464 n + 7486501154820869457927294514633787068866497306326939800089187940893979320543822878755580007432902607624327171050612596820336615359881317379993489650874659506947190822086480\right) a{\left(n + 214 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(71699379983738298800324422445686695121039534627698763645658639615593616654690090233480555021053306135234548952978165334315981048126819551150160200732507442379 n^{6} + 73840702654812680003934988788804419291488026224292647329272220951440698187744506018568841870759970428987186100508031891150029309406694832619285674329482045838862 n^{5} + 30580082044148810021160665320108751219526870436672626917074600106275931392353975385425925163717066261663065406011247911138321913825578047402571818556396189455194525 n^{4} + 6586314402084270247092907159460831801543755535283191444104995870822966079113018334754132958316306804705300686581765716436176876095870967355903571401214048192197440200 n^{3} + 783063912238508910040359078759190889979159727465714127386524243699391200766910487950437034139770994808907806091708408849326336658795636371760339583214666224816518323556 n^{2} + 48933355528895416033786253352705215950034577471920522534652020630249004646740539306468792907564042101806209488209966512460730693209736897220281780182144798306020790688718 n + 1259286639005278577908758305327510260084842795890300623453975295791836353129439308614263461701966962301985887060834395020650020740024247074803620900980510312006328892714440\right) a{\left(n + 138 \right)}}{2792725349299627032576000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(75644844071798711043874509504318059144452615119993948500700874960903962015334894100119210122457679852192652984831906231960188465068252461723098539763122941791 n^{6} + 102433115318728844613287426692312043719938080061291795597375237927646513231473979818865957693473861259490698637300075538513461860386916511870005522929895057391475 n^{5} + 57707120533332544794473491874414830210827859583675405801718087197369569145505173471642063659160189398059870967557017670328373466386346083227393302876013678127206415 n^{4} + 17314215279115809374391842262776658106914194411716150320439788973224020395922318231409702477497348439970331641708989835819910358972816547046829213069390472200566121525 n^{3} + 2918273496504104466642276568400759259650546837974288115166111348909561518156618829977795807544342455808550504911693246767624864326886722463725296883158869602618464791114 n^{2} + 262006776217277048269306004959447436076388665560378774647802812533318437553220967317650329796270264188610623554483335940872433880734036199078054138593360726537068222300240 n + 9790078493231640629758528424764980363562830820399731346263636927794096596614548276224764538483822228076400115400255833103771988314477274606112569315731589107355610490434080\right) a{\left(n + 215 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(104520643758150219325190690731622818587065302821081531375694292956829892254405904691498544292384943824088478418697604405062371347449375037968015218556340211317 n^{6} + 131967090594052919239336477950768510432671339782258107968390059139482003365727054706394064767696741522469548588359585945513734877044437123324949346578379780265601 n^{5} + 69324814993445287401205338432144427517557033319637673705019935942000920232085965625997336261996250515795544220520787826536713156945892320211961318824739531233635525 n^{4} + 19396483746593860803823303012020821108464456300333667397883569612148484332066598036384618332632144523897582348367459010106776281257899039307207988484987338120784715855 n^{3} + 3048805491659424598663648909112610709281783712591874798285169837323009780604995134049055237930068475059796232782679532218401572260055612407562811815922479636678664994198 n^{2} + 255281132757602987699471338487833497886073211016371280653582637405215492439912074122587317490411088727167774954977291890845849658757772576899623246107979034634560726657024 n + 8896320650655610960074312678683911026919753982437100096204019468058056318253141373557126588377170833871204275651551669214825362893239994754527437369687645514363455593954000\right) a{\left(n + 203 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(111963460268970298015405820757666837584312921234473723912652624156332834692849701723182466770566874252750568155166009259978359513629512133958423681905906210849 n^{6} + 102375433151962465028835217362222268016232260763278292399526580859652125955601246054221102140244731094378482131227879831197780597838934802068421591603179494477713 n^{5} + 38667495018891251599990439721904991865753278972652429687864710631121147012720544726579404938531662326330585417006805111501898682011995392691635552984523031270880540 n^{4} + 7732625753996064896001308510533498094832332052266450478268221748730046579119623666896360227143320326498705755267725885511124917041581100561687343849434229850597383275 n^{3} + 864410527123354130053253043739761738754913406274320898791930319065146806259438623769332921653608567410584107344807372491779285169959905400956901708040564380753246799631 n^{2} + 51258225867763115073047431252424683442144924987614455998001978790271698381371926460683276528802402063526190452012804096948029776455144270319689938318680141972553715436712 n + 1260489064495943685480360965416260660806442492153249400054317354336324793767730785674962960671136658821444323954117709429611132238897302862545192138813969190205975847855360\right) a{\left(n + 137 \right)}}{2792725349299627032576000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(118697200575356092086954480918572727100550301816792104863867877986705093867681061661819077623630307443080872183481576981239982173679177258062430142342587330833 n^{6} + 103829674553339121439480880976315741707404625852032156941921579707116872848800171866768581866658278901244690038904089510025882976608736780562191498358377301295222 n^{5} + 37703121648896097278315327773679202710835849536228901192100920260590401796584493121523618932437954548056621597851078076015495873732462541875239355833998982248820595 n^{4} + 7277485572890082443961140392319521000143917555572337514556382928065590262797751881175733934893956126090491022382682475485587433291836839537236213070017377697217575110 n^{3} + 787762800239498600510381396482888050088379794708572378209061034396875110184759258929999553436010830397685327548570551309845705488273186963023269250127024601070341100952 n^{2} + 45353776126584594866431958684595043448543305794817999027226786336373298278673949025949485987513312123669404717853791941837322819377024457006104793300847423873174308814288 n + 1085241218504201410661435233136427686932166534976848906626838125916960402347924954331559141696530656551776430104445661145731118486274229501357928285226486193878621223210680\right) a{\left(n + 136 \right)}}{2792725349299627032576000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(137349141823567882774436810638187860092043643305077925313114669334850977089260030215212412413803939725342981315396145628996867516799283496874487273518170659002 n^{6} + 172061172618373829789866669064196122308687054529912685594278824909980375304510061443038075344986531081447578378559838059815810776360980327452211220358636064656587 n^{5} + 89788262141648932460428853773736619738623886684043050376164506351314348743647456361324411408461946340893058505633863343932648640899337098724910667425527099092427895 n^{4} + 24983233395272308743141548751714610883966207006669976357437751760172821219692217928693267266055270728768634442243775164179863830511404251686060454203937135522475133475 n^{3} + 3909277122216296152572362380991454198243166577469737115171122661923005797275242396218916658454394568011960110890751812057675642116259380923724554026020643785623734149983 n^{2} + 326168213090889514389413160127408434448977366448678598631474816711814828807544883819230800996288150834556008416386386224459117701857932472986390259249097089072811468108618 n + 11336435633975949657081758501264590575763222659032514640253205470958563318702651592519608091451240787451788331478935578891555996630533767001100263822456139815853848571163600\right) a{\left(n + 205 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(139722595405224291826615048033110528662911946478499780242963643951276335171931445170734144869288868618186362141323053970581466440567226374219291421961483799767 n^{6} + 183077647848363111075674328172909291331466876765856946977677039988400803610321248164483921478707452953441305980785283931324386670084887992599484148091099418897995 n^{5} + 99904065356250014043785821343897591844828652925760081614115392636353273876296187503639305937234331704589680109478858786216888714950865048936083945524225467979905720 n^{4} + 29062164420019556405471268789368332059591346714429963583155458518227545970865947582549351811796516876669454419507449400311210585359694005720829807560022413160157109935 n^{3} + 4753361822017775177718351282001961728359573180747929546941199551047977380304959348556446661856398744733580016541454670119532423099019264223284591130588192963638356857313 n^{2} + 414462324381226860317199134719238548138291250494716641001733137851891472946318441044078237957017460030169399430966309417062405710047117520823198768723538798982167670994350 n + 15051406559036304984603111237574155168499115283422995345518097174921249029849283134207561707936804211749228742507026823988918523847090130050495005937809132537524455362465280\right) a{\left(n + 212 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(193849247953842330416798788183186308268231837918577446237514147946156972955237503466959581643005386014307310402807083333835683081123342863117480807063305215073 n^{6} + 251960715816938294706924902898395283753064060042665386172300748150459198456876368714261289483140135128405242911223012655981752893395051881420767710065574996153811 n^{5} + 136405359535484169243896537177205883277948513067067354768838520342468876350770952804181556361617026390864763507515049953110307634008769528896715381727517820941915620 n^{4} + 39370859610105991962179637482360362128643993325610438639302912354286036173374221772376293911633633203176232590584240320956493429117955631156605370483960839765191927175 n^{3} + 6389866256578912120829943952039798052166366758125161798945984091792734447692960067005420385239429395638181059569497255520030286182758118397469126715881667522255098366907 n^{2} + 552920585528926152877085696019902891043094549498944482533978414827615020367163100386804502662348981421290189673003017170397309455846532954539162763091597900463697475182614 n + 19928847703580071570743505265593609700982946005332022756783493403897682854229486737792421067046844900829538336096712659926618233594019850546945607910373326649452256974002240\right) a{\left(n + 211 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(248615091337066334476330771960194438413445950091749458554743681978294457124930053675243443014182803980357491280431780989956162215762757467731673200646773685446 n^{6} + 288409870379589610697045434300203100463392373579713446520886574495665423653878816051835854163871806580706734848962669932926702778408575706918589929414676598972678 n^{5} + 139397367702269453177698630424112175485868635190931458224452395462503919720260405988741903437812760084643014460628693597664818450607814171944442193926466172272937995 n^{4} + 35931751250416312811178814406896858488625344855054737717858168877359021345604398134833721123344613922539149029854784337042910923728524107937275052577643699040492183680 n^{3} + 5209710690615002175958049214566591584226050060248139787783386398365235778610575171507030730737697532004529367222934064775067173436931838823558125919058037211605831305459 n^{2} + 402851904827300226876940973268704353831452584509470368792263421457665233591897076179399486763709180356200322543875903586406438981207352502858954201602755877324159627012142 n + 12979967696344611153367432817191425187189960072602421027133473490908953126327955438499263244024779136700877144890888393947700064395664681752788927943545140496744623981488960\right) a{\left(n + 198 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(255659843490247232931104093588696728882524683359190111050242309409176961884608038595055168254157244985098309463419074462737572370177518598799755802638903917273 n^{6} + 325491121015471904046461432143713032671335989522959573961125909542158505554271880991280073979937763564500348915737235441062096056533933265593994898168637633470395 n^{5} + 172629435627163630014587937422844485499160759408502816538150830609477983561421833261734315310909065555083003282626969752768881046679697344094592400750345370465314205 n^{4} + 48820420267388488302699876063947182998154392764088671385236642372629508580338750134049479110099618188282457389900304240569876413117036597458390382557002437294842737765 n^{3} + 7764701634091901232260763051305315388075597611019955083874889287437972989902850344723060838507237635434560695425063902823010312564400918482194058987044494657924111043882 n^{2} + 658510336405226921389371342560176110121043178468880056210684684351890959003864358147201851636864049274773535482051542598405489863116843797380993182923529905313052909627440 n + 23265196187295720621117126752736607318621638912852046848280619260685501350520177714340058905760865531689378338206098589113362521434190841264314125662208554545665629771907920\right) a{\left(n + 208 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(301830433489237762013586377917778018324199316194394444726830395780531085449573426067745497008793084203335961243938065279332197322127171434973708260482186453501 n^{6} + 236845938806282911963277345233628751679708394018987051540252743264296554854990990787260563614295599785923385152372053559218486999328515979007298594707124009500969 n^{5} + 76682360586634957265415121609758039558612512037516470640254400015557334232986414814954874676341017451658843714657917446503215130216036623596474123633697231481987720 n^{4} + 13083490821696335617332430796073856097617115855444509343654300081418282102908084812755966892102042785422509894125816052817916088592435824478739265775147745963926197035 n^{3} + 1237006382086872755194208870989609996296416458683598544209374412122658255116642326669929243367546787665866789768747519633632165709188537261014150526249212959497165040049 n^{2} + 61183436595540571804334430439591295877885808626077545345962575499559019021151732019217223856296342973338273763319138372830861612814333811228745980348112787230330602498566 n + 1228659119265186524046180903329323807242678556941456616259374914133049808121859287045331086866089186514737501505929093807303853319858620150617572896352768712190856356911880\right) a{\left(n + 141 \right)}}{1861816899533084688384000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(319106380537110112055691313052872398475050158483033281867628772320481238778352655052373888712155356173148327930769730886337752530360427161261811938793293978919 n^{6} + 398864941937137579279187520826791994793763122441039582380438121782301240067969218078180397841765217938476270277498018130051454440139507349973746088036297421190191 n^{5} + 207645856182183722839287235777109932556841842466455660416638275374468845276600820572981427982578468763093315328878606351656354464625062755211887995835727190156756685 n^{4} + 57629349185170736860172804463935017491714593175457805857858514198562009333887004976443296525897706986158661266423775337159833968535914279066087595826342351347656292445 n^{3} + 8993250739081225913219140286712190230383610736985627558826291241754274653820700549401422643687339336853944829716619625054285741277229427042914656162670113162375249641696 n^{2} + 748210508289328892570311279937051182739798801981692773030192384265774770478701860775062429033543525400717747043725731983479760278309390050780603066041763106830383152602184 n + 25927468741704905434188994611461307586754737047936971260168281181308915244866526355350935677700395580016212804150465669152748454816966976709403576404223097923990328542260360\right) a{\left(n + 204 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(322052450838246523380364894366689084105813738221439613893030635117558130193717682921885524660959799810420934756413211313368378093631473959172816995333737643534 n^{6} + 412672784707999347326562791907854455997134335215398382971671567077115458731404571918743227752194316237785443449091365661241836669202703312279327036256939451845847 n^{5} + 220277711012221526686087783091912409767162258426242048542093218393858851823305251073186156372311966631247207107653234561124505822896051037045257352453793587612214385 n^{4} + 62695041257473762952462772945977802495598265582957715005886312800043717831311426097264914585643522190428623179564866189877528435830668293943133643467154389413320047195 n^{3} + 10035057759369652643686321629513159483930837896312722588709527137589072381626989952420125624301362073612214204153508838331700624412386439591870509782259367136993786334161 n^{2} + 856463877082259072042766907204211529714356119280221030258458148184570265717147913130781182430874367202586634092990723491314713894341042714439203971705569085714476603257798 n + 30450392733801252046582903461885768666543648194926311841056101873147054631679612294194292555410154590677786831613841041648706244993694463041323614185748997104819769621247720\right) a{\left(n + 209 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(340443533214707938564942277794067760258808537016322815013733573636293978125603379508270208374682108459778730157583922094671292083449768229058457757703673188049 n^{6} + 270582345159829237017667876681556974674592480533720506509159060526381487692796704432064797917965176371895372295340680062269036534873992121870772558710717976778219 n^{5} + 80488527374426195447894076493380191046826887200796335922382932397948137409142319990115485488430838363481865419508908017050492371757420574310967140076277124670852900 n^{4} + 9969296054901535809617728680326891208637458256144285052911485034142583286964333011636337672612287765154572150405709921311196482056037501373086970808116222694236456895 n^{3} + 156150087585035969203834182564207435601071675856327292957517308030467315124195607814320389920515294503674813685676420736141890699792482984533529490657351229701422424131 n^{2} - 69423222353948444705933104705203845724203952247422467364199815790603200079452233201539839788345898092947071011359234023567574732160188142413596555064852698271981036678114 n - 4359012395444262720797685734612607308288745623818231152101263388300987379794603372399825263259675785222781315261536525256585216919802490890706950926627661867694440772132560\right) a{\left(n + 173 \right)}}{1241211266355389792256000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(376166943132068184715739409094874851107618143568897972761992118166719132716619963006849556585218764137952464629830499728710538877825220411828300255070494499631 n^{6} + 268297715402612799067950175618595350829913400643099131883307430572898997208941757191458403186369646150678733220677913921901116629906113131690249914198481263289538 n^{5} + 76639347125898956179265135825117454187182177931315934239626388766489019631168469396070746043821033960378851032841669898220565167770492160042870615769945481098458410 n^{4} + 10976133717032208479933028614180889396589612494735131259776188016212013641835725116206588332785785310705644571349880569099124786508473193825287675165773514191447969470 n^{3} + 791660704594790343306847312424793474220282047646184018402203339455549628885084542829174767642663570367005836204746322630479769286716479896802318064234952804916519213769 n^{2} + 23502533377446540224828787815116558572949519219586837634461994042747224426844273818327496689870644033389504748597625775967138582244416272512074803495238209165531638471502 n + 47876703072652294936171713732711036368748774908288447723891448147903863350632470123124256325348485823076778010267748773191758852827836497245957851452412638051358276323480\right) a{\left(n + 140 \right)}}{5585450698599254065152000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(428953904979173202502080198407519781421162031933173429976706904406101257344018092462334580642588941967545214549767552515759725239386779678744827766969562148017 n^{6} + 542829816443243408588877553736880166793478431084864578658141735540331903593501012682226746247323685477355061372295730020037152728644763825392595096318356911853991 n^{5} + 286168364940871013979647458094726540028569976361960373013053452614354901890421926706311377180266940729810230504958712529657440139404011523909378181017154326848012185 n^{4} + 80444449599071050862667887021437111183503930233647972653210340295048170571487488052067852136124235785989660643270004804129285583162060140601225431872339853759875273225 n^{3} + 12717815566556941563480096717011412462013298148077063961919733388636522692155635624001313187054711692106455007088230206042486034847799696544204133759234936111078058136178 n^{2} + 1072133133250576451273820360819834015848924182711964282790666646756318120567882715339656357301620240820774067311618853273850525055549892402949244153080513784867284929534564 n + 37652708512805458246914588094497081290556006985666335623384844607784895988671019467604358588654144850385007935663420669646259975620695399352882014950854379512044174370377200\right) a{\left(n + 207 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(464174120702369154818587886675894126074785586290246339679503595246405613454773602737525473814739266274373456922444658727210278832030300976985551321465184912486 n^{6} + 596227083861221557775321018665425943406849769558488292411587254075071757324793225229726165911256206953652361537218971698898102429407199717548559637929019000465265 n^{5} + 316456652248771266951485900774854437455197314169122952630673054362255407467212748924697065660862843268220409104971385696484961282974034877541205164171660253146292615 n^{4} + 88954261025023009965018259572247414765281766064042136425812003886022530170220900947999106430006065884575806118201183123546599676552595893436152479883702098751387522585 n^{3} + 13980899236994337497504701553178593598177365652511107232671340499850036992826822838760323589796659942650885541091997532602744721034810581772464191320080848891911498198919 n^{2} + 1165858974581023680298648542149694013931167806293439501711209363876052666758605179150592248656008234105754466011786430672929155654328620170448323971118921872090037792758850 n + 40324793088145981015707987159124044263645078295130683948360248494832415266833802035912865944326520471483570067132675919210919372547790014521685754806200280721525850220668560\right) a{\left(n + 196 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(600919852387554863145847043172874556735846827515080194230443567675213031430204815750720749326624700442065294139406306867996131226021153972871285313688238886565 n^{6} + 713329949982918719640601854845256789857993412112128836247861211945438655802399896639468434101275321406808117425802168845415988026457391762663974831007912616772928 n^{5} + 352897573725494809620090477962643659247901524324159011252085033849190778636386656505082683574559095753690676274972864147865725736980008927795295359619096168085193265 n^{4} + 93133755722889725260478500794285379247234465990207514197624965604438757042142115589335463238492248288907346538412029480607002395868281943880426882242333895248017943720 n^{3} + 13829155676349765957490186738415221292759035288322325527784740605723941384871405037436977973189922439356033576399702100994281805614566556800479317933608442477053188729730 n^{2} + 1095460459655767796571215280930671188865427242128595225882137021258253128248946787052390933570376904062424930167576652838258098015754632262349525897809309977276982743646072 n + 36166506141124133704437000711406947391230539137317406302922364690803891043744070519518781608701224221263428169615716529409706853990083818557260506374857433538049368420284800\right) a{\left(n + 200 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(679774712148056642877476604159423270636559022736518061305390362329822736377971945102154141076652875916827156047926576413093424689946958437374773655970078750809 n^{6} + 807920538139724800187983664451502324648573069938810336143813223145163562279631557875271286754345731062160142735106882228955549535536141988170311598476551062909935 n^{5} + 400170116886440005673384149966965350326547451277074661415240030795694155335329007082514827635353012025667241227675882016795023332634429441652737380848716440156383115 n^{4} + 105733147234168102888158118439712887634044032235231760942635355079284734441483874651215170017112875495758732419027779577855641693906360602610006658571004405698909846685 n^{3} + 15718114256160380451820927310998217525257457517708067486849063249218657832677583707173680491859773216800966893840815682456354539466109683415774269901403804967236978903556 n^{2} + 1246514921764379097670741209893419956502400450864433193390941961028783254008091864115292846618250538504837499701405151425003190274162706200865007513420133733249451436225500 n + 41200395590748138907510826239434896060954957182714140468624331911983531156673581800830495881769360506218072825242653039167895784465114006918133387512245064500219321897070720\right) a{\left(n + 201 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(764026414071349504651834447866426311763273701561435419053004049023044861331672984700375242419311457088309450595925952444615792448388518212201257791278685722333 n^{6} + 836084249240765864525203648670304548959871590493462800175373180000320734902916011071658658310620636251109566642501518600321988884252139832032162294389486975061435 n^{5} + 379343071525688077911649771913737958418132558177238631762899409200036525261600129632166608852622111975118789953471011574281957973895366313298686997849412467329289255 n^{4} + 91273993092733243787433143437824532371954121721545115900881604728989633933346520989304999870869740794608923153830694976225934937460945562093974984973874459644246436825 n^{3} + 12272194730906989774110266648127215101416972258712433293512891083919709020642686873183897574021886227836983329959567840167623188378589264958154708943535700311602306319132 n^{2} + 873233696255612146285183761373538533996362170348811232101705111585442584663363499681088956413804129957593907059799486322795280959051798699299644426796540218324292167143020 n + 25651249585428097211634730975203551773010943331970631103678402277075544359588911078739504362708220629694128037086277234923863056184393927049036487727534957759438817388485680\right) a{\left(n + 197 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(773403885139311506271090164760106151804185498001781088514455784397917591296959123825451961642665026906360454036304383478233219863321395706821585788148616608200 n^{6} + 911001210693944796057623336735772231559385651275791492492464325132642604665518004242641427994814291816495520150467803093834104373359415191630704700133536124503937 n^{5} + 447196208866980857270322680796553413196610202154924776576833786654198714060723918379137751118679415628026940469768158283280230784265677196980804799352312045720740555 n^{4} + 117100964339713363905885224509300454663161914696865918649085226292289750383496153710173015480123778384081752312914408770326016733615385683355550272786608214735385055585 n^{3} + 17251891614041962599434741698461724165427973789594970092969449595941707881681863154681814456643327731176087939609509437942275585417839015376938669472859872339207356322505 n^{2} + 1355845382678421152861270419482026316979052223563520331643409396223785124352149704871288222052261004176108070936797982026906683156628909979710598244516799366825479472790258 n + 44409731277697346316965472350084600518892938624675001304630316589438063019203902762654949981276077821191039261554873687101352070543847177682174121800469114639709220315092840\right) a{\left(n + 199 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(887665887962280732157403410310310092439847878632479949519375574827237997967614895099489045289799149408622252010239340923908336595709347080772854686016261921489 n^{6} + 1117135330254965135418096886576754500181349406401866440823322337119851308904512249605539741457193287794214456276714256312636358348198197897367147296330168604561391 n^{5} + 585683631923341855764318621667369137168794314714972801622803896697716945147821087084981007645097431872027453654546533594522309290594880526764987368674787623885381075 n^{4} + 163731880315580081087058051380851124531565250022214729308889911982792394955118056574218261797651545170928360628783746937360078502547925004275795727126355626564164383765 n^{3} + 25741974048809996387381949301210066364616738014861378504386186333849662551982859649693107747722866286703925335813662686240187121838849657021002192326517372903366723264676 n^{2} + 2158076273616163545699673925598434176837264725796156380771263106108605848020752124756106924930693276994663890020660337155693736315599919232547999261298468529069716793857284 n + 75370213297184062882315351803006401256780234890504360938764198359737510881997511443240679084898129455118921642326704262795379484499304910344025081502684056554273504553427280\right) a{\left(n + 206 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(1489691232886955896544784437511185255541105882745742282067892656848649893424803183880515947126748589480923031943744519882692172853853191460183409451741764540377 n^{6} + 1706131297826409781803374315502983289592593264251308212383948553831032562340367359743302682566670752520523177063353198670837045026901451370028825798569976485143820 n^{5} + 812878767070362146741411651650111360187536277335607208441116710118029645368915932626172805894387905230278806086425160618827893999770211201117364185449475833457706830 n^{4} + 206251290903814554996616661070971290221466724328718017647738404380084851541277898348259697859462273234475361996297633033157492368217754571140416770616678440280169988250 n^{3} + 29396385422932289284299631692118919769351860150023808002424704286209154995684864158882707065217432944260189413802020494598868516767087066725596633213894775581856685797093 n^{2} + 2231690936299845627143948412697200777413129651686495326740408918876253171446332050496363314075019111002499479967386154062272427028992203139350926525356538305874014049316650 n + 70508793357588433787010524380353640563888781492012607492731772307603582968401319496669945068337246130075053114945829932527839517740157838794638127096055549149654792465096580\right) a{\left(n + 183 \right)}}{1861816899533084688384000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(1794008697535011423305944188729987792944465591417615120288017180225429052646281603681489225272494262167007862268427233974642534206921332569448968412553486359963 n^{6} + 1501927193234927703090820502674215231038818557872205330318242666903560673515132579996140504948282437387187594432713862326715429687739778800683832535432912357574224 n^{5} + 522506490651527832710511841569706694728213482369153767740205525074451901173635041694994113200462673975642163999472295480977464920202523357944504445921840154591758785 n^{4} + 96664835528068727088071350605081434444489371957312115483752681353746212502658436731433367055819646616137463696534288460847485949949598112550501250478681446699019584340 n^{3} + 10027487246804639810551868022085115998581742872233420743004818947230090092200094878451940698660504623710142423763630230103474098094144619496146290594875103728098966171872 n^{2} + 552850053114211894987851082141597295878983682615739179750482603042536455047373323232640850339474163993065499638846883879307403073122494027821593046729111610414000814197136 n + 12651668635545320838376462192263689881316256088384548463638302607190532283082707719946785713455786890806108928783990521596430550187261495349125299624054003544598718704951200\right) a{\left(n + 143 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(1924335240622916934140207076292923516703610400258491996694283734634065211371987861834252032508405800612306030113278600561416180591135829328142606727186473759858 n^{6} + 2321906555167600468594015711568316590860775932562767260169356558929517945304835104893896527368170108891158222372425805640802709093890370749685486073493531902548380 n^{5} + 1165781186675581895347901685556768550358465529176072604050567288577406381023423031037371510607262034608140446447314708803536456849274827073748493712715732086716866355 n^{4} + 311776554736703962466125771170287989612940019661577394324230945226969087832916515524805244435594521026561174624637812006271701890686468255914997176288314475209173040370 n^{3} + 46846812223984951352905736550337260918112452286357009478597150235341175421338496445923469275686035820669587824591608654209158138005630436372096080758589087000491990992187 n^{2} + 3750007804388179376065904659879370588051438754661263001150479834777879273001129951447835567191185627206170181578862597313985523004688062357071890129019832567805131261257130 n + 124944253111833794188473478888553228451560765341114165468179147872978582819532470917399709639936065826431414417685556174132589120398141159082094839410262197014624205397319280\right) a{\left(n + 195 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(2638982731307030933251822867430400494533407538285494331008429543375663651763787141192602725810699141996273906023729884365384313435871721325382962762841113184641 n^{6} + 2252273158868343852568053504828057000820319824066551291640375525519039755211677042049192672440360196561177754039827630697402661194252314134829496654480394347397802 n^{5} + 799390033405614691549143967430217959050676348078074846217380373158851872403365015261152733330507995537917897627406502968169002378386539656030188286602068750762505135 n^{4} + 151014897565977481235787170748114065755514538134340483202893765559999967408537201255269529677277755589612874751898266217730264532391261552234529175905627552790932406690 n^{3} + 16013335399816198541455146005592725832972738389394403351137536374871251076974331593850203466718867232606369076106166296522258701846314220743735621144031490030000790293764 n^{2} + 903581226836799763273555660850105419623988263819614031706879790704066507889677817630151739593151039838697066236264572341252501109580958286719352735807153892350237041611968 n + 21193541780903657307707470002731082644378147643694487813969460317478381657802071447913876898562706787667495076054213107110378593649630601050657607869121428251944035908088640\right) a{\left(n + 144 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(2819428285356616633201759760241017523720685736267158434656329142503510416670200478688897555534699722736661054165760884637076814458052585336021390042063870417076 n^{6} + 2761286978792115971061669239449864113972343489016320102466334033956019104136045932452573371022848614902430002475071323526864525812247759282486461996383205853604013 n^{5} + 1107183352331724283646534730212998790167847484446958016253000460789231696201984318792784945922500319317070760284050107816806962327544615169227658464728624730541034060 n^{4} + 231299858278128126932471047542305075609654361066202535063182020150113720513950452064532625021901131279090866389892223915130678286200388276339239381562775275856009513915 n^{3} + 26307571697514963587979253352065539932518408047877912736897115702110897180932739681019027837475144983859061445040728687288193928896932353815830108174288597753904564645924 n^{2} + 1519809995148906127468757329888338640263868059434248992712161930225015045766837637152785978975724064054882911538832684594697766353203814133625616701605069858187716765675532 n + 33733378281218287303581454607328322599148578212648774959979558698468628762124408421285491325202574110970942738916430640114298142446250362794071869200964717590762419844317160\right) a{\left(n + 184 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(3339546014320488413935241244964557234572668528853907854533608104296656751536673878723577092566424256202710196166974616380474605237316367369547659522253926826915 n^{6} + 2726619814744272984447101651739219638925873792033874937255396737452125256574109711498775551928062894218397558265320559685209251018632985668814476715404294084042488 n^{5} + 923417344979521641237922099807567734515351391931462269439284960469350153826225204513868578851117262613154431973766612453544813597373483447379140075836993334665969515 n^{4} + 165946189159558905907682780935147519779806724158288813947923336552153336539078785466937113764302059725169414794423080701404552454968053420494176716871578372843015916200 n^{3} + 16678115097596131000466810631182732390751646606669609351449224702461541670470250880190919661175540464847578527403702575545097362816817981483814654712578683248068380558670 n^{2} + 888026553792484567351475091556132354836670437272181614945430879440807771367493734554319994864842459148220066375451296130381515502300084218177190457562343162882820526628612 n + 19547923116903531848146510752719714168781824338025413904764858287558570730310571687464766758698984446561725627363896114966040446905454789221356603531990158336958034317302320\right) a{\left(n + 142 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(3849646830696503516854648808047143913226289017431798888560261642681243308714098719537790854058895768385454392391593590428165485113442992262143666634531433196747 n^{6} + 4491595199407721005902454731639619007628288537371796453377653672655975612083290588160212713383849235506465978800433080153190553338262109274921534771838632645147469 n^{5} + 2072948452076559534000723609001892089584762052063987022194073438904399564076348925231706573887797681673145122199468702517901813211561301417383249773789639948999845935 n^{4} + 492974784675675171622364338030614321370787877342668919046528970995283107428402223214919112877954059752993257287987441752367454035840435862670318225971241828656009454795 n^{3} + 64348473640933864605524897232280301087132804484748141944094722681215863493332769643317509971495143902330969629038156071717428556231979536754111428148405800908361192439158 n^{2} + 4398192845166428173120655871937558265052755038311345487404154504111731855387204133643318320961778453847513876820297892469756043116313549309234999159328881798520473646213016 n + 123478641136783616673414647122619282718863696855391348134691473664022825644925657663766725028460242439460441802939643469425745432591574384361983808320093908036642346423584080\right) a{\left(n + 152 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(4619745330387251730651020030860491528913883410987870734569021776514884512412335352520134447876703386208099990276929124431654923343450722801559976289570496752857 n^{6} + 4070746458740134864341215383659057685186763453292354587611046058285189295841128776355142719230922570061010989721137051479216925436560794693620396844449497487770612 n^{5} + 1492361266861702678589364743054531409435055421652313055311272034402895485489901666601026370151495610811571038906374240494502060991184926326088205371840923723997134685 n^{4} + 291360367534664041775919244156938919058426310238306374661732151807915593501090813595539984171705175550050302106531313896390341138099710122881316007870907720379045173040 n^{3} + 31949744857767890679812604875028782772646696621080460924166507547491482464850696415830917602346767054087120531562076656166937543343810859629961886234189600883435608094058 n^{2} + 1865770570100852285074029307708849463797378682714380191434530651733445810269365993987938873999690418112227612780355237839776546333962856171895945820464569214971889443237428 n + 45330197601557973554279179590404436475353766694496893644829860473872322905447397765601903027290969519898317546313351125335548154073111486775856060994577443789403833814947600\right) a{\left(n + 146 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(5542873192782411449102281443687979377431558367413284241525213756388271502367018868450185897005940944027347607804251195304031598506327961941630411103565476075502 n^{6} + 4959343450373993416775008843833820753519480934035904534476002240280656920476150876806824216564114010224076144930915873955433579152359628249830328825021672417929477 n^{5} + 1845937726295487640655655193768355491490634680021898179599110834206522719809236143795987969135225558887527806439567775112507234766167684158372456341519405121160092180 n^{4} + 365882922691098691145548399272303521406495995728560685089739900155953493895408032095628066143606664478371630142923271508968960837893447300082653031208002758417767368595 n^{3} + 40732275730339860813390999920589494330513763753613166320776912276574154443746596294454566697258023619962854991560028618820453529457135434893153555956547172671036645348118 n^{2} + 2414878359300942475914908717067590420514745097633862049070943429777127579142805896907766524723721314832258379060679862001308186338217456868020844596125751503911986596849688 n + 59567793349513787006981131570425942363916174960602015396492411897548904979471527213004855591865817408241287071402416320275365075430912364883453630936949106118801495912194720\right) a{\left(n + 147 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(6555380170121692252350828340928371568178252689029208819940558640694232912580393492200327711135401225206646441371253724707530306868513394404117698091000923742768 n^{6} + 6545125017683678033126782707095918346068267305780679443570033536369014592829007048567051446546935942111736851575775563521369939163516736678577142350088288387609139 n^{5} + 2725259266016483671590972736701407219650429010818102167178058592749288705260804116678444353406252125780886218354855046219803195473020926280446994788728628340152282555 n^{4} + 605721556262152047947783257063567347708774213470236814266542569890067093810809010463250232069810220936536293310960167810197274458656385331511027585316466142823087132795 n^{3} + 75793497576059829510429712492178110594111161993368780202817275210720939084018058877272746245790376110945114931019099501872053329686963748926233200137727901781007643598697 n^{2} + 5062376807374629003434661423700872841250536006420718192902430220501169549570875362710768391797209219929852855562567297436488529009217786865176164334269787160227691560538966 n + 141001408340863225153982910176964880979007300407296147137791954263650862577689514359854396395386057097829318354785244673740826906603336796024285779048143659260853585960353200\right) a{\left(n + 165 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(6938717071874781669120276590228920119797632343831548766968346344186724270096957438531337978225762176544305134427873064903648877225432592567825527339949106633716 n^{6} + 8145616758942159618443032092398440242518092001055676123692156141951146402649728994406654251901434716286338963100794016650843044277927479054312657846585853319519942 n^{5} + 3982788596378922679193953618933884358566734811245214107442544810533407639077749732603712187605611773960022119487494165674377369961069265446917674918871569270201143985 n^{4} + 1038205638492000842398156029113104059373150621518237835101077972240134155374522308152644621354036636323149430989336157782220270803886797197951418549922463826280020302880 n^{3} + 152173941543674143960767727021471127464147059383208217965643423142534777730290004994881660895689642825170818373355170494311428721257720440704860656684183160989753925365619 n^{2} + 11891539114679841098673287175367041761709893171317286190202023757312132409538501622589025559704620138175191040369572750512483184745076360593737335634808508804065435973683018 n + 387052983151927839096469677482212390367296564235050044228559808460550071376017847433333963625233190497103618328797962299334677140193990569582602595018692572012121030622355920\right) a{\left(n + 193 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(7614557732982520075137322300943281775799125788769688433502156312818170283161241171240888328615976438864113616465875724859694483902679747307713408425143331106953 n^{6} + 6618401338924843562459229224726151643398879057093908365224442390790381527200702865177429741477833293925017103036820636019423780465753359010361151138363123168885653 n^{5} + 2386692639513356570578050543936701131443578794563754013491367750238944721185071723177514494171816788099290101918998027752964728749846211033955796232331941427769716615 n^{4} + 456799887674047622721706678146955225135463100634239235247319969015015785566063911788651082551473339177560847170623804469222813652747994138401159484591067785232695298495 n^{3} + 48904286714505239166088395445851813056871957008657856441904449590406509287963692200198010293270635906529086206348142315481336970474923836352443920887111856695321895184592 n^{2} + 2774198791876442248321685178003254633041254758637719182611748749858400678649153645006298429180052065301706782414221283789411233252171966680443105602336577697725239505097372 n + 65070120498701398537095687403592494787089390590757064911758806237663892461515080404710797908993523395854144824826111897427498918728231332115060872609973056787747691186257680\right) a{\left(n + 155 \right)}}{2482422532710779584512000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(8165638750221009008522967376523476186900048703438810485124228709214083733984599500104144089226276609940378749826300344176649424949636603340746233854128215281519 n^{6} + 9688031154935805615989406967532408879234701435545758399234169999618061858962422267187028735124872341923497373535153232471074625534162121316571721927635598703646383 n^{5} + 4786289544168185651022624928924898850944342685271332123385643928607702792949761925829034397217025385114147048092486457027975118354728475272952442504690246141623627145 n^{4} + 1260377701052306098544495255674183546118842610490647880543582799922885265248776387488003804629759846558678813177084933787918654412843268869680480629419023839868161286045 n^{3} + 186583867782610677128043788297982345433089916107039958941467758759326907302743357227626529270287796551477268261372325235569113688609368989381674060422892850703978416144736 n^{2} + 14723266953654568045520251995756883630832840427059814007793761692456215614092363330123208569872748928700880330920627513963838529728747292627255331023680306502862940741460092 n + 483826105045580809759021124776824034805614473304225796971726425435028154659030959585675223629851554361883959699647731322807996022244353144042916966970548316728973912920685200\right) a{\left(n + 194 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(9300260527178843929662392857749508267367016198357132259870786695682664058805148739045575972998370738256463377302473743636455959708707774764401289102635906819585 n^{6} + 8457595228963240915170413389374523634027627371014354591717253372973326271204576978960694944869496519061083351291596262073426558461519880794736124571823903991039923 n^{5} + 3198612022906134326544094129176604051751947777512393087130460957209036922148401548554479986931509101094380388367085826958352584553973338353271644115984076253612993830 n^{4} + 644006736732263670448954489066304019422474376645169613969389398049413236664500094084573634463358075663848966223845822712556464755571285604391838199811136726346107979635 n^{3} + 72810348245681591098388091985960776035666058914895303342593315363556690477430731281853030958832025555843196480404133902571603982202986776699368206115731428999346846818225 n^{2} + 4383055353889158962341770084152117825171799547816776566537397515584087075551428016577628210239016662657500673965478576885312865231594489776367250997273218125269533638414262 n + 109763725061045755826839954028059947470943314482026800852714720784762423792346006639134767110220697009982760332591101208621984192362825192311798802963943837838549974432657080\right) a{\left(n + 148 \right)}}{5585450698599254065152000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(9398733677726285425505731302058417770406854627664989470186274377200510424873840888751357138292488324707129765984424294853045029176190261422969014702472876497491 n^{6} + 10853473848268191086629153045105489851217927728907488473209335422342360303137520405662342962895049349877182933983427982972970535684818072856574556350975472757093479 n^{5} + 5221050985239072264557834556379644513692570339694291714258649111747594478691448805502880012821934454927334307750003370467077421173877433177048784071068204183233818945 n^{4} + 1339207619588694577923477320167358742453129318018099512347332035875731933623392827500236372433359930795660948072098044861217379632357022515455390530300271929573797390085 n^{3} + 193180602765395646926076240930553475812004017907296571480685637392453137777369219993967132315315119292580917963757012434446711773479863671573758413332754394551329250688964 n^{2} + 14858737441435881108781350764396220238499834990835260670712744054249165691178231353255684029058037335972138248865063918535501650764949144835839324155306950260761136617001196 n + 476095430400265842347831303257099737682226141520012430562945655067825580681927817540295255326893409324783073444705485457269417642471090345415590909783238744294532225258166480\right) a{\left(n + 191 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(9885325770389988144725735612036511375292369877596332845585354699790260597714741462512083834892872466802398352937178137872719055467637601426542080003906614030941 n^{6} + 5604383003980483047643395763909159562014251081671348868751472489666004845845140407041824068265478121745490705803983811512574611240559792322207685544606949702827021 n^{5} + 834531536005313351291844757159532624394979550243189030852358364519412038888848902185645278988805598604953597873082886260722551576464697556538986796810230808315581635 n^{4} - 93019956397518400080657935066407516602940831758702708452298255801207159898884501148581104888702324470931974706702457606036707656970792760957808865497373947423764670305 n^{3} - 40438755545937424474510457772872622415835233115227727244341371826277568199279441363688286830581356566785419756708593676959940702427836776135956750899349880486871434271936 n^{2} - 4268694245227566060839556891488680540228170216106388346878441515496484242667702366333056398485077850562852794818085313815325396733418977587466121058979102208549117613593276 n - 153873282084628269051976864013157994727433492316056541236281041567413818341238096573341960274166741007630988379982751598975322177900522747296543921722839871987657227363500000\right) a{\left(n + 153 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(10368592248023488225328969083201797211683714667815974368431063183413489692316801831662721195516916032408854100198749716710194890207803355063667201107840713241167 n^{6} + 12067590064428042835905845746070157802266020180061649398700764519936531632245104438212912048578379461695440266530622697520569700799995786603894650327558486056255464 n^{5} + 5850407569587528344005318411105426346033282334454123320976454506594294478545383059049152637157704343720413791104086170915626362662309891509522418884802631786323388020 n^{4} + 1512267663693806392730806679278980718408972164028928203785985043809853066250694976103557450184627660573609586763301501369940204210358868449455838716756074797185260907470 n^{3} + 219823459721747270036251922103384943513173865852291042903486435622184437699598642011509581119163532820466581190373824824734429836776355910835483621900056409743397290258013 n^{2} + 17037285033768112639565109163690672609032303258384681561685204650124223674173319453474653364439997490860618287845765433271927279973199031519963723605570428424542189815504546 n + 550046729002441247150014467707853786268712289060383742539061829973289318041898878026341580672463501541286008296320866262250864393947040273637406796865729543181747983246217080\right) a{\left(n + 192 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(10824886495240623118549735644591065941510411991653364159835990846838989311893823116428234435471297461912999899823402353918912216291417245647286300159684741363014 n^{6} + 9392839833236803990062560714657974510619676432328445028842231050150011350558852833211354243583963798196204347549185537016297995788549392089090237901121955217280053 n^{5} + 3390559458062314271468417065323356062221188608785771705330088145480378686159460865130683780647121051620653987254490365962878789795769972853838898552283684377843100050 n^{4} + 651692513540911553167642101158827836941847434029535851522982815687178194438604565763529492209900278812640271580355847795309263016565962600011878082256863428533762707435 n^{3} + 70342438494094847597413518599215662293903932885736855020915162471450862941201114691167726054429566301370127135371114892002719983598984228489778064372470645330716396534436 n^{2} + 4042504262688894710508128925846120342344238916264602230126350649973814515210645896755912727647037006496622120002436082037882779289730853198659253264721132428779577439698052 n + 96628831206759113162334851035935378949994828776980003424372522422402277576676496333492642229645085988995724521756333532919612368538215460393755445242002552045761410071750160\right) a{\left(n + 145 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(11702030614961532368805161865858676265264024581116549950221058610489858399899243554045366332716105157051620977817846855322160496158886079327376094750560632584777 n^{6} + 11128366326468280455160846831828302960125503901467575505165230349327959853254088995137165301729927281440768934908139925682822352644471833557860198977359972410534971 n^{5} + 4390219770230715003591989016788666841822619594357544408710030183912120062626511970487933529524917571042784528068749794628959403592864071362227169438914232056741087925 n^{4} + 920116886566202646373113054186033263991490224309680461122367362898048611754870289081630255412549274758681954697532581377313766719599730148991100143313975177001369766965 n^{3} + 108093007124864502985486764451836871508691113696344443602803782135172800069679930084881707791950176239245149424682255489435033765601045693345964428109551673558957528801058 n^{2} + 6751039672335536897349625700632068239385790919896430617567217279659123923215552749898834151570242881229860606652931925581508136254249164912834130878263188691493705838656304 n + 175175899487315459474191326991672576092888203516398238094638238414017960930047217355664602561762777625686629807878686155135199548222769127746758326930876794252414421845708480\right) a{\left(n + 150 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(11794588969675552335669356912622382899586487786338278635616565636315596241945634059941615358748843527586587655815773598552212985551381565163090135279215499961453 n^{6} + 13517916781143073452336682425847798987934718976287548521136057079167245450154878197400474420500147194027650992114159464118265018006839074527916478055738082700346109 n^{5} + 6454169648141248900336607945903971057530142526057813620055456760805598217219088379427547882966560963876532897985478983777979699001566377235661607146566045215057637585 n^{4} + 1643179573613466885801559518785694111885376271634290813780194368362936090432111134982392807997967310167996321057386616376444295156755197453928335095535052295606966231635 n^{3} + 235270729573288749463739387301545318346785275148468560048141267047427948781141417523118361421606306554399374549587821330450657659160956907963458219060734471581745333517842 n^{2} + 17962448217758904789909176441091456625077338205438505819276825989876115671860457713194691935647744095092851118383590815456776869286247534571296108944329091168540954998601216 n + 571305285317745265534874785581902711398338775761071008053321604597467183026159337548165489006875600338323508197882118632182828660714588783643146648490607666558234956562845280\right) a{\left(n + 190 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(12169799290118282748757425934436553821984449691182244950711782276085457165759199439755204438259778273567021796600997459137200958243547844432167610070067817865717 n^{6} + 13475893425208680393646191443597970460421022890470031207621050034655494693541533058502032374985466243496755299311138552003230659662294837404921740223641529526912035 n^{5} + 6215723684779704189284922180004021082324435642109525889604777071903343836752003388478599473131677165864777387315613080256217132630984463700707190304983639042422836645 n^{4} + 1528594555420410892716720116237581138745134860670324795178824660868363208016655469139488193370095601509258242787042002196352562230262879725239786592920140027012646021445 n^{3} + 211387615830671390612274012985557985850793042725196718164833837935551711170523559485731823859798880345648521752573312760082547555588014438925276487386130478719982785762878 n^{2} + 15585680083983482434454834183334141925768836891261937785563002742839162778514975427234220253077363193176978490543496007002400478404480830620238606406004692478051691817846880 n + 478648771029314680770715862546488757448672948228371896958831194231704580560489134517359024895623472984848090363827144428582353178264464061642138065194707539318826548844976320\right) a{\left(n + 186 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(13713745348009445569110480131895654885785025805171259450892752877730600263431212817533553107569574370170673248126405807375893326557963460945454720675137922659029 n^{6} + 15599484145089622695652684921958155690666392158661189689648272247195596876345457475902580154175469654365730453516125625838341542560762945587497347497125002024142977 n^{5} + 7392215263200491988831216930970234890442661026312884658507078148569659564294828283985709363194459460237272884276199051295544157482758642643958361617090366865934711325 n^{4} + 1867923430488617927287319667836434540634443231458708259329461492957127697726733907487392184204485036487437627393518701968723361476882589774100502401842286259090110971575 n^{3} + 265452799043798468815280212194195591648078060483167657027806031871701928675949398698988406954238238870592505193998617104652802262712207917411992698596503019915622540851366 n^{2} + 20115710097311340878410003064596124758230158147397964743995951915162587565933827521451482094582394946662036789687251631573735316278252839670716951297044005333426907209409488 n + 635028307084195943590160553998598102690469885721376043584819986454797028496012952315248263673826851442046037108747763074786400312391658852675815657825354971256518350041329280\right) a{\left(n + 189 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(14321386516304962852079866165350670801477469245247333799709076213438554387485224368472572964131756060863880187619015344561770361337252179977209753944766319512453 n^{6} + 16025603870460501887453208591303270157208996404623413236927910270573899231010135967590430101632257499886329440240984885068074356700833230208087368068217899212733443 n^{5} + 7470376855248692891374493543264182806954007493490075645481697798817249637411354352537593823183737768480427798921054639857056355543495861369726580872534543894713824175 n^{4} + 1856854829699617036083236447347695494269275397557686464246696998961881015426377700855603620363197503047857315949884486245872002888655241447490923443296321597600216962185 n^{3} + 259563159816049465144941231254194870991614588904565227054340437264610008981949836635963750721398441719818786234845234200589236290081272275789953742176045068201916379096492 n^{2} + 19346948511989292467771165662423098298308078948739098411007688585846196153171616957075123804477652167423841757272541352507217478299593058716624592932968951556090572900201412 n + 600723529282863504888644397626999891142632437636283632574357643040893918753617885649712239994857812670692585435214552811622346373766681049254670030771310263593628917302501200\right) a{\left(n + 187 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(14707562934084396645518849049122534165766816753040346837754596641011377997574466472394320259564679111150293720417632796730471360610481965019595211981804550016597 n^{6} + 16599549461685675696030839083491539103227745782253792438836919352668583521217434392122639729419520452009229298682751086237656828185088259732445565350188325405031829 n^{5} + 7804798645751574294775519723467632285899064583858338561387270228028563382238695525778177902217085929631242911355862747768376250020672996091920846804578982383295713555 n^{4} + 1956799305949142336806774664237414271118620703805544878733543284460281672331784376560654743111998171180206949015159071155902697994589850842400669681830295191730928740975 n^{3} + 275913658864198296436692900191364862144195516357694410601690129572325297633729222327575753117396811250285683327481076424876972993187672306940140311414667032374135892449568 n^{2} + 20745216037738855114531776169074661822702613865153221444556418313118089969116637588009882479447762727501762007252050861346845802993666427174871231510197348608244315283107716 n + 649785285204051349587775342886624286495959892257108914684547119824007415509676593337270138965975201823670629215784967042217649573156388444943092785920072825453106495178993840\right) a{\left(n + 188 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(19171635174954326436813174217550128627378398949538657443154207174900852887027783519081421664900588182307478987499360988716106603638698779495014735849005619399868 n^{6} + 20672399390806866624031998892312072944589951180275117616237691971597862139714023934736252137471264432659456834335336988783343497821306502092793385242398564081135809 n^{5} + 9286019717674869581169649754687529525623390851988718804328209747825176468529854863736418827369753215612127974163286636727621801733234689106714633991646044382239874840 n^{4} + 2224257972117348593291665056212200661681077073515528638807881470383305286143121168354719540406364469228365896478416675614836799505218591237558421977357669587740322050095 n^{3} + 299627171653288429555637907718291925592387509589150886395755658204019635365745097414368489610061147825869472774359755589664969684285832094544734149279543775326366372654692 n^{2} + 21522549956623929561722474478644986476990901418348098007479838962051560364895435700295806985419179621639909474489273281586650005100355332319433451458278781380200008590396416 n + 644039552379621066566714600366714344046411092470677779321086810123006402640850664874374610677185422984169551176440069733316789035931440738024343022792736035195852749886945880\right) a{\left(n + 179 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(20302388400204103397373737762595841582012704816231828623025498591711831221016501027167747290761648152606596328090052073203282280496967720593842297720072640445749 n^{6} + 21517461604936046676822480707376383885436611359069581002474606482936162493497484737961009059474727239270993604631049337584284764011775591493174710345012089468534143 n^{5} + 9499754858830104680461484898205852137742007367838982468650234748813004500147570887807688380344237196925092614840801815999779830228704483747993415668606584103453462850 n^{4} + 2236244830793744985204538466784563561981125135237083915844597831045379450362965480560792682747526163844393276886459297978092693521577472834373407134957428663018450170055 n^{3} + 296028654772099239014182539639110468102187921434776336331637988958426310686737826466605068336902798310463972690180101778320726352099782505264404527486953275303437704521201 n^{2} + 20894393168651224294155675474350166324847487337762604693459559379090171116914429434957160894975421544208224368367484967517177640073343673563543981580155909244096702199711842 n + 614320855283648812842557861995661641711811802176413634643374987669813418306509869889433311228811789477997231125811586545584888313336517202598731772098150858829496254990036200\right) a{\left(n + 177 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(22562282927580881662572037423836128886746369230123602023857790373047075505651330544727651080363920076523369933073570130488577665123912568541980622916388287235729 n^{6} + 22818630416135109238758782812691240020105567169211901828297475949868388497574348393254384974228787529849862869743319031673146905734182176751208364745237521938277988 n^{5} + 9615160807096628794819288900268744632265417604171606400311134268477092186357874911237292367739264857540430765553655306997759476379061575125590831839190896330135447755 n^{4} + 2160693954685809083106560826696763602341409133194726725940417316828441411368564731636370347597647937257217627013097097527483502509971232614728340741845277802992854953710 n^{3} + 273100682889619259915723086968776498426059459292146987586272282274437659240972986272111686683932474196915875045444485934971247343585396017686966399257457807809259492110386 n^{2} + 18408594152419958088434979417123342484661928674955594312183842123014403821578609074932191004396537710231838188621665256830803772459147862472368414171418922467307415033275712 n + 516982763791912984739551939543116173613375155275816480408969003849695132076336967736458092675859660218439319022160657506021090540776518715980839664326195638975426777033001920\right) a{\left(n + 168 \right)}}{5585450698599254065152000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(24064406649826077186621359079690412553214368737586954759894305230030816878542610205309803324727435542711621004928597805787896403310207409103723825651356475587273 n^{6} + 26194902488690278523013829323207414570881391575532174718247057034234771408310190756890852678249583087053378718591498490870877238083421690735026467135537084017575941 n^{5} + 11872378764619968300485459597919262142670821875610082736673029919628067218846111097737660361597556727378077388330998712767313651849136584587075167382259355413803553965 n^{4} + 2867688886389670995322448897383353638084935057422385536445925887949989654005443145735358246531774161732686801535410648946586656473979426130060038128509901550043980192675 n^{3} + 389319498201348996175848423481279429134360607544138335052656210102169709058947889246301984399401768405891691798469385343889137822276888711275534260517752716808529484173202 n^{2} + 28165503851249051265236398745177147058403571068536475084586827154039466962099063411191870215691247262373950436707389396229164977422968052840880187597107661782885320679189824 n + 848273162862671003443808606094429214590970739256383528434585101405177048323249599403348441985710553685129935822917615215524213273010757135906774602918751737230612716855368320\right) a{\left(n + 185 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(26480965815664510487896624912301748621767093217106663333358183676994836772997645749512003404019162839727117300314258959751789381546597198916694896430523377646593 n^{6} + 26356924428315936090253472288009994779698852702282618674230981164633198448680204086647964723788487652891874926765963556524447913739821928126881253995817328248865797 n^{5} + 10822462884368747751845469360732437179090725308747009616166203762301355298596559140740550516562799178085204779651358537261565615183384332522933146548037927884014995845 n^{4} + 2350512007315737438604117125263927021670156648055352134359002471515586069294648058471561018200872151538270884105809469390118260828613286837862167179112228625360130314235 n^{3} + 285153997786774263880775686715879802756469286053748882374984352105020605453625813145461560619622639605710396810075817922873526226692401870258673304942033641721694683474042 n^{2} + 18339312763820547986309640970320288502284201057271796911933579045177308578365813817707375538814068884943852434956954037235948565689890112318546898408145457580980045653399728 n + 488882351507640598449455863431172960445650322550189712326948195495712610992932871991812487024214606456878263203519099598551346052300601097599421326923101745163458615580409680\right) a{\left(n + 151 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(29373488665858441478753659282597272720543515897984987854344615219914565066721119663802288012991375102252127944594690384799796463678770963472074116791199946707921 n^{6} + 27767962105573807253085066972411255166391081072368169850605454646607364501998071552075992062581228343227986358970224571932635148865534707899148609244583493012616390 n^{5} + 10935518182284305366827450397427148108901235384222423027559687520542954717889944389255128783274715846678080992672791514520922773837295139683064303209413903011674409295 n^{4} + 2296415143919078301708304077966682949012637626596056113583459246425425726439184135187085086118978244653779694132999769789820588273877300599809712813097646310147725327270 n^{3} + 271206263059024463579073602393218157957809242202132147358433297437801759920798493086178107963988681693340024904189321848631842425329817131779327465854231351578198232289504 n^{2} + 17078993941468354602085345515600354049095732059566164548968167698891950050885437718476738114604658478785753668411568007520325599189595852178310412025504406449467055157847660 n + 448050429132008029979464913653595720625780543150056514312654676617295588254139888546380885553432773120174299737456654389510030146074552443164201929720258520343756190821223200\right) a{\left(n + 160 \right)}}{3723633799066169376768000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(29825276494382942732398688902646002237968495374688783726866974321945498415390726076692246148495177611268790497251173874833830854514159605515033242611855618584703 n^{6} + 30764241246108207374871463094591012739035040101086114336686422134853891490040135353795797108364933589310308179817722805924012052024440676623513934917104460123755309 n^{5} + 13221592725807643069537149943512224410893550302670167772400476555565882637409401940795596923832284425613255900959475056224063055542391402208463537563208970709041301265 n^{4} + 3030444997310046843268492072546350115370735079359848361668543032916757208030524577156146839282995488029624681166365596685756700805145333802105565137666561934995029088695 n^{3} + 390694382767145824401910085885793636565464310381876268706920949985245943818867154851812490540289571693377376498981828666453700510969454065792423597010885371677613850965472 n^{2} + 26862816001515960568500778762432554556463176980143416849834162542603313474250101873789924454788131098149061201723348416456728387044125703885497705267503393698321754842511116 n + 769553528508972853657443192277686179837295859727731456954869759319106517944592239282739114940880941088109233728106156986626435042719813177638198818787596571644887868440102160\right) a{\left(n + 170 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(31195791911874831708237907335648218347100407340120891874774201341953516305126150498187605159275437176701425766385816869177289587838098296195442221922132930786273 n^{6} + 30927997225674936371407649015198866141211777587515109056256155925182585168990612457544134670522051448912982594892113560423468210200416367724012546833548126963575639 n^{5} + 12770814922057944483583535027967747066519412963531167972435546006474922424097213646549291244940950551960545620998729461542919716221064776413375531523567284989503685315 n^{4} + 2811259013002003069469999517254428349898011293273453496435603873916365663619664160135991030282781285641464521710076149994703151857566329652024509468105605799426732981765 n^{3} + 347949666343920842763866278229771852155263420563868363050750921966494059627087910246089816242391634210230026549877737800490946361883690503864975556703817394174753617813532 n^{2} + 22958060469471202735907243631635408995623231017938219662783969609142393781336737490837512861715008010176987698822560513611646699162273177297186461442111521551154095945221556 n + 630870878031254872482903569565364006169793952523585663709742821885386108570702519243714498935650921215089998392289468801498187142558499512925450406197274975311825296540812320\right) a{\left(n + 166 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(32625168760851092122589613888350109591976600072950463285251778343345517046937334162194104194904193490768712812373262294251363866547916254489802059280205054766265 n^{6} + 33304184026476721594114974344739448609567255055699386858561940821559979268317093640459464850777741966113654152070065379496800446852291992488797959198428512936550121 n^{5} + 14165107949905834642522676984555625777507131523504749713170739480490147613448583697360578309248127792169475323341383043747837391569734958249490318404332060297839442155 n^{4} + 3213108654816335694233353150451995703784153445768068790138204732230324888655139932593482377739199076081495106441850110726736590621732107201916587411317392171703971106715 n^{3} + 409957244555187344060325271501985738772657876167225985949351981447763167122964855597730713417286684884983850022217872244915481015701714449045319113241524910687165428552860 n^{2} + 27895551048570214755459978288453787787613874698926202317045810525709339301749354980641860841911835345051858621067947607814152838576363842976369218632936865906215183515092284 n + 790867940710905174980650730842249483782038175936537690394398379253511894576457931254452867732539785606509772093863564329345252525732294693760315613146200069279723557988626080\right) a{\left(n + 169 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(33227516042302258265077833387005320688265634093572055639119538126781937379338796777561922883917924559680543683114538110764605607598042124083180753963843904725025 n^{6} + 35771306680644183735271243573845252276810274060768538036860572047996434845035168290990580053292037828233556755481407720657546434355210064511042870036652951545343403 n^{5} + 16028667533138072982348200689367141963409333305877002380008254666697139042095122589447114264185590512912238323467788281225971173000343846533216485180027475132292046815 n^{4} + 3826671709017623867290223933353580077710057970876464460038835777962065575807519784005234728635859536519653860747805938738892602691289705295873084158161315913345972370345 n^{3} + 513396936203063661772423969565554233324025531155086980108272146033804075827598765242008230297548067914149759178869785831663750658165682082086930970390518674617868366110000 n^{2} + 36702123097850741132861397151222818296621118866791274462699073639516413066222986102525990524242773458437443687201545734249448454597715243701535700478888139308649517329190012 n + 1092306723932200367988780645952725493350979807046857941085690680745461709853543565015976735015851333239117645658986434601256617050794079113356598261743392879525094414375543760\right) a{\left(n + 172 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(33364941602365716445042910515177895725453500532767279335486709499467877257941581696627513974720775637637844997912520800314092793397134340989683653692875714429452 n^{6} + 34890577131952461613600978128622526421923389280417707347765193297208154985510896920604343682800116923754065029081444537699799733177824971061654189336472521292885711 n^{5} + 15200649098222372970380485352487481379796912400950289907162211402212081451815814853012429961633689070406741165829478224185866316314216107656450152683709588898503076980 n^{4} + 3531522445774228520257388664786549604288661674864656014396835698365879419033416166802843445754479952392213712215222284243596871363912286375642387610598202660092539097845 n^{3} + 461456941191451430485975425400855126249892840718885559805106682896776998408883946957651178248568843069624100692504023176927191238816695700010398462862463289551843522793708 n^{2} + 32154792828642046599490383500288506940998115418782912396137425117794101687185885121167031420093609266328931448195738057847813732467886829813262162862189914259805586238582824 n + 933459260474045084444235431207457805151250604182518888105689599141084516685131468907152356320850294529466574355358005837259801707785759882428552718804257112007091457786616960\right) a{\left(n + 171 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(33563699084635028254432389840173318011855280661103236328629914407023698708532701407583277086164661626500581768586350699063091646654504562750678935583098226327909 n^{6} + 33636406637640551331881186141496278207238466806257696917521270956416263280874565393199481711318851582379428089993223902633318370033469469571106712616225994106943779 n^{5} + 14043556240272983678653570035093763927434215266206869972236126779920992105430233350917794990540432884311450338213002060556794189092556714792038713571024455147641549965 n^{4} + 3126662116984084184465061926574743959203072375067758914786785492207873882599603802221839982701560409613188445625116089306195165404761393576999639877371415916702457447585 n^{3} + 391510629475933085139919991227293942302092935676659995923101902113150726216852701709104072276431211480274173944521861613564727594494694421117066559006674909204404042899366 n^{2} + 26142051633573486370307761221724646986881639757619357069335086051407415773115223191248595488532418773443478219221963216388252415280216491564629968861056780250743721803162956 n + 727206598532677242138328730222197144386031166321714062975871696477178067597107335948775690774285595762682068032643588780091072708714346538882507958152392954252339278894367120\right) a{\left(n + 167 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(34870815270864280319931385147368196255843834522858656057309278202851620034209149952825202427057179032763185323642930521239167085251120053810965511737802458751287 n^{6} + 33913732560057387579577450949286453358372119226231901513848173161962265572915276884722404867997863326474680542966976299189891803881962240501297239065992760453420199 n^{5} + 13743819412094051093074352907236780186147458560335899106809492015521565196275849459146175687193786616374049126201893135343387305268745708279638100515810771575627539705 n^{4} + 2970770409146636146445986335762706272105062354462504198994676316475788797214039980106868699314051392874713153861857572632985055589760661879746178235540614869826934440085 n^{3} + 361231680730350071721659274542938552894543615430845293401556464870808262523002967996162525548952182382606838763047756026059646384608355715427506569166965024842569908145088 n^{2} + 23428009098313515233482517638166097980480459764582823188514840938061142435765826692621576553257039251469673706607334828868402852995853670966557572914165600278388497424422276 n + 633153938638004986372847431273003297714663880962157749643902824406175662493017771773868521043563580198797410872515339977040559217051038193435458644748438305731251726613505120\right) a{\left(n + 163 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(35989557544745627811535870416795363895058024465610505415131934026076130103801164100968834071752921225922630829272965525599433100093150690824959934620854748924673 n^{6} + 39527752912022144937030816496796976151244954280285268153082958365098808171135538223071530219130778386300588408567248645838419693932065661337794450052386087018546428 n^{5} + 18084934434434631213577074152053538194321468423928557578655625570363330314515445060014489165012765662869114787939134017761718208354687747206115374242154333084358105390 n^{4} + 4411969832163349127837617063189932907847663201772130654247363153391535058223652257659954080363716563662827286066457709752350927074757788316147245560837753709665557333230 n^{3} + 605304986629527690595141902321354726528698937532069344297115810490941523664174160502051268154830189627181633085083996302724525897741077060189733025139584374215684265941697 n^{2} + 44281238202201129801096181035845576917443093090737962684993947584689285899898703775520324485473907657121788702177663322633848766206956986841496449228587515015511597343285142 n + 1349461407431859805285151019863786407087517278413007022217685840399222056734152934235422938824955113904508243315387890824988587698596915124841940251011711537727280833034793160\right) a{\left(n + 181 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(37140548956740813826401771584883045072589579518526392516293031849419548594413219023493182342951149941321151224601204462729000956871381759711860224367868246449097 n^{6} + 30421983776967854844759216502436409427133438015204794185801222007222191335534452354257569046040593689909625397063474188113625374317818225482125744672163620092090567 n^{5} + 10228798620264111048413282272696627489100779170406889216764456585025511478303376462042579456992175183726930582333612117271722643750856113975159564103204737938900284315 n^{4} + 1799080073160376166752564659508567389366185145622761765953032781104478758488235571927483601515184464513577771102017221637667817994348084153297450475607813521971131921125 n^{3} + 173404264100458078508972144481503561659861667365843960349447462541871660005496845573605664817369272405683016226876232702579186714082192838182238616578992349166190968458108 n^{2} + 8588674917554632921084773031086830680677279651860781920523089992955263439096376679039561094179244057307477589080545428018079360799154387694867803892444908227264500213417988 n + 167386573357775789263719958277005880623118901865074936220613189312873334431516025916930220304778891020683628981565260821788668326999406720809139248102801027552077463499822240\right) a{\left(n + 154 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(38269807427564172683320335884503112409167265576110642959444081596779465214236382680784748339635180517079261550229799922746815506253168758406259147391724115821439 n^{6} + 35469976368597560775215609565068867216726792803552932677058893409786555135066210345873754978694184906819081229126394642973465579606079120718995968547479083254878303 n^{5} + 13661855431557193064967594075649973430880174497468158519011124210233710783410226979069225305101535285124545107627873722926875653658405079823448398954684067026636533095 n^{4} + 2799617897104360717495564923747131071109179722269282687923578203288610943089501863754663897447791173743331256683348684496603099721655083674723558370361176259385644518825 n^{3} + 321977982652748399738674591594395915561030354165181308942505714066456686668772779212785106102783308465947395247452097557459366503424848811039967154539795848993515945888386 n^{2} + 19707538390025802354345584997939796506111333241840055201873735461517165471182886503424566099982118322123436162993763763164803839744813868024199177843151985926428863271220032 n + 501606544574083694805107833699321846443978235078330443985274031680318481163022008918753099274367550454052761346371882627177759196793671851540535600533313872037685980274648800\right) a{\left(n + 149 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(40470686573933282808378281526480372988780739762854896500747855548340967439109602378670465767173575530182853926683684015019260837583703004759906446484332792004686 n^{6} + 41964531778958005378347622604523586386069819421514188523426180213237545676503457523313762585263729680636916825084688292643339018426790566335477386385397853179342783 n^{5} + 18119814211776827872426825047373551009449828786608230296386921857160786632408536112219313118093908600209605189071317816583107695368497603938739238318761663786851718490 n^{4} + 4170171048331578483815526228743852873018276352038418264155112622028497045744909664743844844029736693955579664758307128380727964543353021521747249180095085292914633906285 n^{3} + 539504419279215124515821520486191638204470522910439948881622635903443104462116184296905231527390505583868493108455824127875297756228387608835263604910329071781305408229024 n^{2} + 37199825604404751214843499780220321013349123249590209640886287965713283787323783683782751442419388422311063375972719030325619255000740517572151672232262238658699024047861532 n + 1067992391497115645777134031055814786764453503819586736454051631423689821052294917014208736615468722875978138639972950834839978135020060947440184094826129573555854256928256240\right) a{\left(n + 175 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(44092336277304535680852392224630855034692587259995518501653331223546060588045190265428967175469583518173074665387960026182352194500110581431974058861134571812295 n^{6} + 40163642763748652234105544708969707616047998979083743455815381751317357278754484001339397513693854450474477413912575690924722101314667973662799437335355433589072333 n^{5} + 15228773775531229386549062673147378597844884005285393499019712693513087433376021392601620955615407747008680669363416490408327343895396024758781911302967436557959133575 n^{4} + 3076406224524584614566912682561367476053816621583099728503385472004360985099844431700320293714187314759026379704441551593120876539163863855169663770851906918065681134395 n^{3} + 349193242315331725175426312431518397979036926853279358546243865522912818787893503245207386303385573665011022394129136441702218507809964420896177568793959122692280014447890 n^{2} + 21114343344508247926147418140981989204683968611242707966262586164235919984796764667743620613270235572193720083071889620867207416455136251988858900089992927593880874827271592 n + 531295183933120343864116065795531351859837202571450825110291889789349057548654490034018823423162882089686839530982309863929294135264520460962913259808132772555404813716611600\right) a{\left(n + 157 \right)}}{7447267598132338753536000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(44645529038381260555973563176749811665734886816834376214990524489030369563168479352396339056531992111649267141008780391803324631771843892932260577339821503461349 n^{6} + 49667714488876743874155141638922391898178357625632795342275737344131740651630571668043155387628767590918821793745737355063441554480374896745151483910568010141939363 n^{5} + 23013950410049838249828866123526027130575111435062061761007347444285687602615738638790623864739220916047153562037134473900484213136001002029222386698087386391781523485 n^{4} + 5685179282571872131606867692524647644148328313696815141746728690496977882210463183613543320600774196461868694338589981880391224931266353946296745750294284384679845420405 n^{3} + 789699546957770916810491410024981836470835154704640274559541197728180896511836415549141287653436147225000702446206915112193021461582339783955306965469082799724003494456446 n^{2} + 58482403557695619823210328759446383190423742260037438258128749935732169764893967183842948408981267775923715337638913199542471839489768250402857294490718853338358784405204552 n + 1803966971099209008728521790926267595291076179294224669175339455778983065981231280235860996032930629044418594435295022213131784737135097270263942613708996775428556113118397600\right) a{\left(n + 182 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(45900081796150538936339909790346579963122207114787160025156835064182528437776032202906081632119249494300470521814686639744336734302427123385171350305077237237311 n^{6} + 46576979582041920087532310044403151533170954031685633535459527240154396107002009826596673376974410521863882130019901619005343600132959144748744995199729514197686603 n^{5} + 19661912020362957072254878549898401263489301314466458485117335371416237479304876195640726929166396387744167026757428453353305244208127656584610260099637596296645878475 n^{4} + 4419080518770175639326822624188982837726086272844103465890189196089475703472683567035600726123324566530902617706313365462269685988584004754723562851397217408082909289165 n^{3} + 557637120581735392129506630731145877558496175766766083522152490896957140534786432593800766328226946867449597241696802545283829104064239857450077265919755542221803471070534 n^{2} + 37453365248894863023864050782291812690948426198566405475354801508118049933888006084484773332235039324923259718660096425263728384792242770768114020982430396342500200448574792 n + 1045825011088391943839930707850831821152950601921261306065261744294552942673587318806465653144313465935226909999281517808128554739289289221174827108729825683854155092468023040\right) a{\left(n + 174 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(53558440936086832267764345715005794262632325524014829024591210116871601708683755713860074309481512953436554373314646120468430313079973571495107589094168634882593 n^{6} + 56216877225903734414480534815554079902774803539103071879239396753908178720873643613524424221317513838212202429705064622639736506742471816972074579464907032787938808 n^{5} + 24577643811274626445552285909092461175318342540289831011027994143089481203151678218529682157054937084196486374040629360611421194617163649581703600913912302981912299470 n^{4} + 5728678518959300670809510278616753105529490019423273978434375372417887924811955167719154994477805546158237662270712249411472895579106676654101617841581042589982767649870 n^{3} + 750807957366537066159573170958951012810942130770886836362650566927257230193348176032184619595668298496297581734688247807185972013395979257089859940770646533223426755339997 n^{2} + 52460832377425112730191963520467352708793947812461648107234345674753190557513113662570141602506446754233600127218592850511139748559330174817639391094956549634151676026005462 n + 1526717300490431406568586291296490216599503125116507787936011995076625590939184283390623569301730650127419420541377345673921183934394393806295370536595543012927521775418947840\right) a{\left(n + 176 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(60290677647644807488719196868561982343034675354479668563799217158935648340267152353974436488584475079474143302470951450529535290796950709339207327016016747722483 n^{6} + 59195955064877468507616582332416344065682083615413992682933000174882563835370713356959807035686296507347255646429253049252350428598181266565993128948318201318248895 n^{5} + 24221800174816935814795770762516413961810135603897593195767937943337995515047812359105118569943799645101831179886086171361004820938132531027778881518529972075287428095 n^{4} + 5286950473566590631687654316925256294906880370562953587487133292815229194646134277523296028581180642476679475907069821317402669472084462238557655752656442684532421424985 n^{3} + 649253392268002794335785817078114800546016700062426093030702179189197968166034820766607656583204190416635288306968984497093988194944290281221887726216508809368199911892182 n^{2} + 42531574580418275722969053006416980212577377426779033404160382154118116932338270237828807312536213292567371125559039092795848806161429506583039925676211544631272816157577360 n + 1161151326700472775326275078696354318816423576900454107206461877190413770641385988978568618996862244904786589852545738467456258499759957301119506227881806582626762463967681680\right) a{\left(n + 164 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(62087210113530852433518525507589987688563913766453309548059029971730056348218881493721813028900088622957669302857904178137027250465169202393486586851419082374449 n^{6} + 66381722846692512634720374866576680634204743853019818935033505405006930442643957792637166119668618858746274472242276932041466919590148447688540737236923479130418168 n^{5} + 29566024938926650174623650059318718989665830286017679069111969893001206329633435401066327873250482925665371875540908388452523932421637200616870085744151416443221671545 n^{4} + 7021737327731582259263471115411938208449535050972713497837747377459502322538319263203086426227039408696194478455346421209356781742914415364828699645731357420177784659540 n^{3} + 937834900806520040709554415873343559415686904929688064409136702495344372403949513858198022330643321228036591660536920687457630302753078171564376310863443257335791693562606 n^{2} + 66790342212105487639713909899723490978516342665849143979127094264710380020664745104437043876519232364502374775422650182435459148414340366571866889803332059020715131973565252 n + 1981506397173073770091053532542580046660189986091270423718650876555664718621339161661615414929428445855572600744190138289386982456835045594045867742730177563374673055521741720\right) a{\left(n + 178 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(70477977787645593782967693221047792774195560183651336030366567199162884104798637559526942199121048507383456698699809279974514956178453810553741571628248749676379 n^{6} + 67919845444904163902803311350329112432841609686125110721953537927794129748823372092326003405227051307193329412439066206544603413154691178848958793291505916265783584 n^{5} + 27272437916144407892363848840913593978317870792773421889741676995295777364024507569406839143110744428158363837976605377607262948878610974777937098280322997899498753145 n^{4} + 5840448187262279462158521442437498478491824191376650950439281978179372122082584402227131156563044949978987018877722448158445983989084465019876557407705380950231514898760 n^{3} + 703538901267972837427370808712928858336550702345196264180384485531713351141505755904540720294019606316391373705345881324096602102673255415907149341748467871516386780069916 n^{2} + 45198810659618747084526758806897966656930607434464337734662552197687558378254869208314559148676030945198948432650292828817754209719236844061247614350743106784147004048524016 n + 1209912424596500158083704776661562953466957178723288846825729294679396623487416261222385556342962960527456044915876240156739211800263199615997877414934379212702103764359457920\right) a{\left(n + 162 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(78684353732480205394226495156248559139268960897417886384625052421285035706865411686863892073711687253210913119346032601766345399659403217300935204742266721706891 n^{6} + 72708287434523499483436254110589763530706279718064520986082182333488739170063293037784149282905302767020840913558964324725840114842158141366896623659907249112258832 n^{5} + 27978452053338060817061086403651419466023003420477369938792742583325052857456393464218051247450046007145613328009303088863389096236928849242959235775529213765082151635 n^{4} + 5738623384576184724503835688870846698693428791736847711241164443481212127712970274777616282816958338222396729807764379189168729675077372449001760923322139718423806426340 n^{3} + 661681870271351784666855876797590675698949526353866970143623600481476965140761990553706779324987729229459043240734118340329140655696798443372063604280308610924132125168834 n^{2} + 40664279645609170694871166316803118096737756778784594766058613285845785513322162364892719382392860233910620455122014724725838954170791798868761456316219450410606445441622148 n + 1040584031990116318044765460981350861508031954107784940979842960737893680013756834431808755481163248469971406190900948146775719611154868459856685660752509211086727917565880040\right) a{\left(n + 158 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(82756893622762419286759368120756597717136916236391724084351715909324243145156560090960605129344526850749626503866861596177855027076582027886555110544720369642423 n^{6} + 79009955180149007014559487830891619833212846270757083109726054685925831522144858430693717987430596759382232392866956056429997200421744899619514412217826189755424184 n^{5} + 31427460210828535723130855585416309993664732031903258607346153084376614510559402779283024307683082035089860100885421009813444292841001200884281694634381413118431415740 n^{4} + 6666482616844291816406749818305808918913513224197746392876000472764992157331342647462270713240356819162941661772414125157195665381461214094452587614696812412820140650050 n^{3} + 795368209736515001311902090641319815399241722275875111595593001778613060078343948159328679099588948082374420552753779451608797843665707735959943756426279671102571284398997 n^{2} + 50605784628154857463084168259200991970446406161815883328685401789836172131052213579681518417932793604648087087673209160085682062271434033436723581148942445178636960807914686 n + 1341475842569286006499532608668862732629637098070490402307935832096702267742409346374018704494868804755061289536057755408391666320687958691474711499042488224997879638486649160\right) a{\left(n + 161 \right)}}{11170901397198508130304000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(96593845885264702824254085511183379846479416392763085730474856216747885920236026564356204096319999209686102498817237797177087698991905174601956341510962265606137 n^{6} + 105066596444515335037706235342724185125390842882983657019944823689132902443496511206434949086023163952432440391140372931638894374324149467568224961138411446331511795 n^{5} + 47608656736469203220391039259636209984365882652841469778747084311651818683706835898813995653460345289997190119145602218184277035567246456112066464021649538876144261895 n^{4} + 11503334844643973933257102159751982422422269362018301549584586181571880883984355193774566652558744966960808582529965362069143344342624218116456094666193308592355227008225 n^{3} + 1563156497687733568792996428428622671934558304717259793914156445547167393140031707342566578738386887423955632498651349417477476480840595604137925447838256502737028650023888 n^{2} + 113265769316181707752118500396596691001543179858510370329443033563282928822745781850929308417103435182640816633306274252606385548697798402853389097511564609454166983502376540 n + 3419029597901126254917484975498455167976804698993627051102287570446521940681462591179675742433968651703302660785428051540977495130861093426949738703085376506336976971595656080\right) a{\left(n + 180 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} + \frac{\left(101390020604630376475721671684881969913626708227952700892860226606949626438715734356331183855929930357896916645778829242113293463027355638654417148830435654788187 n^{6} + 90653085235316330670828014116368889551685793494232283675660581698837153905506745744837907633570846593549903904992963077121366007313695074423115128224462320386673551 n^{5} + 33709022359300999366162879918180029965391931718535891595940157324439375828540307228688875391222849803006862713221999195044625136736365530961248216617910984744902531625 n^{4} + 6671537004283335233038406987976820661397561080012710109681016508401610366201796258301899252166482018496891764953660398230553715973181226881529021817240687994026711954565 n^{3} + 741081215513765327669277363283648118988899998257816769395929248071049455094181378093022220113843896372747786160740142752501678138074937536726410789948811292263060484450188 n^{2} + 43797619133504835991917747315677300148822355863789902383260794840228287073775155348098061734877893807648559379045405064242073652291850085348609516997690845169326800032370924 n + 1075633298673786703910758241311020129555444214734480051380420212514025438252402417842656936494020791598101357295028022686269471466537418014306805552831785704537596346334287760\right) a{\left(n + 156 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)} - \frac{\left(172994821013406294407452489032235928569686556851247317400152901035053237023857916579112467962114841446797254374638553957346654857038954206764492229122969450591175 n^{6} + 161795778303361017647560867962342380573745512428164309666933792865644478429323807513514963690293507310640665774792031145049064932183110291913216145171898158588078943 n^{5} + 63029808797412682316918484463758728128937763779599113813986858642404174903485037522393069223953903947705027057332247438701851635340176974958824009536165106742730577305 n^{4} + 13091082937402103596117815632154756465261804912897674961676667515367189261433676206778564205894784529294791777145054309205128482172670590528480856092364643834011949367965 n^{3} + 1528887920397755874676122400726950716589674234997781603191388667024430724732969425383086641220507905728545189190820329948328345940297913728946022019710219770342639407808920 n^{2} + 95195876405984405491040872156078828205687476971549325488980150459430592077900307410511205639247679518882207735426762408825113829949986939855084217644838267518006186133153932 n + 2468815204902188641595923128713397502484605109540783921911021020872990297736937454967970334720057328295809869003896768673928074921438925990651953531874854088238224917353033920\right) a{\left(n + 159 \right)}}{22341802794397016260608000000 \left(n + 387\right) \left(n + 388\right) \left(n + 389\right) \left(n + 390\right) \left(n + 391\right) \left(n + 393\right)}, \quad n \geq 390\)

This specification was found using the strategy pack "Insertion Point Placements Req Corrob Symmetries" and has 1916 rules.

Finding the specification took 18807 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 1916 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= -F_{1901}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= \frac{F_{7}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{1465}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{0}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= x\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{2} \left(x \right)^{2}\\ F_{17}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{14}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{14}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{14}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{1458}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{0}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{1270}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{35}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{14}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{14}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{14}\! \left(x \right) F_{38}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= -F_{1396}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= -F_{51}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= \frac{F_{46}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= \frac{F_{50}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{50}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{226}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{217}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{14}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{2}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{14}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{14}\! \left(x \right) F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{72}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{71}\! \left(x \right) &= 0\\ F_{72}\! \left(x \right) &= F_{14}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{14}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{14}\! \left(x \right) F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{14}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{14}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{0}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{71}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{14}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{93}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{107}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{48}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{126}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)+F_{122}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{119}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{14}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{121}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{18}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{2}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right) F_{2}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{158}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{143}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{133}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{131}\! \left(x \right)\\ F_{130}\! \left(x \right) &= x^{2}\\ F_{131}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{132}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{132}\! \left(x \right) &= x^{2}\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{138}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{135}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{37}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{139}\! \left(x \right)+F_{140}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{14}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{14}\! \left(x \right) F_{141}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{143}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{138}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{151}\! \left(x \right)\\ F_{144}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{145}\! \left(x \right)+F_{149}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{14}\! \left(x \right) F_{146}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{14}\! \left(x \right) F_{148}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{146}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{14}\! \left(x \right) F_{150}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{144}\! \left(x \right)\\ F_{151}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{152}\! \left(x \right)+F_{156}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{14}\! \left(x \right) F_{153}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{14}\! \left(x \right) F_{155}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{153}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{14}\! \left(x \right) F_{157}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{151}\! \left(x \right)\\ F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)+F_{166}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{163}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{162}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{14}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{131}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{165}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{135}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{138}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{143}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{212}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{14}\! \left(x \right) F_{171}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)+F_{207}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{0}\! \left(x \right) F_{173}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{175}\! \left(x \right)+F_{176}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{177}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{14}\! \left(x \right) F_{178}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)+F_{181}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{180}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{14}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{181}\! \left(x \right) &= -F_{22}\! \left(x \right)+F_{182}\! \left(x \right)\\ F_{182}\! \left(x \right) &= \frac{F_{183}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{183}\! \left(x \right) &= -F_{202}\! \left(x \right)+F_{184}\! \left(x \right)\\ F_{184}\! \left(x \right) &= \frac{F_{185}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{185}\! \left(x \right) &= F_{186}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{187}\! \left(x \right)\\ F_{187}\! \left(x \right) &= F_{14}\! \left(x \right) F_{188}\! \left(x \right)\\ F_{188}\! \left(x \right) &= F_{189}\! \left(x \right)+F_{193}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{14}\! \left(x \right) F_{190}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{190}\! \left(x \right) &= F_{191}\! \left(x \right)+F_{192}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{192}\! \left(x \right) &= -F_{60}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)+F_{197}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{195}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{195}\! \left(x \right) &= \frac{F_{196}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{196}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{190}\! \left(x \right) F_{198}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{14}\! \left(x \right) F_{200}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{201}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{203}\! \left(x \right)+F_{204}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{182}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)+F_{206}\! \left(x \right)\\ F_{205}\! \left(x \right) &= F_{22}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{206}\! \left(x \right) &= F_{181}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{208}\! \left(x \right)+F_{209}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{173}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{210}\! \left(x \right)+F_{211}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{18}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{174}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{212}\! \left(x \right) &= F_{213}\! \left(x \right)+F_{215}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{214}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{14}\! \left(x \right) F_{2}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{111}\! \left(x \right) F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{218}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{219}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{14}\! \left(x \right) F_{220}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{221}\! \left(x \right)+F_{225}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{2}\! \left(x \right) F_{222}\! \left(x \right)\\ F_{222}\! \left(x \right) &= \frac{F_{223}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{223}\! \left(x \right) &= F_{224}\! \left(x \right)\\ F_{224}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{192}\! \left(x \right)\\ F_{225}\! \left(x \right) &= F_{2}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{226}\! \left(x \right) &= F_{1392}\! \left(x \right)+F_{227}\! \left(x \right)\\ F_{227}\! \left(x \right) &= F_{228}\! \left(x \right)\\ F_{228}\! \left(x \right) &= F_{14}\! \left(x \right) F_{229}\! \left(x \right)\\ F_{229}\! \left(x \right) &= F_{1008}\! \left(x \right)+F_{230}\! \left(x \right)\\ F_{230}\! \left(x \right) &= F_{231}\! \left(x \right)+F_{854}\! \left(x \right)\\ F_{231}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{232}\! \left(x \right)\\ F_{232}\! \left(x \right) &= -F_{840}\! \left(x \right)+F_{233}\! \left(x \right)\\ F_{233}\! \left(x \right) &= -F_{346}\! \left(x \right)+F_{234}\! \left(x \right)\\ F_{234}\! \left(x \right) &= -F_{237}\! \left(x \right)+F_{235}\! \left(x \right)\\ F_{235}\! \left(x \right) &= \frac{F_{236}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{236}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{237}\! \left(x \right) &= F_{238}\! \left(x \right)+F_{303}\! \left(x \right)\\ F_{238}\! \left(x \right) &= F_{239}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{239}\! \left(x \right) &= F_{240}\! \left(x \right)+F_{278}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{240}\! \left(x \right) &= F_{14}\! \left(x \right) F_{241}\! \left(x \right)\\ F_{241}\! \left(x \right) &= F_{238}\! \left(x \right)+F_{242}\! \left(x \right)\\ F_{242}\! \left(x \right) &= F_{243}\! \left(x \right)+F_{254}\! \left(x \right)\\ F_{243}\! \left(x \right) &= F_{244}\! \left(x \right)\\ F_{244}\! \left(x \right) &= F_{14}\! \left(x \right) F_{245}\! \left(x \right)\\ F_{245}\! \left(x \right) &= F_{246}\! \left(x \right)+F_{247}\! \left(x \right)\\ F_{246}\! \left(x \right) &= F_{243}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{247}\! \left(x \right) &= F_{248}\! \left(x \right)+F_{250}\! \left(x \right)\\ F_{248}\! \left(x \right) &= F_{249}\! \left(x \right)\\ F_{249}\! \left(x \right) &= F_{14}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{250}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{251}\! \left(x \right)+F_{252}\! \left(x \right)\\ F_{251}\! \left(x \right) &= F_{14}\! \left(x \right) F_{243}\! \left(x \right)\\ F_{252}\! \left(x \right) &= F_{14}\! \left(x \right) F_{253}\! \left(x \right)\\ F_{253}\! \left(x \right) &= F_{247}\! \left(x \right)\\ F_{254}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{255}\! \left(x \right)+F_{261}\! \left(x \right)\\ F_{255}\! \left(x \right) &= F_{14}\! \left(x \right) F_{256}\! \left(x \right)\\ F_{256}\! \left(x \right) &= F_{257}\! \left(x \right)+F_{258}\! \left(x \right)\\ F_{257}\! \left(x \right) &= F_{239}\! \left(x \right)+F_{254}\! \left(x \right)\\ F_{258}\! \left(x \right) &= F_{259}\! \left(x \right)+F_{273}\! \left(x \right)\\ F_{259}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{260}\! \left(x \right)+F_{261}\! \left(x \right)\\ F_{260}\! \left(x \right) &= F_{14}\! \left(x \right) F_{239}\! \left(x \right)\\ F_{261}\! \left(x \right) &= F_{14}\! \left(x \right) F_{262}\! \left(x \right)\\ F_{262}\! \left(x \right) &= F_{263}\! \left(x \right)+F_{264}\! \left(x \right)\\ F_{263}\! \left(x \right) &= F_{248}\! \left(x \right)+F_{259}\! \left(x \right)\\ F_{264}\! \left(x \right) &= F_{265}\! \left(x \right)+F_{269}\! \left(x \right)\\ F_{265}\! \left(x \right) &= F_{266}\! \left(x \right)\\ F_{266}\! \left(x \right) &= F_{14}\! \left(x \right) F_{267}\! \left(x \right)\\ F_{267}\! \left(x \right) &= F_{268}\! \left(x \right)\\ F_{268}\! \left(x \right) &= F_{248}\! \left(x \right)+F_{265}\! \left(x \right)\\ F_{269}\! \left(x \right) &= F_{270}\! \left(x \right)\\ F_{270}\! \left(x \right) &= F_{14}\! \left(x \right) F_{271}\! \left(x \right)\\ F_{271}\! \left(x \right) &= F_{272}\! \left(x \right)\\ F_{272}\! \left(x \right) &= F_{259}\! \left(x \right)+F_{269}\! \left(x \right)\\ F_{273}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{274}\! \left(x \right)+F_{275}\! \left(x \right)+F_{277}\! \left(x \right)\\ F_{274}\! \left(x \right) &= F_{14}\! \left(x \right) F_{254}\! \left(x \right)\\ F_{275}\! \left(x \right) &= F_{14}\! \left(x \right) F_{276}\! \left(x \right)\\ F_{276}\! \left(x \right) &= F_{258}\! \left(x \right)\\ F_{277}\! \left(x \right) &= 0\\ F_{278}\! \left(x \right) &= F_{14}\! \left(x \right) F_{279}\! \left(x \right)\\ F_{279}\! \left(x \right) &= F_{280}\! \left(x \right)+F_{281}\! \left(x \right)\\ F_{280}\! \left(x \right) &= F_{243}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{281}\! \left(x \right) &= F_{282}\! \left(x \right)+F_{292}\! \left(x \right)\\ F_{282}\! \left(x \right) &= F_{283}\! \left(x \right)\\ F_{283}\! \left(x \right) &= F_{14}\! \left(x \right) F_{284}\! \left(x \right)\\ F_{284}\! \left(x \right) &= F_{285}\! \left(x \right)+F_{286}\! \left(x \right)\\ F_{285}\! \left(x \right) &= F_{282}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{286}\! \left(x \right) &= F_{287}\! \left(x \right)+F_{288}\! \left(x \right)\\ F_{287}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{288}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{289}\! \left(x \right)+F_{290}\! \left(x \right)\\ F_{289}\! \left(x \right) &= F_{14}\! \left(x \right) F_{282}\! \left(x \right)\\ F_{290}\! \left(x \right) &= F_{14}\! \left(x \right) F_{291}\! \left(x \right)\\ F_{291}\! \left(x \right) &= F_{286}\! \left(x \right)\\ F_{292}\! \left(x \right) &= F_{293}\! \left(x \right)\\ F_{293}\! \left(x \right) &= F_{14}\! \left(x \right) F_{294}\! \left(x \right)\\ F_{294}\! \left(x \right) &= F_{295}\! \left(x \right)+F_{296}\! \left(x \right)\\ F_{295}\! \left(x \right) &= F_{292}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{296}\! \left(x \right) &= F_{297}\! \left(x \right)+F_{299}\! \left(x \right)\\ F_{297}\! \left(x \right) &= F_{298}\! \left(x \right)\\ F_{298}\! \left(x \right) &= F_{14}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{299}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{300}\! \left(x \right)+F_{301}\! \left(x \right)\\ F_{300}\! \left(x \right) &= F_{14}\! \left(x \right) F_{292}\! \left(x \right)\\ F_{301}\! \left(x \right) &= F_{14}\! \left(x \right) F_{302}\! \left(x \right)\\ F_{302}\! \left(x \right) &= F_{296}\! \left(x \right)\\ F_{303}\! \left(x \right) &= F_{304}\! \left(x \right)+F_{308}\! \left(x \right)\\ F_{304}\! \left(x \right) &= F_{305}\! \left(x \right)\\ F_{305}\! \left(x \right) &= F_{14}\! \left(x \right) F_{306}\! \left(x \right) F_{40}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{306}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{307}\! \left(x \right)\\ F_{307}\! \left(x \right) &= F_{191}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{308}\! \left(x \right) &= F_{309}\! \left(x \right)\\ F_{309}\! \left(x \right) &= F_{14}\! \left(x \right) F_{310}\! \left(x \right) F_{40}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{310}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{311}\! \left(x \right)\\ F_{311}\! \left(x \right) &= F_{312}\! \left(x \right)+F_{314}\! \left(x \right)\\ F_{312}\! \left(x \right) &= F_{2}\! \left(x \right) F_{313}\! \left(x \right)\\ F_{313}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{314}\! \left(x \right) &= F_{191}\! \left(x \right) F_{315}\! \left(x \right)\\ F_{315}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{316}\! \left(x \right)\\ F_{316}\! \left(x \right) &= -F_{317}\! \left(x \right)+F_{195}\! \left(x \right)\\ F_{317}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{318}\! \left(x \right)\\ F_{318}\! \left(x \right) &= F_{319}\! \left(x \right)\\ F_{319}\! \left(x \right) &= F_{14}\! \left(x \right) F_{320}\! \left(x \right)\\ F_{320}\! \left(x \right) &= F_{317}\! \left(x \right)+F_{321}\! \left(x \right)\\ F_{321}\! \left(x \right) &= F_{322}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{322}\! \left(x \right) &= F_{323}\! \left(x \right)+F_{329}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{323}\! \left(x \right) &= F_{14}\! \left(x \right) F_{324}\! \left(x \right)\\ F_{324}\! \left(x \right) &= F_{325}\! \left(x \right)+F_{326}\! \left(x \right)\\ F_{325}\! \left(x \right) &= F_{318}\! \left(x \right)+F_{322}\! \left(x \right)\\ F_{326}\! \left(x \right) &= F_{327}\! \left(x \right)+F_{341}\! \left(x \right)\\ F_{327}\! \left(x \right) &= F_{328}\! \left(x \right)+F_{329}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{328}\! \left(x \right) &= F_{14}\! \left(x \right) F_{318}\! \left(x \right)\\ F_{329}\! \left(x \right) &= F_{14}\! \left(x \right) F_{330}\! \left(x \right)\\ F_{330}\! \left(x \right) &= F_{331}\! \left(x \right)+F_{332}\! \left(x \right)\\ F_{331}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{327}\! \left(x \right)\\ F_{332}\! \left(x \right) &= F_{333}\! \left(x \right)+F_{337}\! \left(x \right)\\ F_{333}\! \left(x \right) &= F_{334}\! \left(x \right)\\ F_{334}\! \left(x \right) &= F_{14}\! \left(x \right) F_{335}\! \left(x \right)\\ F_{335}\! \left(x \right) &= F_{336}\! \left(x \right)\\ F_{336}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{333}\! \left(x \right)\\ F_{337}\! \left(x \right) &= F_{338}\! \left(x \right)\\ F_{338}\! \left(x \right) &= F_{14}\! \left(x \right) F_{339}\! \left(x \right)\\ F_{339}\! \left(x \right) &= F_{340}\! \left(x \right)\\ F_{340}\! \left(x \right) &= F_{327}\! \left(x \right)+F_{337}\! \left(x \right)\\ F_{341}\! \left(x \right) &= F_{342}\! \left(x \right)+F_{343}\! \left(x \right)+F_{345}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{342}\! \left(x \right) &= F_{14}\! \left(x \right) F_{322}\! \left(x \right)\\ F_{343}\! \left(x \right) &= F_{14}\! \left(x \right) F_{344}\! \left(x \right)\\ F_{344}\! \left(x \right) &= F_{326}\! \left(x \right)\\ F_{345}\! \left(x \right) &= 0\\ F_{346}\! \left(x \right) &= F_{347}\! \left(x \right)+F_{792}\! \left(x \right)\\ F_{347}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{348}\! \left(x \right)\\ F_{348}\! \left(x \right) &= F_{349}\! \left(x \right)\\ F_{349}\! \left(x \right) &= F_{14}\! \left(x \right) F_{350}\! \left(x \right)\\ F_{350}\! \left(x \right) &= F_{351}\! \left(x \right)+F_{352}\! \left(x \right)\\ F_{351}\! \left(x \right) &= F_{232}\! \left(x \right) F_{306}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{352}\! \left(x \right) &= F_{353}\! \left(x \right)+F_{489}\! \left(x \right)\\ F_{353}\! \left(x \right) &= F_{354}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{354}\! \left(x \right) &= F_{355}\! \left(x \right)+F_{357}\! \left(x \right)\\ F_{355}\! \left(x \right) &= F_{356}\! \left(x \right)\\ F_{356}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{40}\! \left(x \right)\\ F_{357}\! \left(x \right) &= F_{2}\! \left(x \right) F_{358}\! \left(x \right)\\ F_{358}\! \left(x \right) &= F_{359}\! \left(x \right)+F_{487}\! \left(x \right)\\ F_{359}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{360}\! \left(x \right)\\ F_{360}\! \left(x \right) &= -F_{469}\! \left(x \right)+F_{361}\! \left(x \right)\\ F_{361}\! \left(x \right) &= -F_{486}\! \left(x \right)+F_{362}\! \left(x \right)\\ F_{362}\! \left(x \right) &= -F_{365}\! \left(x \right)+F_{363}\! \left(x \right)\\ F_{363}\! \left(x \right) &= \frac{F_{364}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{364}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{365}\! \left(x \right) &= F_{366}\! \left(x \right)+F_{368}\! \left(x \right)\\ F_{366}\! \left(x \right) &= F_{367}\! \left(x \right)\\ F_{367}\! \left(x \right) &= F_{191}\! \left(x \right) F_{2}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{368}\! \left(x \right) &= F_{369}\! \left(x \right)+F_{378}\! \left(x \right)\\ F_{369}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{370}\! \left(x \right)\\ F_{370}\! \left(x \right) &= F_{371}\! \left(x \right)\\ F_{371}\! \left(x \right) &= F_{372}\! \left(x \right)\\ F_{372}\! \left(x \right) &= F_{14}\! \left(x \right) F_{195}\! \left(x \right) F_{373}\! \left(x \right)\\ F_{373}\! \left(x \right) &= F_{374}\! \left(x \right)\\ F_{374}\! \left(x \right) &= F_{14}\! \left(x \right) F_{375}\! \left(x \right)\\ F_{375}\! \left(x \right) &= F_{376}\! \left(x \right)+F_{377}\! \left(x \right)\\ F_{376}\! \left(x \right) &= F_{0}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{377}\! \left(x \right) &= F_{5}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{378}\! \left(x \right) &= F_{379}\! \left(x \right)+F_{467}\! \left(x \right)\\ F_{379}\! \left(x \right) &= F_{380}\! \left(x \right)\\ F_{380}\! \left(x \right) &= F_{14}\! \left(x \right) F_{381}\! \left(x \right)\\ F_{381}\! \left(x \right) &= F_{382}\! \left(x \right)+F_{395}\! \left(x \right)\\ F_{382}\! \left(x \right) &= F_{383}\! \left(x \right)+F_{389}\! \left(x \right)\\ F_{383}\! \left(x \right) &= F_{384}\! \left(x \right)+F_{387}\! \left(x \right)\\ F_{384}\! \left(x \right) &= F_{2}\! \left(x \right) F_{385}\! \left(x \right)\\ F_{385}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{386}\! \left(x \right)\\ F_{386}\! \left(x \right) &= F_{38}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{387}\! \left(x \right) &= F_{38}\! \left(x \right) F_{388}\! \left(x \right)\\ F_{388}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{179}\! \left(x \right)\\ F_{389}\! \left(x \right) &= F_{390}\! \left(x \right)+F_{394}\! \left(x \right)\\ F_{390}\! \left(x \right) &= F_{2}\! \left(x \right) F_{391}\! \left(x \right)\\ F_{391}\! \left(x \right) &= F_{360}\! \left(x \right)+F_{392}\! \left(x \right)\\ F_{392}\! \left(x \right) &= F_{393}\! \left(x \right)\\ F_{393}\! \left(x \right) &= F_{2}\! \left(x \right) F_{38}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{394}\! \left(x \right) &= F_{360}\! \left(x \right) F_{388}\! \left(x \right)\\ F_{395}\! \left(x \right) &= F_{396}\! \left(x \right)+F_{406}\! \left(x \right)\\ F_{396}\! \left(x \right) &= F_{397}\! \left(x \right)+F_{405}\! \left(x \right)\\ F_{397}\! \left(x \right) &= F_{2}\! \left(x \right) F_{398}\! \left(x \right)\\ F_{398}\! \left(x \right) &= F_{399}\! \left(x \right)+F_{400}\! \left(x \right)\\ F_{399}\! \left(x \right) &= F_{2}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{400}\! \left(x \right) &= F_{401}\! \left(x \right)\\ F_{401}\! \left(x \right) &= F_{14}\! \left(x \right) F_{402}\! \left(x \right)\\ F_{402}\! \left(x \right) &= F_{403}\! \left(x \right)+F_{404}\! \left(x \right)\\ F_{403}\! \left(x \right) &= F_{2}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{404}\! \left(x \right) &= F_{0}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{405}\! \left(x \right) &= F_{2}\! \left(x \right) F_{38}\! \left(x \right) F_{388}\! \left(x \right)\\ F_{406}\! \left(x \right) &= F_{407}\! \left(x \right)+F_{413}\! \left(x \right)\\ F_{407}\! \left(x \right) &= F_{2}\! \left(x \right) F_{408}\! \left(x \right)\\ F_{408}\! \left(x \right) &= -F_{398}\! \left(x \right)+F_{409}\! \left(x \right)\\ F_{409}\! \left(x \right) &= -F_{412}\! \left(x \right)+F_{410}\! \left(x \right)\\ F_{410}\! \left(x \right) &= \frac{F_{411}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{411}\! \left(x \right) &= F_{360}\! \left(x \right)\\ F_{412}\! \left(x \right) &= F_{385}\! \left(x \right)+F_{391}\! \left(x \right)\\ F_{413}\! \left(x \right) &= F_{388}\! \left(x \right) F_{414}\! \left(x \right)\\ F_{414}\! \left(x \right) &= \frac{F_{415}\! \left(x \right)}{F_{58}\! \left(x \right)}\\ F_{415}\! \left(x \right) &= -F_{466}\! \left(x \right)+F_{416}\! \left(x \right)\\ F_{416}\! \left(x \right) &= \frac{F_{417}\! \left(x \right)}{F_{14}\! \left(x \right) F_{2}\! \left(x \right)}\\ F_{417}\! \left(x \right) &= F_{418}\! \left(x \right)\\ F_{418}\! \left(x \right) &= F_{14}\! \left(x \right) F_{419}\! \left(x \right)\\ F_{419}\! \left(x \right) &= F_{420}\! \left(x \right)+F_{455}\! \left(x \right)\\ F_{420}\! \left(x \right) &= F_{421}\! \left(x \right)+F_{450}\! \left(x \right)\\ F_{421}\! \left(x \right) &= F_{422}\! \left(x \right)+F_{427}\! \left(x \right)\\ F_{422}\! \left(x \right) &= F_{385}\! \left(x \right) F_{423}\! \left(x \right)\\ F_{423}\! \left(x \right) &= F_{424}\! \left(x \right)\\ F_{424}\! \left(x \right) &= F_{14}\! \left(x \right) F_{2}\! \left(x \right) F_{425}\! \left(x \right)\\ F_{425}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{426}\! \left(x \right)\\ F_{426}\! \left(x \right) &= F_{2}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{427}\! \left(x \right) &= F_{428}\! \left(x \right) F_{448}\! \left(x \right)\\ F_{428}\! \left(x \right) &= -F_{423}\! \left(x \right)+F_{429}\! \left(x \right)\\ F_{429}\! \left(x \right) &= \frac{F_{430}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{430}\! \left(x \right) &= -F_{443}\! \left(x \right)+F_{431}\! \left(x \right)\\ F_{431}\! \left(x \right) &= \frac{F_{432}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{432}\! \left(x \right) &= F_{433}\! \left(x \right)\\ F_{433}\! \left(x \right) &= F_{14}\! \left(x \right) F_{2}\! \left(x \right) F_{434}\! \left(x \right)\\ F_{434}\! \left(x \right) &= F_{435}\! \left(x \right)+F_{442}\! \left(x \right)\\ F_{435}\! \left(x \right) &= F_{436}\! \left(x \right)+F_{441}\! \left(x \right)\\ F_{436}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{437}\! \left(x \right)\\ F_{437}\! \left(x \right) &= F_{438}\! \left(x \right)+F_{440}\! \left(x \right)\\ F_{438}\! \left(x \right) &= F_{2}\! \left(x \right) F_{439}\! \left(x \right)\\ F_{439}\! \left(x \right) &= 2 F_{14}\! \left(x \right)\\ F_{440}\! \left(x \right) &= F_{14}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{441}\! \left(x \right) &= F_{22}\! \left(x \right) F_{439}\! \left(x \right)\\ F_{442}\! \left(x \right) &= F_{14}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{443}\! \left(x \right) &= F_{444}\! \left(x \right)+F_{445}\! \left(x \right)\\ F_{444}\! \left(x \right) &= F_{2}\! \left(x \right) F_{429}\! \left(x \right)\\ F_{445}\! \left(x \right) &= F_{446}\! \left(x \right)+F_{447}\! \left(x \right)\\ F_{446}\! \left(x \right) &= F_{35}\! \left(x \right) F_{423}\! \left(x \right)\\ F_{447}\! \left(x \right) &= F_{22}\! \left(x \right) F_{428}\! \left(x \right)\\ F_{448}\! \left(x \right) &= F_{449}\! \left(x \right)\\ F_{449}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{450}\! \left(x \right) &= F_{451}\! \left(x \right)+F_{452}\! \left(x \right)\\ F_{451}\! \left(x \right) &= F_{391}\! \left(x \right) F_{423}\! \left(x \right)\\ F_{452}\! \left(x \right) &= F_{428}\! \left(x \right) F_{453}\! \left(x \right)\\ F_{453}\! \left(x \right) &= F_{360}\! \left(x \right)+F_{454}\! \left(x \right)\\ F_{454}\! \left(x \right) &= F_{14}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{455}\! \left(x \right) &= F_{456}\! \left(x \right)+F_{460}\! \left(x \right)\\ F_{456}\! \left(x \right) &= F_{457}\! \left(x \right)+F_{458}\! \left(x \right)\\ F_{457}\! \left(x \right) &= F_{398}\! \left(x \right) F_{423}\! \left(x \right)\\ F_{458}\! \left(x \right) &= F_{459}\! \left(x \right)\\ F_{459}\! \left(x \right) &= F_{2}\! \left(x \right) F_{428}\! \left(x \right) F_{448}\! \left(x \right)\\ F_{460}\! \left(x \right) &= F_{461}\! \left(x \right)+F_{462}\! \left(x \right)\\ F_{461}\! \left(x \right) &= F_{408}\! \left(x \right) F_{423}\! \left(x \right)\\ F_{462}\! \left(x \right) &= F_{463}\! \left(x \right)\\ F_{463}\! \left(x \right) &= F_{428}\! \left(x \right) F_{464}\! \left(x \right)\\ F_{464}\! \left(x \right) &= F_{414}\! \left(x \right)+F_{465}\! \left(x \right)\\ F_{465}\! \left(x \right) &= F_{14}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{466}\! \left(x \right) &= F_{14}\! \left(x \right) F_{360}\! \left(x \right)\\ F_{467}\! \left(x \right) &= F_{468}\! \left(x \right)\\ F_{468}\! \left(x \right) &= F_{14}\! \left(x \right) F_{195}\! \left(x \right) F_{469}\! \left(x \right)\\ F_{469}\! \left(x \right) &= F_{470}\! \left(x \right)\\ F_{470}\! \left(x \right) &= F_{14}\! \left(x \right) F_{471}\! \left(x \right)\\ F_{471}\! \left(x \right) &= F_{472}\! \left(x \right)+F_{484}\! \left(x \right)\\ F_{472}\! \left(x \right) &= F_{473}\! \left(x \right)\\ F_{473}\! \left(x \right) &= F_{474}\! \left(x \right)+F_{479}\! \left(x \right)\\ F_{474}\! \left(x \right) &= F_{475}\! \left(x \right)\\ F_{475}\! \left(x \right) &= F_{476}\! \left(x \right)+F_{477}\! \left(x \right)\\ F_{476}\! \left(x \right) &= F_{38}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{477}\! \left(x \right) &= F_{38}\! \left(x \right) F_{478}\! \left(x \right)\\ F_{478}\! \left(x \right) &= F_{476}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{479}\! \left(x \right) &= F_{480}\! \left(x \right)+F_{482}\! \left(x \right)\\ F_{480}\! \left(x \right) &= F_{481}\! \left(x \right)\\ F_{481}\! \left(x \right) &= F_{2}\! \left(x \right) F_{38}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{482}\! \left(x \right) &= F_{483}\! \left(x \right)\\ F_{483}\! \left(x \right) &= F_{2}\! \left(x \right) F_{38}\! \left(x \right) F_{478}\! \left(x \right)\\ F_{484}\! \left(x \right) &= F_{485}\! \left(x \right)\\ F_{485}\! \left(x \right) &= F_{38}\! \left(x \right) F_{5}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{486}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{373}\! \left(x \right)\\ F_{487}\! \left(x \right) &= F_{488}\! \left(x \right)\\ F_{488}\! \left(x \right) &= F_{2}\! \left(x \right) F_{40}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{489}\! \left(x \right) &= F_{490}\! \left(x \right)+F_{788}\! \left(x \right)\\ F_{490}\! \left(x \right) &= F_{491}\! \left(x \right)\\ F_{491}\! \left(x \right) &= F_{2}\! \left(x \right) F_{40}\! \left(x \right) F_{492}\! \left(x \right)\\ F_{492}\! \left(x \right) &= -F_{499}\! \left(x \right)+F_{493}\! \left(x \right)\\ F_{493}\! \left(x \right) &= -F_{498}\! \left(x \right)+F_{494}\! \left(x \right)\\ F_{494}\! \left(x \right) &= -F_{497}\! \left(x \right)+F_{495}\! \left(x \right)\\ F_{495}\! \left(x \right) &= \frac{F_{496}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{496}\! \left(x \right) &= F_{231}\! \left(x \right)\\ F_{497}\! \left(x \right) &= F_{232}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{498}\! \left(x \right) &= F_{359}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{499}\! \left(x \right) &= F_{500}\! \left(x \right)+F_{768}\! \left(x \right)\\ F_{500}\! \left(x \right) &= -F_{755}\! \left(x \right)+F_{501}\! \left(x \right)\\ F_{501}\! \left(x \right) &= -F_{767}\! \left(x \right)+F_{502}\! \left(x \right)\\ F_{502}\! \left(x \right) &= -F_{529}\! \left(x \right)+F_{503}\! \left(x \right)\\ F_{503}\! \left(x \right) &= \frac{F_{504}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{504}\! \left(x \right) &= F_{505}\! \left(x \right)\\ F_{505}\! \left(x \right) &= F_{14}\! \left(x \right) F_{506}\! \left(x \right)\\ F_{506}\! \left(x \right) &= F_{507}\! \left(x \right)+F_{508}\! \left(x \right)\\ F_{507}\! \left(x \right) &= F_{22}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{508}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{509}\! \left(x \right)\\ F_{509}\! \left(x \right) &= F_{510}\! \left(x \right)+F_{524}\! \left(x \right)\\ F_{510}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{511}\! \left(x \right)\\ F_{511}\! \left(x \right) &= F_{512}\! \left(x \right)\\ F_{512}\! \left(x \right) &= F_{14}\! \left(x \right) F_{513}\! \left(x \right)\\ F_{513}\! \left(x \right) &= F_{514}\! \left(x \right)+F_{520}\! \left(x \right)\\ F_{514}\! \left(x \right) &= F_{515}\! \left(x \right)+F_{519}\! \left(x \right)\\ F_{515}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{516}\! \left(x \right)\\ F_{516}\! \left(x \right) &= F_{517}\! \left(x \right)+F_{518}\! \left(x \right)\\ F_{517}\! \left(x \right) &= F_{18}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{518}\! \left(x \right) &= F_{174}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{519}\! \left(x \right) &= F_{173}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{520}\! \left(x \right) &= F_{519}\! \left(x \right)+F_{521}\! \left(x \right)\\ F_{521}\! \left(x \right) &= F_{522}\! \left(x \right)+F_{523}\! \left(x \right)\\ F_{522}\! \left(x \right) &= F_{18}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{523}\! \left(x \right) &= F_{174}\! \left(x \right) F_{186}\! \left(x \right)\\ F_{524}\! \left(x \right) &= F_{525}\! \left(x \right)+F_{527}\! \left(x \right)\\ F_{525}\! \left(x \right) &= F_{526}\! \left(x \right)\\ F_{526}\! \left(x \right) &= F_{14}\! \left(x \right) F_{22}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{527}\! \left(x \right) &= F_{528}\! \left(x \right)\\ F_{528}\! \left(x \right) &= F_{111}\! \left(x \right) F_{14}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{529}\! \left(x \right) &= F_{530}\! \left(x \right)+F_{537}\! \left(x \right)\\ F_{530}\! \left(x \right) &= F_{531}\! \left(x \right)\\ F_{531}\! \left(x \right) &= F_{532}\! \left(x \right)+F_{535}\! \left(x \right)\\ F_{532}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{533}\! \left(x \right)\\ F_{533}\! \left(x \right) &= F_{534}\! \left(x \right)\\ F_{534}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{60}\! \left(x \right)\\ F_{535}\! \left(x \right) &= F_{536}\! \left(x \right)\\ F_{536}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{191}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{537}\! \left(x \right) &= F_{538}\! \left(x \right)+F_{563}\! \left(x \right)\\ F_{538}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{539}\! \left(x \right)\\ F_{539}\! \left(x \right) &= F_{540}\! \left(x \right)\\ F_{540}\! \left(x \right) &= F_{14}\! \left(x \right) F_{195}\! \left(x \right) F_{541}\! \left(x \right)\\ F_{541}\! \left(x \right) &= F_{542}\! \left(x \right)\\ F_{542}\! \left(x \right) &= F_{14}\! \left(x \right) F_{543}\! \left(x \right)\\ F_{543}\! \left(x \right) &= F_{544}\! \left(x \right)+F_{561}\! \left(x \right)\\ F_{544}\! \left(x \right) &= F_{2}\! \left(x \right) F_{545}\! \left(x \right)\\ F_{545}\! \left(x \right) &= F_{546}\! \left(x \right)+F_{547}\! \left(x \right)\\ F_{546}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{547}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{548}\! \left(x \right)\\ F_{548}\! \left(x \right) &= F_{549}\! \left(x \right)+F_{550}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{549}\! \left(x \right) &= F_{14}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{550}\! \left(x \right) &= F_{14}\! \left(x \right) F_{551}\! \left(x \right)\\ F_{551}\! \left(x \right) &= F_{552}\! \left(x \right)+F_{553}\! \left(x \right)\\ F_{552}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{548}\! \left(x \right)\\ F_{553}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{554}\! \left(x \right)\\ F_{554}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{555}\! \left(x \right)+F_{559}\! \left(x \right)\\ F_{555}\! \left(x \right) &= F_{14}\! \left(x \right) F_{556}\! \left(x \right)\\ F_{556}\! \left(x \right) &= F_{557}\! \left(x \right)\\ F_{557}\! \left(x \right) &= F_{14}\! \left(x \right) F_{558}\! \left(x \right)\\ F_{558}\! \left(x \right) &= F_{556}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{559}\! \left(x \right) &= F_{14}\! \left(x \right) F_{560}\! \left(x \right)\\ F_{560}\! \left(x \right) &= F_{548}\! \left(x \right)+F_{554}\! \left(x \right)\\ F_{561}\! \left(x \right) &= F_{22}\! \left(x \right) F_{562}\! \left(x \right)\\ F_{562}\! \left(x \right) &= F_{545}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{563}\! \left(x \right) &= F_{564}\! \left(x \right)+F_{753}\! \left(x \right)\\ F_{564}\! \left(x \right) &= -F_{728}\! \left(x \right)+F_{565}\! \left(x \right)\\ F_{565}\! \left(x \right) &= -F_{595}\! \left(x \right)+F_{566}\! \left(x \right)\\ F_{566}\! \left(x \right) &= -F_{593}\! \left(x \right)+F_{567}\! \left(x \right)\\ F_{567}\! \left(x \right) &= -F_{589}\! \left(x \right)+F_{568}\! \left(x \right)\\ F_{568}\! \left(x \right) &= \frac{F_{569}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{569}\! \left(x \right) &= F_{570}\! \left(x \right)\\ F_{570}\! \left(x \right) &= F_{571}\! \left(x \right)\\ F_{571}\! \left(x \right) &= F_{14}\! \left(x \right) F_{572}\! \left(x \right)\\ F_{572}\! \left(x \right) &= F_{573}\! \left(x \right)+F_{574}\! \left(x \right)\\ F_{573}\! \left(x \right) &= F_{125}\! \left(x \right) F_{190}\! \left(x \right)\\ F_{574}\! \left(x \right) &= F_{575}\! \left(x \right)+F_{576}\! \left(x \right)\\ F_{575}\! \left(x \right) &= F_{195}\! \left(x \right) F_{231}\! \left(x \right)\\ F_{576}\! \left(x \right) &= F_{190}\! \left(x \right) F_{577}\! \left(x \right)\\ F_{577}\! \left(x \right) &= F_{578}\! \left(x \right)\\ F_{578}\! \left(x \right) &= F_{14}\! \left(x \right) F_{579}\! \left(x \right)\\ F_{579}\! \left(x \right) &= F_{580}\! \left(x \right)+F_{582}\! \left(x \right)\\ F_{580}\! \left(x \right) &= F_{231}\! \left(x \right)+F_{581}\! \left(x \right)\\ F_{581}\! \left(x \right) &= F_{232}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{582}\! \left(x \right) &= F_{583}\! \left(x \right)+F_{586}\! \left(x \right)\\ F_{583}\! \left(x \right) &= F_{2}\! \left(x \right) F_{584}\! \left(x \right)\\ F_{584}\! \left(x \right) &= F_{585}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{585}\! \left(x \right) &= F_{38}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{586}\! \left(x \right) &= F_{587}\! \left(x \right)+F_{588}\! \left(x \right)\\ F_{587}\! \left(x \right) &= -F_{22}\! \left(x \right)+F_{492}\! \left(x \right)\\ F_{588}\! \left(x \right) &= F_{38}\! \left(x \right) F_{492}\! \left(x \right)\\ F_{589}\! \left(x \right) &= F_{590}\! \left(x \right)+F_{591}\! \left(x \right)\\ F_{590}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{570}\! \left(x \right)\\ F_{591}\! \left(x \right) &= F_{592}\! \left(x \right)\\ F_{592}\! \left(x \right) &= F_{2}\! \left(x \right) F_{232}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{593}\! \left(x \right) &= F_{594}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{594}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{379}\! \left(x \right)\\ F_{595}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{596}\! \left(x \right)\\ F_{596}\! \left(x \right) &= F_{597}\! \left(x \right)\\ F_{597}\! \left(x \right) &= F_{14}\! \left(x \right) F_{598}\! \left(x \right)\\ F_{598}\! \left(x \right) &= F_{599}\! \left(x \right)+F_{717}\! \left(x \right)\\ F_{599}\! \left(x \right) &= F_{600}\! \left(x \right) F_{610}\! \left(x \right)\\ F_{600}\! \left(x \right) &= F_{249}\! \left(x \right)+F_{601}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{601}\! \left(x \right) &= F_{14}\! \left(x \right) F_{602}\! \left(x \right)\\ F_{602}\! \left(x \right) &= F_{603}\! \left(x \right)+F_{604}\! \left(x \right)\\ F_{603}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{600}\! \left(x \right)\\ F_{604}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{605}\! \left(x \right)\\ F_{605}\! \left(x \right) &= F_{606}\! \left(x \right)+F_{608}\! \left(x \right)+F_{609}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{606}\! \left(x \right) &= F_{14}\! \left(x \right) F_{607}\! \left(x \right)\\ F_{607}\! \left(x \right) &= F_{249}\! \left(x \right)\\ F_{608}\! \left(x \right) &= F_{14}\! \left(x \right) F_{600}\! \left(x \right)\\ F_{609}\! \left(x \right) &= 0\\ F_{610}\! \left(x \right) &= \frac{F_{611}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{611}\! \left(x \right) &= -F_{614}\! \left(x \right)+F_{612}\! \left(x \right)\\ F_{612}\! \left(x \right) &= \frac{F_{613}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{613}\! \left(x \right) &= F_{186}\! \left(x \right)\\ F_{614}\! \left(x \right) &= F_{615}\! \left(x \right)+F_{716}\! \left(x \right)\\ F_{615}\! \left(x \right) &= F_{616}\! \left(x \right)+F_{715}\! \left(x \right)\\ F_{616}\! \left(x \right) &= F_{2}\! \left(x \right) F_{617}\! \left(x \right)\\ F_{617}\! \left(x \right) &= F_{618}\! \left(x \right)+F_{695}\! \left(x \right)\\ F_{618}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{619}\! \left(x \right)\\ F_{619}\! \left(x \right) &= F_{620}\! \left(x \right)\\ F_{620}\! \left(x \right) &= F_{14}\! \left(x \right) F_{621}\! \left(x \right)\\ F_{621}\! \left(x \right) &= F_{622}\! \left(x \right)+F_{623}\! \left(x \right)\\ F_{622}\! \left(x \right) &= F_{14}\! \left(x \right) F_{190}\! \left(x \right)\\ F_{623}\! \left(x \right) &= F_{624}\! \left(x \right)+F_{625}\! \left(x \right)\\ F_{624}\! \left(x \right) &= F_{195}\! \left(x \right) F_{318}\! \left(x \right)\\ F_{625}\! \left(x \right) &= F_{190}\! \left(x \right) F_{626}\! \left(x \right)\\ F_{626}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{627}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{627}\! \left(x \right) &= F_{14}\! \left(x \right) F_{628}\! \left(x \right)\\ F_{628}\! \left(x \right) &= F_{629}\! \left(x \right)+F_{671}\! \left(x \right)\\ F_{629}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{630}\! \left(x \right)\\ F_{630}\! \left(x \right) &= F_{631}\! \left(x \right)\\ F_{631}\! \left(x \right) &= F_{14}\! \left(x \right) F_{632}\! \left(x \right)\\ F_{632}\! \left(x \right) &= F_{629}\! \left(x \right)+F_{633}\! \left(x \right)\\ F_{633}\! \left(x \right) &= F_{634}\! \left(x \right)+F_{644}\! \left(x \right)\\ F_{634}\! \left(x \right) &= F_{635}\! \left(x \right)\\ F_{635}\! \left(x \right) &= F_{14}\! \left(x \right) F_{636}\! \left(x \right)\\ F_{636}\! \left(x \right) &= F_{637}\! \left(x \right)+F_{638}\! \left(x \right)\\ F_{637}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{634}\! \left(x \right)\\ F_{638}\! \left(x \right) &= F_{639}\! \left(x \right)+F_{640}\! \left(x \right)\\ F_{639}\! \left(x \right) &= F_{132}\! \left(x \right)\\ F_{640}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{641}\! \left(x \right)+F_{642}\! \left(x \right)\\ F_{641}\! \left(x \right) &= F_{14}\! \left(x \right) F_{634}\! \left(x \right)\\ F_{642}\! \left(x \right) &= F_{14}\! \left(x \right) F_{643}\! \left(x \right)\\ F_{643}\! \left(x \right) &= F_{638}\! \left(x \right)\\ F_{644}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{645}\! \left(x \right)+F_{660}\! \left(x \right)\\ F_{645}\! \left(x \right) &= F_{14}\! \left(x \right) F_{646}\! \left(x \right)\\ F_{646}\! \left(x \right) &= F_{647}\! \left(x \right)+F_{658}\! \left(x \right)\\ F_{647}\! \left(x \right) &= F_{630}\! \left(x \right)+F_{648}\! \left(x \right)\\ F_{648}\! \left(x \right) &= F_{649}\! \left(x \right)\\ F_{649}\! \left(x \right) &= F_{14}\! \left(x \right) F_{650}\! \left(x \right)\\ F_{650}\! \left(x \right) &= F_{647}\! \left(x \right)+F_{651}\! \left(x \right)\\ F_{651}\! \left(x \right) &= F_{652}\! \left(x \right)+F_{654}\! \left(x \right)\\ F_{652}\! \left(x \right) &= F_{653}\! \left(x \right)\\ F_{653}\! \left(x \right) &= F_{14}\! \left(x \right) F_{630}\! \left(x \right)\\ F_{654}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{655}\! \left(x \right)+F_{656}\! \left(x \right)\\ F_{655}\! \left(x \right) &= F_{14}\! \left(x \right) F_{648}\! \left(x \right)\\ F_{656}\! \left(x \right) &= F_{14}\! \left(x \right) F_{657}\! \left(x \right)\\ F_{657}\! \left(x \right) &= F_{651}\! \left(x \right)\\ F_{658}\! \left(x \right) &= F_{659}\! \left(x \right)+F_{668}\! \left(x \right)\\ F_{659}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{653}\! \left(x \right)+F_{660}\! \left(x \right)\\ F_{660}\! \left(x \right) &= F_{14}\! \left(x \right) F_{661}\! \left(x \right)\\ F_{661}\! \left(x \right) &= F_{662}\! \left(x \right)+F_{663}\! \left(x \right)\\ F_{662}\! \left(x \right) &= F_{639}\! \left(x \right)+F_{659}\! \left(x \right)\\ F_{663}\! \left(x \right) &= F_{640}\! \left(x \right)+F_{664}\! \left(x \right)\\ F_{664}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{655}\! \left(x \right)+F_{665}\! \left(x \right)+F_{667}\! \left(x \right)\\ F_{665}\! \left(x \right) &= F_{14}\! \left(x \right) F_{666}\! \left(x \right)\\ F_{666}\! \left(x \right) &= F_{658}\! \left(x \right)\\ F_{667}\! \left(x \right) &= 0\\ F_{668}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{655}\! \left(x \right)+F_{669}\! \left(x \right)\\ F_{669}\! \left(x \right) &= F_{14}\! \left(x \right) F_{670}\! \left(x \right)\\ F_{670}\! \left(x \right) &= F_{658}\! \left(x \right)\\ F_{671}\! \left(x \right) &= F_{672}\! \left(x \right)+F_{679}\! \left(x \right)\\ F_{672}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{673}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{673}\! \left(x \right) &= F_{14}\! \left(x \right) F_{674}\! \left(x \right)\\ F_{674}\! \left(x \right) &= F_{637}\! \left(x \right)+F_{675}\! \left(x \right)\\ F_{675}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{676}\! \left(x \right)\\ F_{676}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{641}\! \left(x \right)+F_{677}\! \left(x \right)\\ F_{677}\! \left(x \right) &= F_{14}\! \left(x \right) F_{678}\! \left(x \right)\\ F_{678}\! \left(x \right) &= F_{675}\! \left(x \right)\\ F_{679}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{680}\! \left(x \right)+F_{684}\! \left(x \right)\\ F_{680}\! \left(x \right) &= F_{14}\! \left(x \right) F_{681}\! \left(x \right)\\ F_{681}\! \left(x \right) &= F_{647}\! \left(x \right)+F_{682}\! \left(x \right)\\ F_{682}\! \left(x \right) &= F_{683}\! \left(x \right)+F_{692}\! \left(x \right)\\ F_{683}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{653}\! \left(x \right)+F_{684}\! \left(x \right)\\ F_{684}\! \left(x \right) &= F_{14}\! \left(x \right) F_{685}\! \left(x \right)\\ F_{685}\! \left(x \right) &= F_{686}\! \left(x \right)+F_{687}\! \left(x \right)\\ F_{686}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{683}\! \left(x \right)\\ F_{687}\! \left(x \right) &= F_{676}\! \left(x \right)+F_{688}\! \left(x \right)\\ F_{688}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{655}\! \left(x \right)+F_{689}\! \left(x \right)+F_{691}\! \left(x \right)\\ F_{689}\! \left(x \right) &= F_{14}\! \left(x \right) F_{690}\! \left(x \right)\\ F_{690}\! \left(x \right) &= F_{682}\! \left(x \right)\\ F_{691}\! \left(x \right) &= 0\\ F_{692}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{655}\! \left(x \right)+F_{693}\! \left(x \right)\\ F_{693}\! \left(x \right) &= F_{14}\! \left(x \right) F_{694}\! \left(x \right)\\ F_{694}\! \left(x \right) &= F_{682}\! \left(x \right)\\ F_{695}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{696}\! \left(x \right)\\ F_{696}\! \left(x \right) &= F_{697}\! \left(x \right)\\ F_{697}\! \left(x \right) &= F_{14}\! \left(x \right) F_{698}\! \left(x \right)\\ F_{698}\! \left(x \right) &= F_{699}\! \left(x \right)+F_{700}\! \left(x \right)\\ F_{699}\! \left(x \right) &= F_{14}\! \left(x \right) F_{190}\! \left(x \right) F_{318}\! \left(x \right)\\ F_{700}\! \left(x \right) &= F_{701}\! \left(x \right)+F_{702}\! \left(x \right)\\ F_{701}\! \left(x \right) &= F_{14}\! \left(x \right) F_{190}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{702}\! \left(x \right) &= F_{703}\! \left(x \right)+F_{710}\! \left(x \right)\\ F_{703}\! \left(x \right) &= F_{704}\! \left(x \right)+F_{705}\! \left(x \right)\\ F_{704}\! \left(x \right) &= F_{195}\! \left(x \right) F_{315}\! \left(x \right)\\ F_{705}\! \left(x \right) &= F_{190}\! \left(x \right) F_{706}\! \left(x \right)\\ F_{706}\! \left(x \right) &= F_{707}\! \left(x \right)\\ F_{707}\! \left(x \right) &= F_{14}\! \left(x \right) F_{708}\! \left(x \right)\\ F_{708}\! \left(x \right) &= F_{315}\! \left(x \right)+F_{709}\! \left(x \right)\\ F_{709}\! \left(x \right) &= F_{619}\! \left(x \right)+F_{696}\! \left(x \right)\\ F_{710}\! \left(x \right) &= F_{190}\! \left(x \right) F_{711}\! \left(x \right)\\ F_{711}\! \left(x \right) &= F_{712}\! \left(x \right)\\ F_{712}\! \left(x \right) &= F_{14}\! \left(x \right) F_{713}\! \left(x \right)\\ F_{713}\! \left(x \right) &= F_{315}\! \left(x \right)+F_{714}\! \left(x \right)\\ F_{714}\! \left(x \right) &= F_{14}\! \left(x \right) F_{192}\! \left(x \right)\\ F_{715}\! \left(x \right) &= F_{18}\! \left(x \right) F_{610}\! \left(x \right)\\ F_{716}\! \left(x \right) &= F_{2}\! \left(x \right) F_{388}\! \left(x \right)\\ F_{717}\! \left(x \right) &= F_{718}\! \left(x \right)+F_{727}\! \left(x \right)\\ F_{718}\! \left(x \right) &= F_{719}\! \left(x \right)+F_{720}\! \left(x \right)\\ F_{719}\! \left(x \right) &= F_{231}\! \left(x \right) F_{617}\! \left(x \right)\\ F_{720}\! \left(x \right) &= F_{610}\! \left(x \right) F_{721}\! \left(x \right)\\ F_{721}\! \left(x \right) &= \frac{F_{722}\! \left(x \right)}{F_{190}\! \left(x \right)}\\ F_{722}\! \left(x \right) &= -F_{575}\! \left(x \right)+F_{723}\! \left(x \right)\\ F_{723}\! \left(x \right) &= -F_{726}\! \left(x \right)+F_{724}\! \left(x \right)\\ F_{724}\! \left(x \right) &= \frac{F_{725}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{725}\! \left(x \right) &= F_{587}\! \left(x \right)\\ F_{726}\! \left(x \right) &= F_{190}\! \left(x \right) F_{600}\! \left(x \right)\\ F_{727}\! \left(x \right) &= F_{231}\! \left(x \right) F_{388}\! \left(x \right)\\ F_{728}\! \left(x \right) &= F_{729}\! \left(x \right)\\ F_{729}\! \left(x \right) &= F_{14}\! \left(x \right) F_{730}\! \left(x \right)\\ F_{730}\! \left(x \right) &= F_{731}\! \left(x \right)+F_{747}\! \left(x \right)\\ F_{731}\! \left(x \right) &= F_{732}\! \left(x \right)\\ F_{732}\! \left(x \right) &= F_{600}\! \left(x \right) F_{733}\! \left(x \right)\\ F_{733}\! \left(x \right) &= \frac{F_{734}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{734}\! \left(x \right) &= F_{735}\! \left(x \right)\\ F_{735}\! \left(x \right) &= -F_{738}\! \left(x \right)+F_{736}\! \left(x \right)\\ F_{736}\! \left(x \right) &= \frac{F_{737}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{737}\! \left(x \right) &= F_{564}\! \left(x \right)\\ F_{738}\! \left(x \right) &= F_{739}\! \left(x \right)+F_{746}\! \left(x \right)\\ F_{739}\! \left(x \right) &= F_{740}\! \left(x \right)+F_{744}\! \left(x \right)\\ F_{740}\! \left(x \right) &= F_{2}\! \left(x \right) F_{741}\! \left(x \right)\\ F_{741}\! \left(x \right) &= -F_{387}\! \left(x \right)+F_{742}\! \left(x \right)\\ F_{742}\! \left(x \right) &= \frac{F_{743}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{743}\! \left(x \right) &= F_{379}\! \left(x \right)\\ F_{744}\! \left(x \right) &= F_{745}\! \left(x \right)\\ F_{745}\! \left(x \right) &= F_{18}\! \left(x \right) F_{733}\! \left(x \right)\\ F_{746}\! \left(x \right) &= F_{2}\! \left(x \right) F_{38}\! \left(x \right) F_{388}\! \left(x \right)\\ F_{747}\! \left(x \right) &= F_{748}\! \left(x \right)+F_{752}\! \left(x \right)\\ F_{748}\! \left(x \right) &= F_{749}\! \left(x \right)+F_{750}\! \left(x \right)\\ F_{749}\! \left(x \right) &= F_{231}\! \left(x \right) F_{741}\! \left(x \right)\\ F_{750}\! \left(x \right) &= F_{751}\! \left(x \right)\\ F_{751}\! \left(x \right) &= F_{721}\! \left(x \right) F_{733}\! \left(x \right)\\ F_{752}\! \left(x \right) &= F_{231}\! \left(x \right) F_{38}\! \left(x \right) F_{388}\! \left(x \right)\\ F_{753}\! \left(x \right) &= F_{754}\! \left(x \right)\\ F_{754}\! \left(x \right) &= F_{14}\! \left(x \right) F_{195}\! \left(x \right) F_{755}\! \left(x \right)\\ F_{755}\! \left(x \right) &= F_{756}\! \left(x \right)\\ F_{756}\! \left(x \right) &= F_{14}\! \left(x \right) F_{757}\! \left(x \right)\\ F_{757}\! \left(x \right) &= F_{758}\! \left(x \right)+F_{762}\! \left(x \right)\\ F_{758}\! \left(x \right) &= F_{2}\! \left(x \right) F_{759}\! \left(x \right)\\ F_{759}\! \left(x \right) &= F_{760}\! \left(x \right)+F_{761}\! \left(x \right)\\ F_{760}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{144}\! \left(x \right)\\ F_{761}\! \left(x \right) &= F_{151}\! \left(x \right)+F_{554}\! \left(x \right)\\ F_{762}\! \left(x \right) &= F_{22}\! \left(x \right) F_{763}\! \left(x \right)\\ F_{763}\! \left(x \right) &= F_{759}\! \left(x \right)+F_{764}\! \left(x \right)\\ F_{764}\! \left(x \right) &= F_{765}\! \left(x \right)+F_{766}\! \left(x \right)\\ F_{765}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{766}\! \left(x \right) &= F_{153}\! \left(x \right)+F_{556}\! \left(x \right)\\ F_{767}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{541}\! \left(x \right)\\ F_{768}\! \left(x \right) &= F_{769}\! \left(x \right)\\ F_{769}\! \left(x \right) &= F_{14}\! \left(x \right) F_{770}\! \left(x \right)\\ F_{770}\! \left(x \right) &= F_{771}\! \left(x \right)+F_{784}\! \left(x \right)\\ F_{771}\! \left(x \right) &= F_{772}\! \left(x \right)\\ F_{772}\! \left(x \right) &= F_{600}\! \left(x \right) F_{773}\! \left(x \right)\\ F_{773}\! \left(x \right) &= \frac{F_{774}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{774}\! \left(x \right) &= F_{775}\! \left(x \right)\\ F_{775}\! \left(x \right) &= -F_{778}\! \left(x \right)+F_{776}\! \left(x \right)\\ F_{776}\! \left(x \right) &= \frac{F_{777}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{777}\! \left(x \right) &= F_{500}\! \left(x \right)\\ F_{778}\! \left(x \right) &= F_{779}\! \left(x \right)+F_{782}\! \left(x \right)\\ F_{779}\! \left(x \right) &= F_{2}\! \left(x \right) F_{780}\! \left(x \right)\\ F_{780}\! \left(x \right) &= \frac{F_{781}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{781}\! \left(x \right) &= F_{360}\! \left(x \right)\\ F_{782}\! \left(x \right) &= F_{783}\! \left(x \right)\\ F_{783}\! \left(x \right) &= F_{18}\! \left(x \right) F_{773}\! \left(x \right)\\ F_{784}\! \left(x \right) &= F_{785}\! \left(x \right)+F_{786}\! \left(x \right)\\ F_{785}\! \left(x \right) &= F_{231}\! \left(x \right) F_{780}\! \left(x \right)\\ F_{786}\! \left(x \right) &= F_{787}\! \left(x \right)\\ F_{787}\! \left(x \right) &= F_{721}\! \left(x \right) F_{773}\! \left(x \right)\\ F_{788}\! \left(x \right) &= F_{2}\! \left(x \right) F_{789}\! \left(x \right)\\ F_{789}\! \left(x \right) &= F_{493}\! \left(x \right)+F_{790}\! \left(x \right)\\ F_{790}\! \left(x \right) &= F_{791}\! \left(x \right)\\ F_{791}\! \left(x \right) &= F_{40}\! \left(x \right) F_{492}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{792}\! \left(x \right) &= F_{793}\! \left(x \right)+F_{794}\! \left(x \right)\\ F_{793}\! \left(x \right) &= F_{2}\! \left(x \right) F_{315}\! \left(x \right)\\ F_{794}\! \left(x \right) &= F_{795}\! \left(x \right)\\ F_{795}\! \left(x \right) &= F_{14}\! \left(x \right) F_{796}\! \left(x \right)\\ F_{796}\! \left(x \right) &= F_{797}\! \left(x \right)+F_{798}\! \left(x \right)\\ F_{797}\! \left(x \right) &= F_{232}\! \left(x \right) F_{310}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{798}\! \left(x \right) &= F_{799}\! \left(x \right)+F_{817}\! \left(x \right)\\ F_{799}\! \left(x \right) &= F_{64}\! \left(x \right) F_{800}\! \left(x \right)\\ F_{800}\! \left(x \right) &= F_{801}\! \left(x \right)+F_{803}\! \left(x \right)\\ F_{801}\! \left(x \right) &= F_{802}\! \left(x \right)\\ F_{802}\! \left(x \right) &= F_{2}\! \left(x \right) F_{224}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{803}\! \left(x \right) &= F_{804}\! \left(x \right)+F_{815}\! \left(x \right)\\ F_{804}\! \left(x \right) &= F_{2}\! \left(x \right) F_{805}\! \left(x \right)\\ F_{805}\! \left(x \right) &= F_{806}\! \left(x \right)+F_{813}\! \left(x \right)\\ F_{806}\! \left(x \right) &= F_{60}\! \left(x \right) F_{807}\! \left(x \right)\\ F_{807}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{808}\! \left(x \right)\\ F_{808}\! \left(x \right) &= F_{809}\! \left(x \right)\\ F_{809}\! \left(x \right) &= F_{14}\! \left(x \right) F_{810}\! \left(x \right)\\ F_{810}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{811}\! \left(x \right)\\ F_{811}\! \left(x \right) &= F_{2}\! \left(x \right) F_{812}\! \left(x \right)\\ F_{812}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{813}\! \left(x \right) &= F_{814}\! \left(x \right)\\ F_{814}\! \left(x \right) &= F_{2}\! \left(x \right) F_{40}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{815}\! \left(x \right) &= F_{315}\! \left(x \right) F_{816}\! \left(x \right)\\ F_{816}\! \left(x \right) &= F_{359}\! \left(x \right)+F_{806}\! \left(x \right)\\ F_{817}\! \left(x \right) &= F_{818}\! \left(x \right)+F_{820}\! \left(x \right)\\ F_{818}\! \left(x \right) &= F_{819}\! \left(x \right)\\ F_{819}\! \left(x \right) &= F_{224}\! \left(x \right) F_{40}\! \left(x \right) F_{492}\! \left(x \right)\\ F_{820}\! \left(x \right) &= F_{821}\! \left(x \right)+F_{838}\! \left(x \right)\\ F_{821}\! \left(x \right) &= F_{2}\! \left(x \right) F_{822}\! \left(x \right)\\ F_{822}\! \left(x \right) &= F_{823}\! \left(x \right)+F_{836}\! \left(x \right)\\ F_{823}\! \left(x \right) &= F_{60}\! \left(x \right) F_{824}\! \left(x \right)\\ F_{824}\! \left(x \right) &= F_{492}\! \left(x \right)+F_{825}\! \left(x \right)\\ F_{825}\! \left(x \right) &= F_{826}\! \left(x \right)+F_{831}\! \left(x \right)\\ F_{826}\! \left(x \right) &= F_{827}\! \left(x \right)\\ F_{827}\! \left(x \right) &= F_{14}\! \left(x \right) F_{828}\! \left(x \right)\\ F_{828}\! \left(x \right) &= F_{829}\! \left(x \right)+F_{830}\! \left(x \right)\\ F_{829}\! \left(x \right) &= F_{137}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{830}\! \left(x \right) &= F_{22}\! \left(x \right) F_{812}\! \left(x \right)\\ F_{831}\! \left(x \right) &= F_{832}\! \left(x \right)\\ F_{832}\! \left(x \right) &= F_{14}\! \left(x \right) F_{833}\! \left(x \right)\\ F_{833}\! \left(x \right) &= F_{834}\! \left(x \right)+F_{835}\! \left(x \right)\\ F_{834}\! \left(x \right) &= F_{137}\! \left(x \right) F_{231}\! \left(x \right)\\ F_{835}\! \left(x \right) &= F_{587}\! \left(x \right) F_{812}\! \left(x \right)\\ F_{836}\! \left(x \right) &= F_{837}\! \left(x \right)\\ F_{837}\! \left(x \right) &= F_{40}\! \left(x \right) F_{492}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{838}\! \left(x \right) &= F_{315}\! \left(x \right) F_{839}\! \left(x \right)\\ F_{839}\! \left(x \right) &= F_{493}\! \left(x \right)+F_{823}\! \left(x \right)\\ F_{840}\! \left(x \right) &= F_{841}\! \left(x \right)+F_{842}\! \left(x \right)\\ F_{841}\! \left(x \right) &= F_{2}\! \left(x \right) F_{318}\! \left(x \right)\\ F_{842}\! \left(x \right) &= F_{843}\! \left(x \right)\\ F_{843}\! \left(x \right) &= F_{14}\! \left(x \right) F_{844}\! \left(x \right)\\ F_{844}\! \left(x \right) &= F_{845}\! \left(x \right)+F_{848}\! \left(x \right)\\ F_{845}\! \left(x \right) &= F_{232}\! \left(x \right) F_{40}\! \left(x \right) F_{846}\! \left(x \right)\\ F_{846}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{847}\! \left(x \right)\\ F_{847}\! \left(x \right) &= F_{191}\! \left(x \right) F_{318}\! \left(x \right)\\ F_{848}\! \left(x \right) &= F_{849}\! \left(x \right)+F_{852}\! \left(x \right)\\ F_{849}\! \left(x \right) &= F_{64}\! \left(x \right) F_{850}\! \left(x \right)\\ F_{850}\! \left(x \right) &= F_{806}\! \left(x \right)+F_{851}\! \left(x \right)\\ F_{851}\! \left(x \right) &= F_{318}\! \left(x \right) F_{816}\! \left(x \right)\\ F_{852}\! \left(x \right) &= F_{823}\! \left(x \right)+F_{853}\! \left(x \right)\\ F_{853}\! \left(x \right) &= F_{318}\! \left(x \right) F_{839}\! \left(x \right)\\ F_{854}\! \left(x \right) &= F_{842}\! \left(x \right)+F_{855}\! \left(x \right)\\ F_{855}\! \left(x \right) &= F_{2}\! \left(x \right) F_{856}\! \left(x \right)\\ F_{856}\! \left(x \right) &= F_{857}\! \left(x \right)+F_{897}\! \left(x \right)\\ F_{857}\! \left(x \right) &= F_{318}\! \left(x \right)+F_{858}\! \left(x \right)\\ F_{858}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{859}\! \left(x \right)+F_{896}\! \left(x \right)\\ F_{859}\! \left(x \right) &= F_{14}\! \left(x \right) F_{860}\! \left(x \right)\\ F_{860}\! \left(x \right) &= F_{861}\! \left(x \right)+F_{862}\! \left(x \right)\\ F_{861}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{858}\! \left(x \right)\\ F_{862}\! \left(x \right) &= F_{672}\! \left(x \right)+F_{863}\! \left(x \right)\\ F_{863}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{864}\! \left(x \right)+F_{879}\! \left(x \right)+F_{892}\! \left(x \right)\\ F_{864}\! \left(x \right) &= F_{14}\! \left(x \right) F_{865}\! \left(x \right)\\ F_{865}\! \left(x \right) &= F_{866}\! \left(x \right)+F_{877}\! \left(x \right)\\ F_{866}\! \left(x \right) &= F_{858}\! \left(x \right)+F_{867}\! \left(x \right)\\ F_{867}\! \left(x \right) &= F_{868}\! \left(x \right)\\ F_{868}\! \left(x \right) &= F_{14}\! \left(x \right) F_{869}\! \left(x \right)\\ F_{869}\! \left(x \right) &= F_{866}\! \left(x \right)+F_{870}\! \left(x \right)\\ F_{870}\! \left(x \right) &= F_{871}\! \left(x \right)+F_{873}\! \left(x \right)\\ F_{871}\! \left(x \right) &= F_{872}\! \left(x \right)\\ F_{872}\! \left(x \right) &= F_{14}\! \left(x \right) F_{858}\! \left(x \right)\\ F_{873}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{874}\! \left(x \right)+F_{875}\! \left(x \right)\\ F_{874}\! \left(x \right) &= F_{14}\! \left(x \right) F_{867}\! \left(x \right)\\ F_{875}\! \left(x \right) &= F_{14}\! \left(x \right) F_{876}\! \left(x \right)\\ F_{876}\! \left(x \right) &= F_{870}\! \left(x \right)\\ F_{877}\! \left(x \right) &= F_{878}\! \left(x \right)+F_{893}\! \left(x \right)\\ F_{878}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{872}\! \left(x \right)+F_{879}\! \left(x \right)+F_{892}\! \left(x \right)\\ F_{879}\! \left(x \right) &= F_{14}\! \left(x \right) F_{880}\! \left(x \right)\\ F_{880}\! \left(x \right) &= F_{881}\! \left(x \right)+F_{882}\! \left(x \right)\\ F_{881}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{878}\! \left(x \right)\\ F_{882}\! \left(x \right) &= F_{883}\! \left(x \right)+F_{887}\! \left(x \right)\\ F_{883}\! \left(x \right) &= F_{641}\! \left(x \right)+F_{71}\! \left(x \right)+F_{884}\! \left(x \right)+F_{886}\! \left(x \right)\\ F_{884}\! \left(x \right) &= F_{14}\! \left(x \right) F_{885}\! \left(x \right)\\ F_{885}\! \left(x \right) &= F_{675}\! \left(x \right)\\ F_{886}\! \left(x \right) &= 0\\ F_{887}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{874}\! \left(x \right)+F_{888}\! \left(x \right)+F_{890}\! \left(x \right)+F_{891}\! \left(x \right)\\ F_{888}\! \left(x \right) &= F_{14}\! \left(x \right) F_{889}\! \left(x \right)\\ F_{889}\! \left(x \right) &= F_{877}\! \left(x \right)\\ F_{890}\! \left(x \right) &= 0\\ F_{891}\! \left(x \right) &= 0\\ F_{892}\! \left(x \right) &= F_{125}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{893}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{874}\! \left(x \right)+F_{894}\! \left(x \right)\\ F_{894}\! \left(x \right) &= F_{14}\! \left(x \right) F_{895}\! \left(x \right)\\ F_{895}\! \left(x \right) &= F_{877}\! \left(x \right)\\ F_{896}\! \left(x \right) &= F_{14}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{897}\! \left(x \right) &= F_{898}\! \left(x \right)+F_{940}\! \left(x \right)\\ F_{898}\! \left(x \right) &= F_{899}\! \left(x \right)\\ F_{899}\! \left(x \right) &= F_{14}\! \left(x \right) F_{900}\! \left(x \right)\\ F_{900}\! \left(x \right) &= F_{901}\! \left(x \right)+F_{902}\! \left(x \right)\\ F_{901}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{898}\! \left(x \right)\\ F_{902}\! \left(x \right) &= F_{903}\! \left(x \right)+F_{913}\! \left(x \right)\\ F_{903}\! \left(x \right) &= F_{904}\! \left(x \right)\\ F_{904}\! \left(x \right) &= F_{14}\! \left(x \right) F_{905}\! \left(x \right)\\ F_{905}\! \left(x \right) &= F_{906}\! \left(x \right)+F_{907}\! \left(x \right)\\ F_{906}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{903}\! \left(x \right)\\ F_{907}\! \left(x \right) &= F_{908}\! \left(x \right)+F_{909}\! \left(x \right)\\ F_{908}\! \left(x \right) &= F_{549}\! \left(x \right)\\ F_{909}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{910}\! \left(x \right)+F_{911}\! \left(x \right)\\ F_{910}\! \left(x \right) &= F_{14}\! \left(x \right) F_{903}\! \left(x \right)\\ F_{911}\! \left(x \right) &= F_{14}\! \left(x \right) F_{912}\! \left(x \right)\\ F_{912}\! \left(x \right) &= F_{907}\! \left(x \right)\\ F_{913}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{914}\! \left(x \right)+F_{929}\! \left(x \right)\\ F_{914}\! \left(x \right) &= F_{14}\! \left(x \right) F_{915}\! \left(x \right)\\ F_{915}\! \left(x \right) &= F_{916}\! \left(x \right)+F_{927}\! \left(x \right)\\ F_{916}\! \left(x \right) &= F_{898}\! \left(x \right)+F_{917}\! \left(x \right)\\ F_{917}\! \left(x \right) &= F_{918}\! \left(x \right)\\ F_{918}\! \left(x \right) &= F_{14}\! \left(x \right) F_{919}\! \left(x \right)\\ F_{919}\! \left(x \right) &= F_{916}\! \left(x \right)+F_{920}\! \left(x \right)\\ F_{920}\! \left(x \right) &= F_{921}\! \left(x \right)+F_{923}\! \left(x \right)\\ F_{921}\! \left(x \right) &= F_{922}\! \left(x \right)\\ F_{922}\! \left(x \right) &= F_{14}\! \left(x \right) F_{898}\! \left(x \right)\\ F_{923}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{924}\! \left(x \right)+F_{925}\! \left(x \right)\\ F_{924}\! \left(x \right) &= F_{14}\! \left(x \right) F_{917}\! \left(x \right)\\ F_{925}\! \left(x \right) &= F_{14}\! \left(x \right) F_{926}\! \left(x \right)\\ F_{926}\! \left(x \right) &= F_{920}\! \left(x \right)\\ F_{927}\! \left(x \right) &= F_{928}\! \left(x \right)+F_{937}\! \left(x \right)\\ F_{928}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{922}\! \left(x \right)+F_{929}\! \left(x \right)\\ F_{929}\! \left(x \right) &= F_{14}\! \left(x \right) F_{930}\! \left(x \right)\\ F_{930}\! \left(x \right) &= F_{931}\! \left(x \right)+F_{932}\! \left(x \right)\\ F_{931}\! \left(x \right) &= F_{908}\! \left(x \right)+F_{928}\! \left(x \right)\\ F_{932}\! \left(x \right) &= F_{909}\! \left(x \right)+F_{933}\! \left(x \right)\\ F_{933}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{924}\! \left(x \right)+F_{934}\! \left(x \right)+F_{936}\! \left(x \right)\\ F_{934}\! \left(x \right) &= F_{14}\! \left(x \right) F_{935}\! \left(x \right)\\ F_{935}\! \left(x \right) &= F_{927}\! \left(x \right)\\ F_{936}\! \left(x \right) &= 0\\ F_{937}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{924}\! \left(x \right)+F_{938}\! \left(x \right)\\ F_{938}\! \left(x \right) &= F_{14}\! \left(x \right) F_{939}\! \left(x \right)\\ F_{939}\! \left(x \right) &= F_{927}\! \left(x \right)\\ F_{940}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1007}\! \left(x \right)+F_{941}\! \left(x \right)\\ F_{941}\! \left(x \right) &= F_{14}\! \left(x \right) F_{942}\! \left(x \right)\\ F_{942}\! \left(x \right) &= F_{943}\! \left(x \right)+F_{944}\! \left(x \right)\\ F_{943}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{940}\! \left(x \right)\\ F_{944}\! \left(x \right) &= F_{945}\! \left(x \right)+F_{965}\! \left(x \right)\\ F_{945}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{946}\! \left(x \right)+F_{960}\! \left(x \right)\\ F_{946}\! \left(x \right) &= F_{14}\! \left(x \right) F_{947}\! \left(x \right)\\ F_{947}\! \left(x \right) &= F_{948}\! \left(x \right)+F_{958}\! \left(x \right)\\ F_{948}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{949}\! \left(x \right)\\ F_{949}\! \left(x \right) &= F_{950}\! \left(x \right)\\ F_{950}\! \left(x \right) &= F_{14}\! \left(x \right) F_{951}\! \left(x \right)\\ F_{951}\! \left(x \right) &= F_{948}\! \left(x \right)+F_{952}\! \left(x \right)\\ F_{952}\! \left(x \right) &= F_{953}\! \left(x \right)+F_{954}\! \left(x \right)\\ F_{953}\! \left(x \right) &= F_{139}\! \left(x \right)\\ F_{954}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{955}\! \left(x \right)+F_{956}\! \left(x \right)\\ F_{955}\! \left(x \right) &= F_{14}\! \left(x \right) F_{949}\! \left(x \right)\\ F_{956}\! \left(x \right) &= F_{14}\! \left(x \right) F_{957}\! \left(x \right)\\ F_{957}\! \left(x \right) &= F_{952}\! \left(x \right)\\ F_{958}\! \left(x \right) &= F_{959}\! \left(x \right)+F_{962}\! \left(x \right)\\ F_{959}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{139}\! \left(x \right)+F_{960}\! \left(x \right)\\ F_{960}\! \left(x \right) &= F_{14}\! \left(x \right) F_{961}\! \left(x \right)\\ F_{961}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{962}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{955}\! \left(x \right)+F_{963}\! \left(x \right)\\ F_{963}\! \left(x \right) &= F_{14}\! \left(x \right) F_{964}\! \left(x \right)\\ F_{964}\! \left(x \right) &= F_{958}\! \left(x \right)\\ F_{965}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{966}\! \left(x \right)+F_{981}\! \left(x \right)+F_{994}\! \left(x \right)\\ F_{966}\! \left(x \right) &= F_{14}\! \left(x \right) F_{967}\! \left(x \right)\\ F_{967}\! \left(x \right) &= F_{968}\! \left(x \right)+F_{979}\! \left(x \right)\\ F_{968}\! \left(x \right) &= F_{940}\! \left(x \right)+F_{969}\! \left(x \right)\\ F_{969}\! \left(x \right) &= F_{970}\! \left(x \right)\\ F_{970}\! \left(x \right) &= F_{14}\! \left(x \right) F_{971}\! \left(x \right)\\ F_{971}\! \left(x \right) &= F_{968}\! \left(x \right)+F_{972}\! \left(x \right)\\ F_{972}\! \left(x \right) &= F_{973}\! \left(x \right)+F_{975}\! \left(x \right)\\ F_{973}\! \left(x \right) &= F_{974}\! \left(x \right)\\ F_{974}\! \left(x \right) &= F_{14}\! \left(x \right) F_{940}\! \left(x \right)\\ F_{975}\! \left(x \right) &= 4 F_{71}\! \left(x \right)+F_{976}\! \left(x \right)+F_{977}\! \left(x \right)\\ F_{976}\! \left(x \right) &= F_{14}\! \left(x \right) F_{969}\! \left(x \right)\\ F_{977}\! \left(x \right) &= F_{14}\! \left(x \right) F_{978}\! \left(x \right)\\ F_{978}\! \left(x \right) &= F_{972}\! \left(x \right)\\ F_{979}\! \left(x \right) &= F_{1004}\! \left(x \right)+F_{980}\! \left(x \right)\\ F_{980}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{974}\! \left(x \right)+F_{981}\! \left(x \right)+F_{994}\! \left(x \right)\\ F_{981}\! \left(x \right) &= F_{14}\! \left(x \right) F_{982}\! \left(x \right)\\ F_{982}\! \left(x \right) &= F_{983}\! \left(x \right)+F_{984}\! \left(x \right)\\ F_{983}\! \left(x \right) &= F_{959}\! \left(x \right)+F_{980}\! \left(x \right)\\ F_{984}\! \left(x \right) &= F_{985}\! \left(x \right)+F_{989}\! \left(x \right)\\ F_{985}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{955}\! \left(x \right)+F_{986}\! \left(x \right)+F_{988}\! \left(x \right)\\ F_{986}\! \left(x \right) &= F_{14}\! \left(x \right) F_{987}\! \left(x \right)\\ F_{987}\! \left(x \right) &= F_{958}\! \left(x \right)\\ F_{988}\! \left(x \right) &= 0\\ F_{989}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{976}\! \left(x \right)+F_{990}\! \left(x \right)+F_{992}\! \left(x \right)+F_{993}\! \left(x \right)\\ F_{990}\! \left(x \right) &= F_{14}\! \left(x \right) F_{991}\! \left(x \right)\\ F_{991}\! \left(x \right) &= F_{979}\! \left(x \right)\\ F_{992}\! \left(x \right) &= 0\\ F_{993}\! \left(x \right) &= 0\\ F_{994}\! \left(x \right) &= F_{14}\! \left(x \right) F_{995}\! \left(x \right)\\ F_{995}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1002}\! \left(x \right)+F_{996}\! \left(x \right)\\ F_{996}\! \left(x \right) &= F_{14}\! \left(x \right) F_{997}\! \left(x \right)\\ F_{997}\! \left(x \right) &= F_{998}\! \left(x \right)\\ F_{998}\! \left(x \right) &= F_{14}\! \left(x \right) F_{999}\! \left(x \right)\\ F_{999}\! \left(x \right) &= F_{1000}\! \left(x \right)+F_{1001}\! \left(x \right)\\ F_{1000}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{997}\! \left(x \right)\\ F_{1001}\! \left(x \right) &= F_{961}\! \left(x \right)+F_{995}\! \left(x \right)\\ F_{1002}\! \left(x \right) &= F_{1003}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1003}\! \left(x \right) &= F_{1001}\! \left(x \right)\\ F_{1004}\! \left(x \right) &= 4 F_{71}\! \left(x \right)+F_{1005}\! \left(x \right)+F_{976}\! \left(x \right)\\ F_{1005}\! \left(x \right) &= F_{1006}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1006}\! \left(x \right) &= F_{979}\! \left(x \right)\\ F_{1007}\! \left(x \right) &= F_{14}\! \left(x \right) F_{997}\! \left(x \right)\\ F_{1008}\! \left(x \right) &= F_{1009}\! \left(x \right)+F_{1078}\! \left(x \right)\\ F_{1009}\! \left(x \right) &= F_{1010}\! \left(x \right)+F_{1011}\! \left(x \right)\\ F_{1010}\! \left(x \right) &= F_{2}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{1011}\! \left(x \right) &= F_{1012}\! \left(x \right)+F_{1021}\! \left(x \right)\\ F_{1012}\! \left(x \right) &= F_{1013}\! \left(x \right)+F_{1046}\! \left(x \right)\\ F_{1013}\! \left(x \right) &= F_{1014}\! \left(x \right)+F_{1038}\! \left(x \right)\\ F_{1014}\! \left(x \right) &= F_{1015}\! \left(x \right)\\ F_{1015}\! \left(x \right) &= F_{1016}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1016}\! \left(x \right) &= F_{1017}\! \left(x \right)+F_{233}\! \left(x \right)\\ F_{1017}\! \left(x \right) &= F_{1018}\! \left(x \right)+F_{1032}\! \left(x \right)\\ F_{1018}\! \left(x \right) &= F_{1019}\! \left(x \right)+F_{1020}\! \left(x \right)\\ F_{1019}\! \left(x \right) &= F_{2}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{1020}\! \left(x \right) &= F_{1014}\! \left(x \right)+F_{1021}\! \left(x \right)\\ F_{1021}\! \left(x \right) &= F_{1022}\! \left(x \right)\\ F_{1022}\! \left(x \right) &= F_{1023}\! \left(x \right) F_{14}\! \left(x \right) F_{40}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{1023}\! \left(x \right) &= F_{1024}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{1024}\! \left(x \right) &= F_{1014}\! \left(x \right)+F_{1025}\! \left(x \right)\\ F_{1025}\! \left(x \right) &= F_{1026}\! \left(x \right)\\ F_{1026}\! \left(x \right) &= F_{1027}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1027}\! \left(x \right) &= F_{1028}\! \left(x \right)+F_{1029}\! \left(x \right)\\ F_{1028}\! \left(x \right) &= F_{1024}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{1029}\! \left(x \right) &= F_{1030}\! \left(x \right)\\ F_{1030}\! \left(x \right) &= F_{1031}\! \left(x \right) F_{137}\! \left(x \right) F_{191}\! \left(x \right)\\ F_{1031}\! \left(x \right) &= F_{1014}\! \left(x \right)+F_{318}\! \left(x \right)\\ F_{1032}\! \left(x \right) &= -F_{1037}\! \left(x \right)+F_{1033}\! \left(x \right)\\ F_{1033}\! \left(x \right) &= -F_{1036}\! \left(x \right)+F_{1034}\! \left(x \right)\\ F_{1034}\! \left(x \right) &= \frac{F_{1035}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{1035}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{1036}\! \left(x \right) &= F_{233}\! \left(x \right)+F_{238}\! \left(x \right)\\ F_{1037}\! \left(x \right) &= F_{1010}\! \left(x \right)+F_{1021}\! \left(x \right)\\ F_{1038}\! \left(x \right) &= F_{1039}\! \left(x \right)\\ F_{1039}\! \left(x \right) &= F_{1040}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1040}\! \left(x \right) &= F_{1041}\! \left(x \right)+F_{1042}\! \left(x \right)\\ F_{1041}\! \left(x \right) &= F_{231}\! \left(x \right)+F_{840}\! \left(x \right)\\ F_{1042}\! \left(x \right) &= F_{1043}\! \left(x \right)+F_{1044}\! \left(x \right)\\ F_{1043}\! \left(x \right) &= F_{1010}\! \left(x \right)+F_{1020}\! \left(x \right)\\ F_{1044}\! \left(x \right) &= F_{1045}\! \left(x \right)+F_{570}\! \left(x \right)\\ F_{1045}\! \left(x \right) &= -F_{590}\! \left(x \right)+F_{1032}\! \left(x \right)\\ F_{1046}\! \left(x \right) &= F_{1025}\! \left(x \right)+F_{1047}\! \left(x \right)\\ F_{1047}\! \left(x \right) &= F_{1048}\! \left(x \right)\\ F_{1048}\! \left(x \right) &= F_{1049}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1049}\! \left(x \right) &= F_{1050}\! \left(x \right)+F_{1059}\! \left(x \right)\\ F_{1050}\! \left(x \right) &= F_{1051}\! \left(x \right)\\ F_{1051}\! \left(x \right) &= F_{1052}\! \left(x \right)+F_{1058}\! \left(x \right)\\ F_{1052}\! \left(x \right) &= F_{1053}\! \left(x \right)+F_{1055}\! \left(x \right)\\ F_{1053}\! \left(x \right) &= F_{1038}\! \left(x \right)+F_{1054}\! \left(x \right)\\ F_{1054}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1055}\! \left(x \right) &= F_{1056}\! \left(x \right)+F_{1057}\! \left(x \right)\\ F_{1056}\! \left(x \right) &= F_{1038}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{1057}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{1058}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{123}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{1059}\! \left(x \right) &= F_{1060}\! \left(x \right)+F_{1069}\! \left(x \right)\\ F_{1060}\! \left(x \right) &= F_{1061}\! \left(x \right)+F_{1068}\! \left(x \right)\\ F_{1061}\! \left(x \right) &= F_{1062}\! \left(x \right)+F_{1065}\! \left(x \right)\\ F_{1062}\! \left(x \right) &= F_{1063}\! \left(x \right)+F_{1064}\! \left(x \right)\\ F_{1063}\! \left(x \right) &= F_{14}\! \left(x \right) F_{858}\! \left(x \right)\\ F_{1064}\! \left(x \right) &= F_{131}\! \left(x \right) F_{318}\! \left(x \right)\\ F_{1065}\! \left(x \right) &= F_{1066}\! \left(x \right)+F_{1067}\! \left(x \right)\\ F_{1066}\! \left(x \right) &= F_{135}\! \left(x \right) F_{858}\! \left(x \right)\\ F_{1067}\! \left(x \right) &= F_{138}\! \left(x \right) F_{318}\! \left(x \right)\\ F_{1068}\! \left(x \right) &= F_{143}\! \left(x \right) F_{318}\! \left(x \right)\\ F_{1069}\! \left(x \right) &= F_{1070}\! \left(x \right)+F_{1077}\! \left(x \right)\\ F_{1070}\! \left(x \right) &= F_{1071}\! \left(x \right)+F_{1074}\! \left(x \right)\\ F_{1071}\! \left(x \right) &= F_{1072}\! \left(x \right)+F_{1073}\! \left(x \right)\\ F_{1072}\! \left(x \right) &= F_{1038}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1073}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{131}\! \left(x \right)\\ F_{1074}\! \left(x \right) &= F_{1075}\! \left(x \right)+F_{1076}\! \left(x \right)\\ F_{1075}\! \left(x \right) &= F_{1038}\! \left(x \right) F_{135}\! \left(x \right)\\ F_{1076}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{138}\! \left(x \right)\\ F_{1077}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{143}\! \left(x \right)\\ F_{1078}\! \left(x \right) &= F_{1079}\! \left(x \right)+F_{570}\! \left(x \right)\\ F_{1079}\! \left(x \right) &= F_{1080}\! \left(x \right)+F_{1391}\! \left(x \right)\\ F_{1080}\! \left(x \right) &= F_{1081}\! \left(x \right)+F_{1386}\! \left(x \right)\\ F_{1081}\! \left(x \right) &= F_{1082}\! \left(x \right)+F_{1170}\! \left(x \right)\\ F_{1082}\! \left(x \right) &= F_{1083}\! \left(x \right)\\ F_{1083}\! \left(x \right) &= F_{1084}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1084}\! \left(x \right) &= F_{1085}\! \left(x \right)+F_{1165}\! \left(x \right)\\ F_{1085}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1086}\! \left(x \right)\\ F_{1086}\! \left(x \right) &= F_{1014}\! \left(x \right)+F_{1087}\! \left(x \right)\\ F_{1087}\! \left(x \right) &= F_{1088}\! \left(x \right)+F_{1146}\! \left(x \right)\\ F_{1088}\! \left(x \right) &= F_{1089}\! \left(x \right)+F_{549}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1089}\! \left(x \right) &= F_{1090}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1090}\! \left(x \right) &= F_{1091}\! \left(x \right)+F_{1092}\! \left(x \right)\\ F_{1091}\! \left(x \right) &= F_{1088}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{1092}\! \left(x \right) &= F_{1093}\! \left(x \right)+F_{1110}\! \left(x \right)\\ F_{1093}\! \left(x \right) &= F_{1094}\! \left(x \right)+F_{1101}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1094}\! \left(x \right) &= F_{1095}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1095}\! \left(x \right) &= F_{1096}\! \left(x \right)\\ F_{1096}\! \left(x \right) &= F_{1097}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1097}\! \left(x \right) &= F_{1098}\! \left(x \right)+F_{1099}\! \left(x \right)\\ F_{1098}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{1095}\! \left(x \right)\\ F_{1099}\! \left(x \right) &= F_{1100}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{1100}\! \left(x \right) &= F_{1094}\! \left(x \right)\\ F_{1101}\! \left(x \right) &= F_{1102}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1102}\! \left(x \right) &= F_{1103}\! \left(x \right)+F_{1104}\! \left(x \right)\\ F_{1103}\! \left(x \right) &= F_{1093}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{1104}\! \left(x \right) &= F_{1105}\! \left(x \right)+F_{131}\! \left(x \right)\\ F_{1105}\! \left(x \right) &= F_{1106}\! \left(x \right)+F_{1107}\! \left(x \right)+F_{1108}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1106}\! \left(x \right) &= F_{1100}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1107}\! \left(x \right) &= F_{1093}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1108}\! \left(x \right) &= F_{1109}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1109}\! \left(x \right) &= F_{1104}\! \left(x \right)\\ F_{1110}\! \left(x \right) &= F_{1111}\! \left(x \right)+F_{1118}\! \left(x \right)+F_{1135}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1111}\! \left(x \right) &= F_{1112}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1112}\! \left(x \right) &= F_{1113}\! \left(x \right)\\ F_{1113}\! \left(x \right) &= F_{1114}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1114}\! \left(x \right) &= F_{1115}\! \left(x \right)+F_{1116}\! \left(x \right)\\ F_{1115}\! \left(x \right) &= F_{1112}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{1116}\! \left(x \right) &= F_{1117}\! \left(x \right)+F_{908}\! \left(x \right)\\ F_{1117}\! \left(x \right) &= F_{1111}\! \left(x \right)\\ F_{1118}\! \left(x \right) &= F_{1119}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1119}\! \left(x \right) &= F_{1120}\! \left(x \right)+F_{1133}\! \left(x \right)\\ F_{1120}\! \left(x \right) &= F_{1088}\! \left(x \right)+F_{1121}\! \left(x \right)\\ F_{1121}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1111}\! \left(x \right)+F_{1122}\! \left(x \right)\\ F_{1122}\! \left(x \right) &= F_{1123}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1123}\! \left(x \right) &= F_{1120}\! \left(x \right)+F_{1124}\! \left(x \right)\\ F_{1124}\! \left(x \right) &= F_{1125}\! \left(x \right)+F_{1128}\! \left(x \right)\\ F_{1125}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1126}\! \left(x \right)+F_{1127}\! \left(x \right)\\ F_{1126}\! \left(x \right) &= F_{14}\! \left(x \right) F_{908}\! \left(x \right)\\ F_{1127}\! \left(x \right) &= F_{1088}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1128}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1129}\! \left(x \right)+F_{1130}\! \left(x \right)+F_{1131}\! \left(x \right)\\ F_{1129}\! \left(x \right) &= F_{1117}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1130}\! \left(x \right) &= F_{1121}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1131}\! \left(x \right) &= F_{1132}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1132}\! \left(x \right) &= F_{1124}\! \left(x \right)\\ F_{1133}\! \left(x \right) &= F_{1134}\! \left(x \right)+F_{1143}\! \left(x \right)\\ F_{1134}\! \left(x \right) &= F_{1126}\! \left(x \right)+F_{1127}\! \left(x \right)+F_{1135}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1135}\! \left(x \right) &= F_{1136}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1136}\! \left(x \right) &= F_{1137}\! \left(x \right)+F_{1138}\! \left(x \right)\\ F_{1137}\! \left(x \right) &= F_{1134}\! \left(x \right)+F_{131}\! \left(x \right)\\ F_{1138}\! \left(x \right) &= F_{1105}\! \left(x \right)+F_{1139}\! \left(x \right)\\ F_{1139}\! \left(x \right) &= F_{1129}\! \left(x \right)+F_{1130}\! \left(x \right)+F_{1140}\! \left(x \right)+F_{1142}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1140}\! \left(x \right) &= F_{1141}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1141}\! \left(x \right) &= F_{1133}\! \left(x \right)\\ F_{1142}\! \left(x \right) &= 0\\ F_{1143}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1129}\! \left(x \right)+F_{1130}\! \left(x \right)+F_{1144}\! \left(x \right)\\ F_{1144}\! \left(x \right) &= F_{1145}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1145}\! \left(x \right) &= F_{1133}\! \left(x \right)\\ F_{1146}\! \left(x \right) &= -F_{179}\! \left(x \right)+F_{1147}\! \left(x \right)\\ F_{1147}\! \left(x \right) &= -F_{1091}\! \left(x \right)+F_{1148}\! \left(x \right)\\ F_{1148}\! \left(x \right) &= -F_{1164}\! \left(x \right)+F_{1149}\! \left(x \right)\\ F_{1149}\! \left(x \right) &= -F_{366}\! \left(x \right)+F_{1150}\! \left(x \right)\\ F_{1150}\! \left(x \right) &= \frac{F_{1151}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{1151}\! \left(x \right) &= F_{1152}\! \left(x \right)\\ F_{1152}\! \left(x \right) &= F_{1153}\! \left(x \right)\\ F_{1153}\! \left(x \right) &= F_{1154}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1154}\! \left(x \right) &= F_{1155}\! \left(x \right)+F_{1156}\! \left(x \right)\\ F_{1155}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{1156}\! \left(x \right) &= F_{1157}\! \left(x \right)+F_{1158}\! \left(x \right)\\ F_{1157}\! \left(x \right) &= F_{2}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{1158}\! \left(x \right) &= F_{1159}\! \left(x \right)\\ F_{1159}\! \left(x \right) &= F_{1160}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1160}\! \left(x \right) &= F_{1161}\! \left(x \right)+F_{1163}\! \left(x \right)\\ F_{1161}\! \left(x \right) &= F_{1162}\! \left(x \right)\\ F_{1162}\! \left(x \right) &= F_{191}\! \left(x \right) F_{35}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{1163}\! \left(x \right) &= F_{5}\! \left(x \right) F_{551}\! \left(x \right)\\ F_{1164}\! \left(x \right) &= F_{2}\! \left(x \right) F_{551}\! \left(x \right)\\ F_{1165}\! \left(x \right) &= F_{1166}\! \left(x \right)+F_{1167}\! \left(x \right)\\ F_{1166}\! \left(x \right) &= F_{1086}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1167}\! \left(x \right) &= F_{1168}\! \left(x \right)+F_{1169}\! \left(x \right)\\ F_{1168}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{1169}\! \left(x \right) &= F_{1087}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{1170}\! \left(x \right) &= F_{1171}\! \left(x \right)\\ F_{1171}\! \left(x \right) &= F_{1172}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1172}\! \left(x \right) &= F_{1173}\! \left(x \right)+F_{1380}\! \left(x \right)\\ F_{1173}\! \left(x \right) &= F_{1174}\! \left(x \right)\\ F_{1174}\! \left(x \right) &= F_{1175}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1175}\! \left(x \right) &= \frac{F_{1176}\! \left(x \right)}{F_{14} \left(x \right)^{2}}\\ F_{1176}\! \left(x \right) &= F_{1177}\! \left(x \right)\\ F_{1177}\! \left(x \right) &= -F_{1374}\! \left(x \right)+F_{1178}\! \left(x \right)\\ F_{1178}\! \left(x \right) &= \frac{F_{1179}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{1179}\! \left(x \right) &= F_{1180}\! \left(x \right)\\ F_{1180}\! \left(x \right) &= F_{1181}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1181}\! \left(x \right) &= F_{1182}\! \left(x \right)+F_{1369}\! \left(x \right)\\ F_{1182}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1183}\! \left(x \right)\\ F_{1183}\! \left(x \right) &= F_{1184}\! \left(x \right)+F_{1188}\! \left(x \right)\\ F_{1184}\! \left(x \right) &= F_{1185}\! \left(x \right)\\ F_{1185}\! \left(x \right) &= F_{1186}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1186}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{1187}\! \left(x \right)\\ F_{1187}\! \left(x \right) &= F_{1038}\! \left(x \right)+F_{1047}\! \left(x \right)\\ F_{1188}\! \left(x \right) &= F_{1189}\! \left(x \right)+F_{1250}\! \left(x \right)\\ F_{1189}\! \left(x \right) &= F_{1190}\! \left(x \right)\\ F_{1190}\! \left(x \right) &= F_{1191}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1191}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1192}\! \left(x \right)+F_{1249}\! \left(x \right)\\ F_{1192}\! \left(x \right) &= F_{1193}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1193}\! \left(x \right) &= F_{1194}\! \left(x \right)+F_{1195}\! \left(x \right)\\ F_{1194}\! \left(x \right) &= F_{1191}\! \left(x \right)+F_{175}\! \left(x \right)\\ F_{1195}\! \left(x \right) &= F_{1196}\! \left(x \right)+F_{1216}\! \left(x \right)\\ F_{1196}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1197}\! \left(x \right)+F_{1212}\! \left(x \right)\\ F_{1197}\! \left(x \right) &= F_{1198}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1198}\! \left(x \right) &= F_{1199}\! \left(x \right)+F_{1210}\! \left(x \right)\\ F_{1199}\! \left(x \right) &= F_{1200}\! \left(x \right)+F_{175}\! \left(x \right)\\ F_{1200}\! \left(x \right) &= F_{1201}\! \left(x \right)\\ F_{1201}\! \left(x \right) &= F_{1202}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1202}\! \left(x \right) &= F_{1199}\! \left(x \right)+F_{1203}\! \left(x \right)\\ F_{1203}\! \left(x \right) &= F_{1204}\! \left(x \right)+F_{1206}\! \left(x \right)\\ F_{1204}\! \left(x \right) &= F_{1205}\! \left(x \right)\\ F_{1205}\! \left(x \right) &= F_{14}\! \left(x \right) F_{175}\! \left(x \right)\\ F_{1206}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{1207}\! \left(x \right)+F_{1208}\! \left(x \right)\\ F_{1207}\! \left(x \right) &= F_{1200}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1208}\! \left(x \right) &= F_{1209}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1209}\! \left(x \right) &= F_{1203}\! \left(x \right)\\ F_{1210}\! \left(x \right) &= F_{1211}\! \left(x \right)+F_{1213}\! \left(x \right)\\ F_{1211}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1205}\! \left(x \right)+F_{1212}\! \left(x \right)\\ F_{1212}\! \left(x \right) &= F_{131}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1213}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{1207}\! \left(x \right)+F_{1214}\! \left(x \right)\\ F_{1214}\! \left(x \right) &= F_{1215}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1215}\! \left(x \right) &= F_{1210}\! \left(x \right)\\ F_{1216}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1217}\! \left(x \right)+F_{1232}\! \left(x \right)+F_{1245}\! \left(x \right)\\ F_{1217}\! \left(x \right) &= F_{1218}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1218}\! \left(x \right) &= F_{1219}\! \left(x \right)+F_{1230}\! \left(x \right)\\ F_{1219}\! \left(x \right) &= F_{1191}\! \left(x \right)+F_{1220}\! \left(x \right)\\ F_{1220}\! \left(x \right) &= F_{1221}\! \left(x \right)\\ F_{1221}\! \left(x \right) &= F_{1222}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1222}\! \left(x \right) &= F_{1219}\! \left(x \right)+F_{1223}\! \left(x \right)\\ F_{1223}\! \left(x \right) &= F_{1224}\! \left(x \right)+F_{1226}\! \left(x \right)\\ F_{1224}\! \left(x \right) &= F_{1225}\! \left(x \right)\\ F_{1225}\! \left(x \right) &= F_{1191}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1226}\! \left(x \right) &= 4 F_{71}\! \left(x \right)+F_{1227}\! \left(x \right)+F_{1228}\! \left(x \right)\\ F_{1227}\! \left(x \right) &= F_{1220}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1228}\! \left(x \right) &= F_{1229}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1229}\! \left(x \right) &= F_{1223}\! \left(x \right)\\ F_{1230}\! \left(x \right) &= F_{1231}\! \left(x \right)+F_{1246}\! \left(x \right)\\ F_{1231}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1225}\! \left(x \right)+F_{1232}\! \left(x \right)+F_{1245}\! \left(x \right)\\ F_{1232}\! \left(x \right) &= F_{1233}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1233}\! \left(x \right) &= F_{1234}\! \left(x \right)+F_{1235}\! \left(x \right)\\ F_{1234}\! \left(x \right) &= F_{1211}\! \left(x \right)+F_{1231}\! \left(x \right)\\ F_{1235}\! \left(x \right) &= F_{1236}\! \left(x \right)+F_{1240}\! \left(x \right)\\ F_{1236}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1207}\! \left(x \right)+F_{1237}\! \left(x \right)+F_{1239}\! \left(x \right)\\ F_{1237}\! \left(x \right) &= F_{1238}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1238}\! \left(x \right) &= F_{1210}\! \left(x \right)\\ F_{1239}\! \left(x \right) &= 0\\ F_{1240}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1227}\! \left(x \right)+F_{1241}\! \left(x \right)+F_{1243}\! \left(x \right)+F_{1244}\! \left(x \right)\\ F_{1241}\! \left(x \right) &= F_{1242}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1242}\! \left(x \right) &= F_{1230}\! \left(x \right)\\ F_{1243}\! \left(x \right) &= 0\\ F_{1244}\! \left(x \right) &= 0\\ F_{1245}\! \left(x \right) &= F_{1105}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1246}\! \left(x \right) &= 4 F_{71}\! \left(x \right)+F_{1227}\! \left(x \right)+F_{1247}\! \left(x \right)\\ F_{1247}\! \left(x \right) &= F_{1248}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1248}\! \left(x \right) &= F_{1230}\! \left(x \right)\\ F_{1249}\! \left(x \right) &= F_{1093}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1250}\! \left(x \right) &= \frac{F_{1251}\! \left(x \right)}{F_{0}\! \left(x \right) F_{38}\! \left(x \right)}\\ F_{1251}\! \left(x \right) &= -F_{1365}\! \left(x \right)+F_{1252}\! \left(x \right)\\ F_{1252}\! \left(x \right) &= -F_{1362}\! \left(x \right)+F_{1253}\! \left(x \right)\\ F_{1253}\! \left(x \right) &= -F_{1292}\! \left(x \right)+F_{1254}\! \left(x \right)\\ F_{1254}\! \left(x \right) &= -F_{1290}\! \left(x \right)+F_{1255}\! \left(x \right)\\ F_{1255}\! \left(x \right) &= -F_{1288}\! \left(x \right)+F_{1256}\! \left(x \right)\\ F_{1256}\! \left(x \right) &= \frac{F_{1257}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{1257}\! \left(x \right) &= F_{1258}\! \left(x \right)\\ F_{1258}\! \left(x \right) &= F_{1259}\! \left(x \right)\\ F_{1259}\! \left(x \right) &= F_{1260}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1260}\! \left(x \right) &= F_{1261}\! \left(x \right)+F_{1285}\! \left(x \right)\\ F_{1261}\! \left(x \right) &= F_{1258}\! \left(x \right)+F_{1262}\! \left(x \right)\\ F_{1262}\! \left(x \right) &= F_{1263}\! \left(x \right)\\ F_{1263}\! \left(x \right) &= F_{1264}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1264}\! \left(x \right) &= F_{1265}\! \left(x \right)+F_{1283}\! \left(x \right)\\ F_{1265}\! \left(x \right) &= F_{1266}\! \left(x \right)\\ F_{1266}\! \left(x \right) &= F_{1267}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1267}\! \left(x \right) &= F_{1268}\! \left(x \right)+F_{1269}\! \left(x \right)\\ F_{1268}\! \left(x \right) &= F_{1152}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{1269}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1270}\! \left(x \right)\\ F_{1270}\! \left(x \right) &= -F_{388}\! \left(x \right)+F_{1271}\! \left(x \right)\\ F_{1271}\! \left(x \right) &= -F_{1281}\! \left(x \right)+F_{1272}\! \left(x \right)\\ F_{1272}\! \left(x \right) &= F_{1273}\! \left(x \right)\\ F_{1273}\! \left(x \right) &= -F_{1276}\! \left(x \right)+F_{1274}\! \left(x \right)\\ F_{1274}\! \left(x \right) &= \frac{F_{1275}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{1275}\! \left(x \right) &= F_{1152}\! \left(x \right)\\ F_{1276}\! \left(x \right) &= F_{1277}\! \left(x \right)+F_{1278}\! \left(x \right)\\ F_{1277}\! \left(x \right) &= F_{2}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{1278}\! \left(x \right) &= F_{1152}\! \left(x \right)+F_{1279}\! \left(x \right)\\ F_{1279}\! \left(x \right) &= F_{1280}\! \left(x \right)\\ F_{1280}\! \left(x \right) &= F_{1154}\! \left(x \right) F_{14}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{1281}\! \left(x \right) &= F_{1282}\! \left(x \right)\\ F_{1282}\! \left(x \right) &= F_{137}\! \left(x \right) F_{191}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1283}\! \left(x \right) &= F_{1284}\! \left(x \right)\\ F_{1284}\! \left(x \right) &= F_{1154}\! \left(x \right) F_{14}\! \left(x \right) F_{2}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{1285}\! \left(x \right) &= F_{1286}\! \left(x \right)\\ F_{1286}\! \left(x \right) &= F_{1279}\! \left(x \right) F_{1287}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1287}\! \left(x \right) &= F_{124}\! \left(x \right)\\ F_{1288}\! \left(x \right) &= F_{1289}\! \left(x \right)\\ F_{1289}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{191}\! \left(x \right) F_{38}\! \left(x \right) F_{40}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{1290}\! \left(x \right) &= F_{1291}\! \left(x \right)\\ F_{1291}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{38}\! \left(x \right) F_{551}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{1292}\! \left(x \right) &= F_{1293}\! \left(x \right)+F_{1298}\! \left(x \right)\\ F_{1293}\! \left(x \right) &= F_{1294}\! \left(x \right)\\ F_{1294}\! \left(x \right) &= F_{1295}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1295}\! \left(x \right) &= F_{1296}\! \left(x \right)+F_{1297}\! \left(x \right)\\ F_{1296}\! \left(x \right) &= F_{2}\! \left(x \right) F_{38}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{1297}\! \left(x \right) &= F_{14} \left(x \right)^{2} F_{0}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{1298}\! \left(x \right) &= F_{1299}\! \left(x \right)+F_{1361}\! \left(x \right)\\ F_{1299}\! \left(x \right) &= F_{1300}\! \left(x \right) F_{2}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{1300}\! \left(x \right) &= F_{1301}\! \left(x \right)\\ F_{1301}\! \left(x \right) &= F_{1302}\! \left(x \right) F_{14}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{1302}\! \left(x \right) &= F_{1303}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{1303}\! \left(x \right) &= F_{1304}\! \left(x \right)+F_{318}\! \left(x \right)\\ F_{1304}\! \left(x \right) &= F_{1305}\! \left(x \right)+F_{1355}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1305}\! \left(x \right) &= F_{1306}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1306}\! \left(x \right) &= F_{1307}\! \left(x \right)+F_{1308}\! \left(x \right)\\ F_{1307}\! \left(x \right) &= F_{1304}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{1308}\! \left(x \right) &= F_{1309}\! \left(x \right)+F_{1327}\! \left(x \right)\\ F_{1309}\! \left(x \right) &= F_{1310}\! \left(x \right)+F_{1315}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1310}\! \left(x \right) &= F_{1311}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1311}\! \left(x \right) &= F_{1312}\! \left(x \right)+F_{1313}\! \left(x \right)\\ F_{1312}\! \left(x \right) &= F_{1309}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{1313}\! \left(x \right) &= F_{1314}\! \left(x \right)+F_{1322}\! \left(x \right)\\ F_{1314}\! \left(x \right) &= F_{1315}\! \left(x \right)+F_{549}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1315}\! \left(x \right) &= F_{1316}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1316}\! \left(x \right) &= F_{1317}\! \left(x \right)+F_{1318}\! \left(x \right)\\ F_{1317}\! \left(x \right) &= F_{1314}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{1318}\! \left(x \right) &= F_{1319}\! \left(x \right)+F_{1320}\! \left(x \right)\\ F_{1319}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{1320}\! \left(x \right) &= F_{1321}\! \left(x \right)\\ F_{1321}\! \left(x \right) &= F_{1314}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1322}\! \left(x \right) &= F_{1323}\! \left(x \right)+F_{1324}\! \left(x \right)+F_{1326}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1323}\! \left(x \right) &= F_{1309}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1324}\! \left(x \right) &= F_{1325}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1325}\! \left(x \right) &= F_{1313}\! \left(x \right)\\ F_{1326}\! \left(x \right) &= 0\\ F_{1327}\! \left(x \right) &= F_{1328}\! \left(x \right)+F_{1334}\! \left(x \right)+F_{1346}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1328}\! \left(x \right) &= F_{1329}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1329}\! \left(x \right) &= F_{1330}\! \left(x \right)+F_{1331}\! \left(x \right)\\ F_{1330}\! \left(x \right) &= F_{1304}\! \left(x \right)+F_{1327}\! \left(x \right)\\ F_{1331}\! \left(x \right) &= F_{1332}\! \left(x \right)+F_{1349}\! \left(x \right)\\ F_{1332}\! \left(x \right) &= F_{1333}\! \left(x \right)+F_{1334}\! \left(x \right)+F_{1346}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1333}\! \left(x \right) &= F_{1304}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1334}\! \left(x \right) &= F_{1335}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1335}\! \left(x \right) &= F_{1336}\! \left(x \right)+F_{1337}\! \left(x \right)\\ F_{1336}\! \left(x \right) &= F_{1314}\! \left(x \right)+F_{1332}\! \left(x \right)\\ F_{1337}\! \left(x \right) &= F_{1338}\! \left(x \right)+F_{1342}\! \left(x \right)\\ F_{1338}\! \left(x \right) &= F_{1339}\! \left(x \right)\\ F_{1339}\! \left(x \right) &= F_{1340}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1340}\! \left(x \right) &= F_{1341}\! \left(x \right)\\ F_{1341}\! \left(x \right) &= F_{1314}\! \left(x \right)+F_{1338}\! \left(x \right)\\ F_{1342}\! \left(x \right) &= F_{1343}\! \left(x \right)\\ F_{1343}\! \left(x \right) &= F_{1344}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1344}\! \left(x \right) &= F_{1345}\! \left(x \right)\\ F_{1345}\! \left(x \right) &= F_{1332}\! \left(x \right)+F_{1342}\! \left(x \right)\\ F_{1346}\! \left(x \right) &= F_{1347}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1347}\! \left(x \right) &= F_{1348}\! \left(x \right)\\ F_{1348}\! \left(x \right) &= F_{1338}\! \left(x \right)+F_{333}\! \left(x \right)\\ F_{1349}\! \left(x \right) &= F_{1350}\! \left(x \right)+F_{1351}\! \left(x \right)+F_{1353}\! \left(x \right)+F_{1354}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1350}\! \left(x \right) &= F_{1327}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1351}\! \left(x \right) &= F_{1352}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1352}\! \left(x \right) &= F_{1331}\! \left(x \right)\\ F_{1353}\! \left(x \right) &= 0\\ F_{1354}\! \left(x \right) &= 0\\ F_{1355}\! \left(x \right) &= F_{1356}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1356}\! \left(x \right) &= F_{1357}\! \left(x \right)+F_{1358}\! \left(x \right)\\ F_{1357}\! \left(x \right) &= F_{1309}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{1358}\! \left(x \right) &= F_{1359}\! \left(x \right)+F_{1360}\! \left(x \right)\\ F_{1359}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{1360}\! \left(x \right) &= F_{1321}\! \left(x \right)\\ F_{1361}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1189}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{1362}\! \left(x \right) &= F_{1363}\! \left(x \right)+F_{1364}\! \left(x \right)\\ F_{1363}\! \left(x \right) &= F_{179}\! \left(x \right) F_{2}\! \left(x \right) F_{38}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{1364}\! \left(x \right) &= F_{0}\! \left(x \right) F_{14}\! \left(x \right) F_{176}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{1365}\! \left(x \right) &= F_{1366}\! \left(x \right) F_{2}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{1366}\! \left(x \right) &= F_{1367}\! \left(x \right)\\ F_{1367}\! \left(x \right) &= F_{1368}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1368}\! \left(x \right) &= F_{1146}\! \left(x \right)+F_{1366}\! \left(x \right)\\ F_{1369}\! \left(x \right) &= F_{1370}\! \left(x \right)+F_{1371}\! \left(x \right)\\ F_{1370}\! \left(x \right) &= F_{1183}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1371}\! \left(x \right) &= F_{1372}\! \left(x \right)+F_{1373}\! \left(x \right)\\ F_{1372}\! \left(x \right) &= F_{1184}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{1373}\! \left(x \right) &= F_{1188}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{1374}\! \left(x \right) &= F_{1375}\! \left(x \right)+F_{1378}\! \left(x \right)\\ F_{1375}\! \left(x \right) &= F_{1376}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1376}\! \left(x \right) &= \frac{F_{1377}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{1377}\! \left(x \right) &= F_{1184}\! \left(x \right)\\ F_{1378}\! \left(x \right) &= F_{1379}\! \left(x \right)\\ F_{1379}\! \left(x \right) &= F_{1175}\! \left(x \right) F_{14}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{1380}\! \left(x \right) &= F_{1381}\! \left(x \right)+F_{1384}\! \left(x \right)\\ F_{1381}\! \left(x \right) &= F_{1382}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1382}\! \left(x \right) &= \frac{F_{1383}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{1383}\! \left(x \right) &= F_{1038}\! \left(x \right)\\ F_{1384}\! \left(x \right) &= F_{1385}\! \left(x \right)\\ F_{1385}\! \left(x \right) &= F_{1175}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{1386}\! \left(x \right) &= F_{1387}\! \left(x \right)+F_{1389}\! \left(x \right)\\ F_{1387}\! \left(x \right) &= F_{1388}\! \left(x \right)\\ F_{1388}\! \left(x \right) &= F_{1025}\! \left(x \right) F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1389}\! \left(x \right) &= F_{1390}\! \left(x \right)\\ F_{1390}\! \left(x \right) &= F_{1047}\! \left(x \right) F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1391}\! \left(x \right) &= -F_{1082}\! \left(x \right)+F_{1045}\! \left(x \right)\\ F_{1392}\! \left(x \right) &= F_{1393}\! \left(x \right)+F_{1394}\! \left(x \right)\\ F_{1393}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1394}\! \left(x \right) &= F_{1395}\! \left(x \right)\\ F_{1395}\! \left(x \right) &= F_{14}\! \left(x \right) F_{195}\! \left(x \right) F_{227}\! \left(x \right)\\ F_{1396}\! \left(x \right) &= F_{1397}\! \left(x \right)+F_{1454}\! \left(x \right)\\ F_{1397}\! \left(x \right) &= F_{1398}\! \left(x \right)+F_{1450}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1398}\! \left(x \right) &= F_{1399}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1399}\! \left(x \right) &= F_{1400}\! \left(x \right)+F_{1401}\! \left(x \right)\\ F_{1400}\! \left(x \right) &= F_{1397}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{1401}\! \left(x \right) &= F_{1402}\! \left(x \right)+F_{1414}\! \left(x \right)\\ F_{1402}\! \left(x \right) &= F_{1403}\! \left(x \right)+F_{1407}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1403}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1404}\! \left(x \right)\\ F_{1404}\! \left(x \right) &= F_{1405}\! \left(x \right)+F_{906}\! \left(x \right)\\ F_{1405}\! \left(x \right) &= F_{1406}\! \left(x \right)+F_{1411}\! \left(x \right)\\ F_{1406}\! \left(x \right) &= F_{1407}\! \left(x \right)+F_{549}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1407}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1408}\! \left(x \right)\\ F_{1408}\! \left(x \right) &= F_{1409}\! \left(x \right)+F_{1410}\! \left(x \right)\\ F_{1409}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{1410}\! \left(x \right) &= F_{961}\! \left(x \right)\\ F_{1411}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1412}\! \left(x \right)+F_{910}\! \left(x \right)\\ F_{1412}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1413}\! \left(x \right)\\ F_{1413}\! \left(x \right) &= F_{1405}\! \left(x \right)\\ F_{1414}\! \left(x \right) &= F_{1415}\! \left(x \right)+F_{1430}\! \left(x \right)+F_{1443}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1415}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1416}\! \left(x \right)\\ F_{1416}\! \left(x \right) &= F_{1417}\! \left(x \right)+F_{1428}\! \left(x \right)\\ F_{1417}\! \left(x \right) &= F_{1397}\! \left(x \right)+F_{1418}\! \left(x \right)\\ F_{1418}\! \left(x \right) &= F_{1419}\! \left(x \right)\\ F_{1419}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1420}\! \left(x \right)\\ F_{1420}\! \left(x \right) &= F_{1417}\! \left(x \right)+F_{1421}\! \left(x \right)\\ F_{1421}\! \left(x \right) &= F_{1422}\! \left(x \right)+F_{1424}\! \left(x \right)\\ F_{1422}\! \left(x \right) &= F_{1423}\! \left(x \right)\\ F_{1423}\! \left(x \right) &= F_{1397}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1424}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{1425}\! \left(x \right)+F_{1426}\! \left(x \right)\\ F_{1425}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1418}\! \left(x \right)\\ F_{1426}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1427}\! \left(x \right)\\ F_{1427}\! \left(x \right) &= F_{1421}\! \left(x \right)\\ F_{1428}\! \left(x \right) &= F_{1429}\! \left(x \right)+F_{1447}\! \left(x \right)\\ F_{1429}\! \left(x \right) &= F_{1423}\! \left(x \right)+F_{1430}\! \left(x \right)+F_{1443}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1430}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1431}\! \left(x \right)\\ F_{1431}\! \left(x \right) &= F_{1432}\! \left(x \right)+F_{1433}\! \left(x \right)\\ F_{1432}\! \left(x \right) &= F_{1406}\! \left(x \right)+F_{1429}\! \left(x \right)\\ F_{1433}\! \left(x \right) &= F_{1434}\! \left(x \right)+F_{1438}\! \left(x \right)\\ F_{1434}\! \left(x \right) &= F_{1435}\! \left(x \right)+F_{1437}\! \left(x \right)+F_{71}\! \left(x \right)+F_{910}\! \left(x \right)\\ F_{1435}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1436}\! \left(x \right)\\ F_{1436}\! \left(x \right) &= F_{1405}\! \left(x \right)\\ F_{1437}\! \left(x \right) &= 0\\ F_{1438}\! \left(x \right) &= F_{1425}\! \left(x \right)+F_{1439}\! \left(x \right)+F_{1441}\! \left(x \right)+F_{1442}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1439}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1440}\! \left(x \right)\\ F_{1440}\! \left(x \right) &= F_{1428}\! \left(x \right)\\ F_{1441}\! \left(x \right) &= 0\\ F_{1442}\! \left(x \right) &= 0\\ F_{1443}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1444}\! \left(x \right)\\ F_{1444}\! \left(x \right) &= F_{1445}\! \left(x \right)+F_{1446}\! \left(x \right)\\ F_{1445}\! \left(x \right) &= F_{125}\! \left(x \right)\\ F_{1446}\! \left(x \right) &= F_{995}\! \left(x \right)\\ F_{1447}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{1425}\! \left(x \right)+F_{1448}\! \left(x \right)\\ F_{1448}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1449}\! \left(x \right)\\ F_{1449}\! \left(x \right) &= F_{1428}\! \left(x \right)\\ F_{1450}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1451}\! \left(x \right)\\ F_{1451}\! \left(x \right) &= F_{1452}\! \left(x \right)+F_{1453}\! \left(x \right)\\ F_{1452}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{1453}\! \left(x \right) &= F_{997}\! \left(x \right)\\ F_{1454}\! \left(x \right) &= F_{1455}\! \left(x \right)+F_{1456}\! \left(x \right)\\ F_{1455}\! \left(x \right) &= F_{2}\! \left(x \right) F_{318}\! \left(x \right)\\ F_{1456}\! \left(x \right) &= F_{1457}\! \left(x \right)\\ F_{1457}\! \left(x \right) &= F_{1397}\! \left(x \right) F_{14}\! \left(x \right) F_{195}\! \left(x \right)\\ F_{1458}\! \left(x \right) &= F_{1459}\! \left(x \right)+F_{1460}\! \left(x \right)\\ F_{1459}\! \left(x \right) &= F_{2}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{1460}\! \left(x \right) &= F_{1461}\! \left(x \right)+F_{1464}\! \left(x \right)\\ F_{1461}\! \left(x \right) &= F_{1462}\! \left(x \right)+F_{1463}\! \left(x \right)\\ F_{1462}\! \left(x \right) &= F_{35} \left(x \right)^{2}\\ F_{1463}\! \left(x \right) &= F_{22}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{1464}\! \left(x \right) &= F_{1270}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{1465}\! \left(x \right) &= F_{1466}\! \left(x \right)+F_{1469}\! \left(x \right)\\ F_{1466}\! \left(x \right) &= F_{1467}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{1467}\! \left(x \right) &= F_{1468}\! \left(x \right)\\ F_{1468}\! \left(x \right) &= F_{0}\! \left(x \right) F_{14}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1469}\! \left(x \right) &= F_{1470}\! \left(x \right)+F_{1868}\! \left(x \right)\\ F_{1470}\! \left(x \right) &= F_{1471}\! \left(x \right)\\ F_{1471}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1472}\! \left(x \right)\\ F_{1472}\! \left(x \right) &= F_{1473}\! \left(x \right)+F_{1500}\! \left(x \right)\\ F_{1473}\! \left(x \right) &= F_{1474}\! \left(x \right)+F_{1485}\! \left(x \right)\\ F_{1474}\! \left(x \right) &= F_{1475}\! \left(x \right)+F_{1478}\! \left(x \right)\\ F_{1475}\! \left(x \right) &= F_{1476}\! \left(x \right)+F_{1477}\! \left(x \right)\\ F_{1476}\! \left(x \right) &= F_{2}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{1477}\! \left(x \right) &= F_{14} \left(x \right)^{2} F_{0}\! \left(x \right)\\ F_{1478}\! \left(x \right) &= F_{1479}\! \left(x \right)+F_{1480}\! \left(x \right)\\ F_{1479}\! \left(x \right) &= F_{2}\! \left(x \right) F_{239}\! \left(x \right)\\ F_{1480}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1481}\! \left(x \right)\\ F_{1481}\! \left(x \right) &= F_{1482}\! \left(x \right)\\ F_{1482}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1483}\! \left(x \right)\\ F_{1483}\! \left(x \right) &= F_{1484}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{1484}\! \left(x \right) &= F_{858}\! \left(x \right)+F_{940}\! \left(x \right)\\ F_{1485}\! \left(x \right) &= F_{1486}\! \left(x \right)+F_{1491}\! \left(x \right)\\ F_{1486}\! \left(x \right) &= F_{1487}\! \left(x \right)+F_{1488}\! \left(x \right)\\ F_{1487}\! \left(x \right) &= F_{12}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1488}\! \left(x \right) &= F_{1489}\! \left(x \right)+F_{1490}\! \left(x \right)\\ F_{1489}\! \left(x \right) &= F_{2}\! \left(x \right) F_{231}\! \left(x \right)\\ F_{1490}\! \left(x \right) &= F_{0}\! \left(x \right) F_{14}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{1491}\! \left(x \right) &= F_{1492}\! \left(x \right)+F_{1495}\! \left(x \right)\\ F_{1492}\! \left(x \right) &= F_{1493}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1493}\! \left(x \right) &= F_{1455}\! \left(x \right)+F_{1494}\! \left(x \right)\\ F_{1494}\! \left(x \right) &= F_{0}\! \left(x \right) F_{858}\! \left(x \right)\\ F_{1495}\! \left(x \right) &= F_{1496}\! \left(x \right)+F_{1497}\! \left(x \right)\\ F_{1496}\! \left(x \right) &= F_{2}\! \left(x \right) F_{842}\! \left(x \right)\\ F_{1497}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1498}\! \left(x \right)\\ F_{1498}\! \left(x \right) &= F_{1499}\! \left(x \right)\\ F_{1499}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1483}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{1500}\! \left(x \right) &= F_{1501}\! \left(x \right)+F_{1508}\! \left(x \right)\\ F_{1501}\! \left(x \right) &= F_{1502}\! \left(x \right)+F_{1505}\! \left(x \right)\\ F_{1502}\! \left(x \right) &= F_{1503}\! \left(x \right)+F_{1504}\! \left(x \right)\\ F_{1503}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{61}\! \left(x \right)\\ F_{1504}\! \left(x \right) &= F_{0}\! \left(x \right) F_{14}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{1505}\! \left(x \right) &= F_{1506}\! \left(x \right)+F_{1507}\! \left(x \right)\\ F_{1506}\! \left(x \right) &= F_{1021}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1507}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1184}\! \left(x \right)\\ F_{1508}\! \left(x \right) &= F_{1509}\! \left(x \right)+F_{1520}\! \left(x \right)\\ F_{1509}\! \left(x \right) &= F_{1510}\! \left(x \right)+F_{1513}\! \left(x \right)\\ F_{1510}\! \left(x \right) &= F_{1511}\! \left(x \right)+F_{1512}\! \left(x \right)\\ F_{1511}\! \left(x \right) &= F_{2}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{1512}\! \left(x \right) &= F_{0}\! \left(x \right) F_{198}\! \left(x \right)\\ F_{1513}\! \left(x \right) &= F_{1514}\! \left(x \right)+F_{1515}\! \left(x \right)\\ F_{1514}\! \left(x \right) &= F_{2}\! \left(x \right) F_{570}\! \left(x \right)\\ F_{1515}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1516}\! \left(x \right)\\ F_{1516}\! \left(x \right) &= F_{1517}\! \left(x \right)\\ F_{1517}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1518}\! \left(x \right)\\ F_{1518}\! \left(x \right) &= F_{1519}\! \left(x \right)+F_{169}\! \left(x \right)\\ F_{1519}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{511}\! \left(x \right)\\ F_{1520}\! \left(x \right) &= F_{1521}\! \left(x \right)+F_{1847}\! \left(x \right)\\ F_{1521}\! \left(x \right) &= F_{1522}\! \left(x \right)+F_{1523}\! \left(x \right)\\ F_{1522}\! \left(x \right) &= F_{1082}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1523}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1524}\! \left(x \right)\\ F_{1524}\! \left(x \right) &= F_{1525}\! \left(x \right)\\ F_{1525}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1526}\! \left(x \right)\\ F_{1526}\! \left(x \right) &= F_{1527}\! \left(x \right)+F_{1842}\! \left(x \right)\\ F_{1527}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1528}\! \left(x \right)\\ F_{1528}\! \left(x \right) &= F_{1038}\! \left(x \right)+F_{1529}\! \left(x \right)\\ F_{1529}\! \left(x \right) &= F_{1530}\! \left(x \right)+F_{1602}\! \left(x \right)\\ F_{1530}\! \left(x \right) &= F_{1249}\! \left(x \right)+F_{139}\! \left(x \right)+F_{1531}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1531}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1532}\! \left(x \right)\\ F_{1532}\! \left(x \right) &= F_{1533}\! \left(x \right)+F_{1534}\! \left(x \right)\\ F_{1533}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{1530}\! \left(x \right)\\ F_{1534}\! \left(x \right) &= F_{1535}\! \left(x \right)+F_{1563}\! \left(x \right)\\ F_{1535}\! \left(x \right) &= F_{1212}\! \left(x \right)+F_{1536}\! \left(x \right)+F_{1543}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1536}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1537}\! \left(x \right)\\ F_{1537}\! \left(x \right) &= F_{1538}\! \left(x \right)\\ F_{1538}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1539}\! \left(x \right)\\ F_{1539}\! \left(x \right) &= F_{1540}\! \left(x \right)+F_{1541}\! \left(x \right)\\ F_{1540}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{1537}\! \left(x \right)\\ F_{1541}\! \left(x \right) &= F_{1542}\! \left(x \right)+F_{639}\! \left(x \right)\\ F_{1542}\! \left(x \right) &= F_{1536}\! \left(x \right)\\ F_{1543}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1544}\! \left(x \right)\\ F_{1544}\! \left(x \right) &= F_{1545}\! \left(x \right)+F_{1558}\! \left(x \right)\\ F_{1545}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{1546}\! \left(x \right)\\ F_{1546}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1536}\! \left(x \right)+F_{1547}\! \left(x \right)\\ F_{1547}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1548}\! \left(x \right)\\ F_{1548}\! \left(x \right) &= F_{1545}\! \left(x \right)+F_{1549}\! \left(x \right)\\ F_{1549}\! \left(x \right) &= F_{1550}\! \left(x \right)+F_{1553}\! \left(x \right)\\ F_{1550}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1551}\! \left(x \right)+F_{1552}\! \left(x \right)\\ F_{1551}\! \left(x \right) &= F_{14}\! \left(x \right) F_{639}\! \left(x \right)\\ F_{1552}\! \left(x \right) &= F_{131}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1553}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1554}\! \left(x \right)+F_{1555}\! \left(x \right)+F_{1556}\! \left(x \right)\\ F_{1554}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1542}\! \left(x \right)\\ F_{1555}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1546}\! \left(x \right)\\ F_{1556}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1557}\! \left(x \right)\\ F_{1557}\! \left(x \right) &= F_{1549}\! \left(x \right)\\ F_{1558}\! \left(x \right) &= F_{1559}\! \left(x \right)+F_{1560}\! \left(x \right)\\ F_{1559}\! \left(x \right) &= F_{1212}\! \left(x \right)+F_{1551}\! \left(x \right)+F_{1552}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1560}\! \left(x \right) &= 2 F_{71}\! \left(x \right)+F_{1554}\! \left(x \right)+F_{1555}\! \left(x \right)+F_{1561}\! \left(x \right)\\ F_{1561}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1562}\! \left(x \right)\\ F_{1562}\! \left(x \right) &= F_{1558}\! \left(x \right)\\ F_{1563}\! \left(x \right) &= F_{1245}\! \left(x \right)+F_{1564}\! \left(x \right)+F_{1571}\! \left(x \right)+F_{1588}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1564}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1565}\! \left(x \right)\\ F_{1565}\! \left(x \right) &= F_{1566}\! \left(x \right)\\ F_{1566}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1567}\! \left(x \right)\\ F_{1567}\! \left(x \right) &= F_{1568}\! \left(x \right)+F_{1569}\! \left(x \right)\\ F_{1568}\! \left(x \right) &= F_{1565}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{1569}\! \left(x \right) &= F_{1570}\! \left(x \right)+F_{953}\! \left(x \right)\\ F_{1570}\! \left(x \right) &= F_{1564}\! \left(x \right)\\ F_{1571}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1572}\! \left(x \right)\\ F_{1572}\! \left(x \right) &= F_{1573}\! \left(x \right)+F_{1586}\! \left(x \right)\\ F_{1573}\! \left(x \right) &= F_{1530}\! \left(x \right)+F_{1574}\! \left(x \right)\\ F_{1574}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{1564}\! \left(x \right)+F_{1575}\! \left(x \right)\\ F_{1575}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1576}\! \left(x \right)\\ F_{1576}\! \left(x \right) &= F_{1573}\! \left(x \right)+F_{1577}\! \left(x \right)\\ F_{1577}\! \left(x \right) &= F_{1578}\! \left(x \right)+F_{1581}\! \left(x \right)\\ F_{1578}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{1579}\! \left(x \right)+F_{1580}\! \left(x \right)\\ F_{1579}\! \left(x \right) &= F_{14}\! \left(x \right) F_{953}\! \left(x \right)\\ F_{1580}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1530}\! \left(x \right)\\ F_{1581}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{1582}\! \left(x \right)+F_{1583}\! \left(x \right)+F_{1584}\! \left(x \right)\\ F_{1582}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1570}\! \left(x \right)\\ F_{1583}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1574}\! \left(x \right)\\ F_{1584}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1585}\! \left(x \right)\\ F_{1585}\! \left(x \right) &= F_{1577}\! \left(x \right)\\ F_{1586}\! \left(x \right) &= F_{1587}\! \left(x \right)+F_{1599}\! \left(x \right)\\ F_{1587}\! \left(x \right) &= F_{1245}\! \left(x \right)+F_{1579}\! \left(x \right)+F_{1580}\! \left(x \right)+F_{1588}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1588}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1589}\! \left(x \right)\\ F_{1589}\! \left(x \right) &= F_{1590}\! \left(x \right)+F_{1591}\! \left(x \right)\\ F_{1590}\! \left(x \right) &= F_{1559}\! \left(x \right)+F_{1587}\! \left(x \right)\\ F_{1591}\! \left(x \right) &= F_{1592}\! \left(x \right)+F_{1595}\! \left(x \right)\\ F_{1592}\! \left(x \right) &= F_{1239}\! \left(x \right)+F_{1554}\! \left(x \right)+F_{1555}\! \left(x \right)+F_{1593}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1593}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1594}\! \left(x \right)\\ F_{1594}\! \left(x \right) &= F_{1558}\! \left(x \right)\\ F_{1595}\! \left(x \right) &= F_{1244}\! \left(x \right)+F_{1582}\! \left(x \right)+F_{1583}\! \left(x \right)+F_{1596}\! \left(x \right)+F_{1598}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{1596}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1597}\! \left(x \right)\\ F_{1597}\! \left(x \right) &= F_{1586}\! \left(x \right)\\ F_{1598}\! \left(x \right) &= 0\\ F_{1599}\! \left(x \right) &= 3 F_{71}\! \left(x \right)+F_{1582}\! \left(x \right)+F_{1583}\! \left(x \right)+F_{1600}\! \left(x \right)\\ F_{1600}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1601}\! \left(x \right)\\ F_{1601}\! \left(x \right) &= F_{1586}\! \left(x \right)\\ F_{1602}\! \left(x \right) &= \frac{F_{1603}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{1603}\! \left(x \right) &= -F_{1841}\! \left(x \right)+F_{1604}\! \left(x \right)\\ F_{1604}\! \left(x \right) &= -F_{1828}\! \left(x \right)+F_{1605}\! \left(x \right)\\ F_{1605}\! \left(x \right) &= -F_{1821}\! \left(x \right)+F_{1606}\! \left(x \right)\\ F_{1606}\! \left(x \right) &= -F_{1776}\! \left(x \right)+F_{1607}\! \left(x \right)\\ F_{1607}\! \left(x \right) &= -F_{1755}\! \left(x \right)+F_{1608}\! \left(x \right)\\ F_{1608}\! \left(x \right) &= \frac{F_{1609}\! \left(x \right)}{F_{14}\! \left(x \right) F_{2}\! \left(x \right)}\\ F_{1609}\! \left(x \right) &= F_{1610}\! \left(x \right)\\ F_{1610}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1611}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1611}\! \left(x \right) &= F_{1612}\! \left(x \right)\\ F_{1612}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1613}\! \left(x \right)\\ F_{1613}\! \left(x \right) &= F_{1267}\! \left(x \right)+F_{1614}\! \left(x \right)\\ F_{1614}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1615}\! \left(x \right)\\ F_{1615}\! \left(x \right) &= F_{1616}\! \left(x \right)+F_{1617}\! \left(x \right)\\ F_{1616}\! \left(x \right) &= F_{1278}\! \left(x \right)+F_{399}\! \left(x \right)\\ F_{1617}\! \left(x \right) &= F_{1618}\! \left(x \right)+F_{1754}\! \left(x \right)\\ F_{1618}\! \left(x \right) &= -F_{35}\! \left(x \right)+F_{1619}\! \left(x \right)\\ F_{1619}\! \left(x \right) &= -F_{1693}\! \left(x \right)+F_{1620}\! \left(x \right)\\ F_{1620}\! \left(x \right) &= -F_{1692}\! \left(x \right)+F_{1621}\! \left(x \right)\\ F_{1621}\! \left(x \right) &= \frac{F_{1622}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{1622}\! \left(x \right) &= F_{1623}\! \left(x \right)\\ F_{1623}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1624}\! \left(x \right)\\ F_{1624}\! \left(x \right) &= F_{1625}\! \left(x \right)+F_{1627}\! \left(x \right)\\ F_{1625}\! \left(x \right) &= F_{1626}\! \left(x \right)\\ F_{1626}\! \left(x \right) &= F_{2}\! \left(x \right) F_{807}\! \left(x \right)\\ F_{1627}\! \left(x \right) &= F_{1628}\! \left(x \right)+F_{1629}\! \left(x \right)\\ F_{1628}\! \left(x \right) &= F_{35}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{1629}\! \left(x \right) &= F_{1630}\! \left(x \right)+F_{1687}\! \left(x \right)\\ F_{1630}\! \left(x \right) &= -F_{1686}\! \left(x \right)+F_{1631}\! \left(x \right)\\ F_{1631}\! \left(x \right) &= -F_{1652}\! \left(x \right)+F_{1632}\! \left(x \right)\\ F_{1632}\! \left(x \right) &= \frac{F_{1633}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{1633}\! \left(x \right) &= F_{1634}\! \left(x \right)\\ F_{1634}\! \left(x \right) &= F_{1635}\! \left(x \right)\\ F_{1635}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1636}\! \left(x \right)\\ F_{1636}\! \left(x \right) &= F_{1637}\! \left(x \right)+F_{1642}\! \left(x \right)\\ F_{1637}\! \left(x \right) &= F_{1638}\! \left(x \right)+F_{1639}\! \left(x \right)\\ F_{1638}\! \left(x \right) &= F_{2}\! \left(x \right) F_{238}\! \left(x \right)\\ F_{1639}\! \left(x \right) &= F_{1640}\! \left(x \right)+F_{1641}\! \left(x \right)\\ F_{1640}\! \left(x \right) &= F_{1487}\! \left(x \right)+F_{1489}\! \left(x \right)\\ F_{1641}\! \left(x \right) &= F_{1492}\! \left(x \right)+F_{1496}\! \left(x \right)\\ F_{1642}\! \left(x \right) &= F_{1643}\! \left(x \right)+F_{1644}\! \left(x \right)\\ F_{1643}\! \left(x \right) &= F_{1037}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1644}\! \left(x \right) &= F_{1645}\! \left(x \right)+F_{1648}\! \left(x \right)\\ F_{1645}\! \left(x \right) &= F_{1514}\! \left(x \right)+F_{1646}\! \left(x \right)\\ F_{1646}\! \left(x \right) &= F_{1511}\! \left(x \right)+F_{1647}\! \left(x \right)\\ F_{1647}\! \left(x \right) &= F_{0}\! \left(x \right) F_{169}\! \left(x \right)\\ F_{1648}\! \left(x \right) &= F_{1649}\! \left(x \right)+F_{1651}\! \left(x \right)\\ F_{1649}\! \left(x \right) &= F_{1522}\! \left(x \right)+F_{1650}\! \left(x \right)\\ F_{1650}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1170}\! \left(x \right)\\ F_{1651}\! \left(x \right) &= F_{1391}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1652}\! \left(x \right) &= F_{1653}\! \left(x \right)+F_{1655}\! \left(x \right)\\ F_{1653}\! \left(x \right) &= F_{1654}\! \left(x \right)\\ F_{1654}\! \left(x \right) &= F_{317}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{1655}\! \left(x \right) &= F_{1634}\! \left(x \right)+F_{1656}\! \left(x \right)\\ F_{1656}\! \left(x \right) &= F_{1657}\! \left(x \right)\\ F_{1657}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1658}\! \left(x \right)\\ F_{1658}\! \left(x \right) &= F_{1659}\! \left(x \right)+F_{1673}\! \left(x \right)\\ F_{1659}\! \left(x \right) &= F_{1660}\! \left(x \right)+F_{1661}\! \left(x \right)\\ F_{1660}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{238}\! \left(x \right)\\ F_{1661}\! \left(x \right) &= F_{1662}\! \left(x \right)+F_{1667}\! \left(x \right)\\ F_{1662}\! \left(x \right) &= F_{1663}\! \left(x \right)+F_{1666}\! \left(x \right)\\ F_{1663}\! \left(x \right) &= F_{1664}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1664}\! \left(x \right) &= F_{1014}\! \left(x \right)+F_{1665}\! \left(x \right)\\ F_{1665}\! \left(x \right) &= F_{1031}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{1666}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{231}\! \left(x \right)\\ F_{1667}\! \left(x \right) &= F_{1668}\! \left(x \right)+F_{1672}\! \left(x \right)\\ F_{1668}\! \left(x \right) &= F_{1669}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1669}\! \left(x \right) &= F_{1670}\! \left(x \right)+F_{1671}\! \left(x \right)\\ F_{1670}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{318}\! \left(x \right)\\ F_{1671}\! \left(x \right) &= F_{1031}\! \left(x \right) F_{858}\! \left(x \right)\\ F_{1672}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{842}\! \left(x \right)\\ F_{1673}\! \left(x \right) &= F_{1674}\! \left(x \right)+F_{1675}\! \left(x \right)\\ F_{1674}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{1037}\! \left(x \right)\\ F_{1675}\! \left(x \right) &= F_{1676}\! \left(x \right)+F_{1681}\! \left(x \right)\\ F_{1676}\! \left(x \right) &= F_{1677}\! \left(x \right)+F_{1680}\! \left(x \right)\\ F_{1677}\! \left(x \right) &= F_{1678}\! \left(x \right)+F_{1679}\! \left(x \right)\\ F_{1678}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{1679}\! \left(x \right) &= F_{1031}\! \left(x \right) F_{169}\! \left(x \right)\\ F_{1680}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{570}\! \left(x \right)\\ F_{1681}\! \left(x \right) &= F_{1682}\! \left(x \right)+F_{1685}\! \left(x \right)\\ F_{1682}\! \left(x \right) &= F_{1683}\! \left(x \right)+F_{1684}\! \left(x \right)\\ F_{1683}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{1082}\! \left(x \right)\\ F_{1684}\! \left(x \right) &= F_{1031}\! \left(x \right) F_{1170}\! \left(x \right)\\ F_{1685}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{1391}\! \left(x \right)\\ F_{1686}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{1687}\! \left(x \right) &= F_{1688}\! \left(x \right)\\ F_{1688}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1689}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{1689}\! \left(x \right) &= F_{1690}\! \left(x \right)+F_{1691}\! \left(x \right)\\ F_{1690}\! \left(x \right) &= F_{0}\! \left(x \right) F_{385}\! \left(x \right)\\ F_{1691}\! \left(x \right) &= F_{38}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{1692}\! \left(x \right) &= F_{356}\! \left(x \right)\\ F_{1693}\! \left(x \right) &= F_{1630}\! \left(x \right)+F_{1694}\! \left(x \right)\\ F_{1694}\! \left(x \right) &= \frac{F_{1695}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{1695}\! \left(x \right) &= F_{1696}\! \left(x \right)\\ F_{1696}\! \left(x \right) &= -F_{1752}\! \left(x \right)+F_{1697}\! \left(x \right)\\ F_{1697}\! \left(x \right) &= -F_{1750}\! \left(x \right)+F_{1698}\! \left(x \right)\\ F_{1698}\! \left(x \right) &= F_{1699}\! \left(x \right)\\ F_{1699}\! \left(x \right) &= -F_{1720}\! \left(x \right)+F_{1700}\! \left(x \right)\\ F_{1700}\! \left(x \right) &= \frac{F_{1701}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{1701}\! \left(x \right) &= F_{1702}\! \left(x \right)\\ F_{1702}\! \left(x \right) &= F_{1703}\! \left(x \right)\\ F_{1703}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1704}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{1704}\! \left(x \right) &= -F_{1152}\! \left(x \right)+F_{1705}\! \left(x \right)\\ F_{1705}\! \left(x \right) &= -F_{1719}\! \left(x \right)+F_{1706}\! \left(x \right)\\ F_{1706}\! \left(x \right) &= -F_{1711}\! \left(x \right)+F_{1707}\! \left(x \right)\\ F_{1707}\! \left(x \right) &= -F_{1710}\! \left(x \right)+F_{1708}\! \left(x \right)\\ F_{1708}\! \left(x \right) &= \frac{F_{1709}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{1709}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{1710}\! \left(x \right) &= F_{2}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{1711}\! \left(x \right) &= F_{1712}\! \left(x \right)+F_{1713}\! \left(x \right)\\ F_{1712}\! \left(x \right) &= F_{1634}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{1713}\! \left(x \right) &= F_{1702}\! \left(x \right)+F_{1714}\! \left(x \right)\\ F_{1714}\! \left(x \right) &= F_{1715}\! \left(x \right)\\ F_{1715}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1716}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1716}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{1717}\! \left(x \right)\\ F_{1717}\! \left(x \right) &= F_{1718}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{1718}\! \left(x \right) &= F_{2}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{1719}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{1720}\! \left(x \right) &= F_{1721}\! \left(x \right)+F_{1722}\! \left(x \right)\\ F_{1721}\! \left(x \right) &= F_{1714}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{1722}\! \left(x \right) &= F_{1723}\! \left(x \right)\\ F_{1723}\! \left(x \right) &= F_{1724}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1724}\! \left(x \right) &= -F_{1268}\! \left(x \right)+F_{1725}\! \left(x \right)\\ F_{1725}\! \left(x \right) &= -F_{1728}\! \left(x \right)+F_{1726}\! \left(x \right)\\ F_{1726}\! \left(x \right) &= \frac{F_{1727}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{1727}\! \left(x \right) &= F_{1704}\! \left(x \right)\\ F_{1728}\! \left(x \right) &= F_{1729}\! \left(x \right)\\ F_{1729}\! \left(x \right) &= F_{1730}\! \left(x \right)+F_{1736}\! \left(x \right)\\ F_{1730}\! \left(x \right) &= F_{1731}\! \left(x \right)+F_{1733}\! \left(x \right)\\ F_{1731}\! \left(x \right) &= F_{1732}\! \left(x \right)\\ F_{1732}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{1733}\! \left(x \right) &= F_{1734}\! \left(x \right)+F_{1735}\! \left(x \right)\\ F_{1734}\! \left(x \right) &= F_{1152}\! \left(x \right)+F_{1265}\! \left(x \right)\\ F_{1735}\! \left(x \right) &= F_{1279}\! \left(x \right)+F_{1283}\! \left(x \right)\\ F_{1736}\! \left(x \right) &= F_{1737}\! \left(x \right)+F_{1739}\! \left(x \right)\\ F_{1737}\! \left(x \right) &= F_{1738}\! \left(x \right)\\ F_{1738}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1618}\! \left(x \right)\\ F_{1739}\! \left(x \right) &= F_{1740}\! \left(x \right)+F_{1745}\! \left(x \right)\\ F_{1740}\! \left(x \right) &= F_{1741}\! \left(x \right)+F_{1743}\! \left(x \right)\\ F_{1741}\! \left(x \right) &= F_{1742}\! \left(x \right)\\ F_{1742}\! \left(x \right) &= F_{14}\! \left(x \right) F_{2}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{1743}\! \left(x \right) &= F_{1744}\! \left(x \right)\\ F_{1744}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{14}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{1745}\! \left(x \right) &= F_{1746}\! \left(x \right)+F_{1748}\! \left(x \right)\\ F_{1746}\! \left(x \right) &= F_{1747}\! \left(x \right)\\ F_{1747}\! \left(x \right) &= F_{14}\! \left(x \right) F_{2}\! \left(x \right) F_{385}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{1748}\! \left(x \right) &= F_{1749}\! \left(x \right)\\ F_{1749}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{135}\! \left(x \right) F_{14}\! \left(x \right) F_{191}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{1750}\! \left(x \right) &= F_{1751}\! \left(x \right)\\ F_{1751}\! \left(x \right) &= F_{1730}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1752}\! \left(x \right) &= F_{1753}\! \left(x \right)\\ F_{1753}\! \left(x \right) &= F_{1739}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1754}\! \left(x \right) &= F_{1741}\! \left(x \right)+F_{1746}\! \left(x \right)\\ F_{1755}\! \left(x \right) &= F_{1756}\! \left(x \right)\\ F_{1756}\! \left(x \right) &= F_{1757}\! \left(x \right)+F_{1770}\! \left(x \right)\\ F_{1757}\! \left(x \right) &= F_{1466}\! \left(x \right)+F_{1758}\! \left(x \right)\\ F_{1758}\! \left(x \right) &= F_{1759}\! \left(x \right)+F_{1768}\! \left(x \right)\\ F_{1759}\! \left(x \right) &= F_{1760}\! \left(x \right)\\ F_{1760}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1761}\! \left(x \right)\\ F_{1761}\! \left(x \right) &= F_{1762}\! \left(x \right)+F_{1765}\! \left(x \right)\\ F_{1762}\! \left(x \right) &= F_{1763}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{1763}\! \left(x \right) &= F_{1764}\! \left(x \right)\\ F_{1764}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{38}\! \left(x \right)\\ F_{1765}\! \left(x \right) &= F_{1759}\! \left(x \right)+F_{1766}\! \left(x \right)\\ F_{1766}\! \left(x \right) &= F_{1767}\! \left(x \right)\\ F_{1767}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{38}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{1768}\! \left(x \right) &= F_{1769}\! \left(x \right)\\ F_{1769}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{1770}\! \left(x \right) &= F_{1771}\! \left(x \right)\\ F_{1771}\! \left(x \right) &= F_{1772}\! \left(x \right) F_{2}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{1772}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{1773}\! \left(x \right)\\ F_{1773}\! \left(x \right) &= F_{1774}\! \left(x \right)+F_{1775}\! \left(x \right)\\ F_{1774}\! \left(x \right) &= F_{2}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{1775}\! \left(x \right) &= F_{0}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{1776}\! \left(x \right) &= F_{1777}\! \left(x \right)+F_{1812}\! \left(x \right)\\ F_{1777}\! \left(x \right) &= F_{1778}\! \left(x \right)+F_{1782}\! \left(x \right)\\ F_{1778}\! \left(x \right) &= F_{1779}\! \left(x \right)+F_{1780}\! \left(x \right)\\ F_{1779}\! \left(x \right) &= F_{14}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{1780}\! \left(x \right) &= F_{1781}\! \left(x \right)\\ F_{1781}\! \left(x \right) &= F_{0}\! \left(x \right) F_{131}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1782}\! \left(x \right) &= F_{1783}\! \left(x \right)+F_{1810}\! \left(x \right)\\ F_{1783}\! \left(x \right) &= -F_{1808}\! \left(x \right)+F_{1784}\! \left(x \right)\\ F_{1784}\! \left(x \right) &= -F_{1807}\! \left(x \right)+F_{1785}\! \left(x \right)\\ F_{1785}\! \left(x \right) &= -F_{1795}\! \left(x \right)+F_{1786}\! \left(x \right)\\ F_{1786}\! \left(x \right) &= \frac{F_{1787}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{1787}\! \left(x \right) &= F_{1788}\! \left(x \right)\\ F_{1788}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1789}\! \left(x \right)\\ F_{1789}\! \left(x \right) &= F_{1790}\! \left(x \right)+F_{1791}\! \left(x \right)\\ F_{1790}\! \left(x \right) &= F_{371}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{1791}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1792}\! \left(x \right)\\ F_{1792}\! \left(x \right) &= F_{1687}\! \left(x \right)+F_{1793}\! \left(x \right)\\ F_{1793}\! \left(x \right) &= F_{1794}\! \left(x \right)\\ F_{1794}\! \left(x \right) &= F_{2}\! \left(x \right) F_{808}\! \left(x \right)\\ F_{1795}\! \left(x \right) &= F_{1796}\! \left(x \right)+F_{1805}\! \left(x \right)\\ F_{1796}\! \left(x \right) &= F_{1797}\! \left(x \right)+F_{1801}\! \left(x \right)\\ F_{1797}\! \left(x \right) &= F_{1798}\! \left(x \right)+F_{1799}\! \left(x \right)\\ F_{1798}\! \left(x \right) &= F_{2}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{1799}\! \left(x \right) &= F_{1800}\! \left(x \right)\\ F_{1800}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{808}\! \left(x \right)\\ F_{1801}\! \left(x \right) &= F_{1802}\! \left(x \right)+F_{1803}\! \left(x \right)\\ F_{1802}\! \left(x \right) &= F_{1759}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1803}\! \left(x \right) &= F_{1804}\! \left(x \right)\\ F_{1804}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{60}\! \left(x \right) F_{808}\! \left(x \right)\\ F_{1805}\! \left(x \right) &= F_{1806}\! \left(x \right)\\ F_{1806}\! \left(x \right) &= F_{1785}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1807}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1762}\! \left(x \right)\\ F_{1808}\! \left(x \right) &= F_{1809}\! \left(x \right)\\ F_{1809}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{38}\! \left(x \right) F_{548}\! \left(x \right)\\ F_{1810}\! \left(x \right) &= F_{1811}\! \left(x \right)\\ F_{1811}\! \left(x \right) &= F_{0}\! \left(x \right) F_{138}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1812}\! \left(x \right) &= F_{1813}\! \left(x \right)\\ F_{1813}\! \left(x \right) &= F_{1814}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1814}\! \left(x \right) &= F_{1815}\! \left(x \right)+F_{1818}\! \left(x \right)\\ F_{1815}\! \left(x \right) &= F_{1816}\! \left(x \right)+F_{1817}\! \left(x \right)\\ F_{1816}\! \left(x \right) &= F_{135}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1817}\! \left(x \right) &= F_{0}\! \left(x \right) F_{144}\! \left(x \right)\\ F_{1818}\! \left(x \right) &= F_{1819}\! \left(x \right)+F_{1820}\! \left(x \right)\\ F_{1819}\! \left(x \right) &= F_{2}\! \left(x \right) F_{554}\! \left(x \right)\\ F_{1820}\! \left(x \right) &= F_{0}\! \left(x \right) F_{151}\! \left(x \right)\\ F_{1821}\! \left(x \right) &= F_{1822}\! \left(x \right)+F_{1825}\! \left(x \right)\\ F_{1822}\! \left(x \right) &= F_{1823}\! \left(x \right)+F_{1824}\! \left(x \right)\\ F_{1823}\! \left(x \right) &= F_{14}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1824}\! \left(x \right) &= F_{0}\! \left(x \right) F_{131}\! \left(x \right)\\ F_{1825}\! \left(x \right) &= F_{1826}\! \left(x \right)+F_{1827}\! \left(x \right)\\ F_{1826}\! \left(x \right) &= F_{1088}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1827}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1530}\! \left(x \right)\\ F_{1828}\! \left(x \right) &= F_{1829}\! \left(x \right)+F_{1830}\! \left(x \right)\\ F_{1829}\! \left(x \right) &= F_{179}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1830}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1831}\! \left(x \right)\\ F_{1831}\! \left(x \right) &= -F_{131}\! \left(x \right)+F_{1832}\! \left(x \right)\\ F_{1832}\! \left(x \right) &= -F_{18}\! \left(x \right)+F_{1833}\! \left(x \right)\\ F_{1833}\! \left(x \right) &= \frac{F_{1834}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{1834}\! \left(x \right) &= -F_{1837}\! \left(x \right)+F_{1835}\! \left(x \right)\\ F_{1835}\! \left(x \right) &= \frac{F_{1836}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{1836}\! \left(x \right) &= F_{198}\! \left(x \right)\\ F_{1837}\! \left(x \right) &= F_{1838}\! \left(x \right)+F_{1839}\! \left(x \right)\\ F_{1838}\! \left(x \right) &= F_{1833}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1839}\! \left(x \right) &= F_{1840}\! \left(x \right)+F_{210}\! \left(x \right)\\ F_{1840}\! \left(x \right) &= F_{1832}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{1841}\! \left(x \right) &= F_{1146}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1842}\! \left(x \right) &= F_{1843}\! \left(x \right)+F_{1844}\! \left(x \right)\\ F_{1843}\! \left(x \right) &= F_{1528}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1844}\! \left(x \right) &= F_{1845}\! \left(x \right)+F_{1846}\! \left(x \right)\\ F_{1845}\! \left(x \right) &= F_{1038}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{1846}\! \left(x \right) &= F_{1529}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{1847}\! \left(x \right) &= F_{1651}\! \left(x \right)+F_{1848}\! \left(x \right)\\ F_{1848}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1849}\! \left(x \right)\\ F_{1849}\! \left(x \right) &= F_{1850}\! \left(x \right)\\ F_{1850}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1851}\! \left(x \right)\\ F_{1851}\! \left(x \right) &= F_{1852}\! \left(x \right)+F_{1854}\! \left(x \right)\\ F_{1852}\! \left(x \right) &= F_{1853}\! \left(x \right)+F_{215}\! \left(x \right)\\ F_{1853}\! \left(x \right) &= F_{1170}\! \left(x \right)+F_{1389}\! \left(x \right)\\ F_{1854}\! \left(x \right) &= F_{1852}\! \left(x \right)+F_{1855}\! \left(x \right)\\ F_{1855}\! \left(x \right) &= F_{1856}\! \left(x \right)+F_{527}\! \left(x \right)\\ F_{1856}\! \left(x \right) &= F_{1857}\! \left(x \right)+F_{1866}\! \left(x \right)\\ F_{1857}\! \left(x \right) &= F_{1858}\! \left(x \right)\\ F_{1858}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1859}\! \left(x \right)\\ F_{1859}\! \left(x \right) &= F_{1860}\! \left(x \right)+F_{1862}\! \left(x \right)\\ F_{1860}\! \left(x \right) &= F_{1861}\! \left(x \right)\\ F_{1861}\! \left(x \right) &= F_{1175}\! \left(x \right) F_{14}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1862}\! \left(x \right) &= F_{1863}\! \left(x \right)+F_{1864}\! \left(x \right)\\ F_{1863}\! \left(x \right) &= F_{1382}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{1864}\! \left(x \right) &= F_{1865}\! \left(x \right)\\ F_{1865}\! \left(x \right) &= F_{1175}\! \left(x \right) F_{198}\! \left(x \right)\\ F_{1866}\! \left(x \right) &= F_{1867}\! \left(x \right)\\ F_{1867}\! \left(x \right) &= F_{1047}\! \left(x \right) F_{14}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{1868}\! \left(x \right) &= F_{1869}\! \left(x \right)\\ F_{1869}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1870}\! \left(x \right)\\ F_{1870}\! \left(x \right) &= F_{1871}\! \left(x \right)\\ F_{1871}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1872}\! \left(x \right)\\ F_{1872}\! \left(x \right) &= F_{1873}\! \left(x \right)+F_{1884}\! \left(x \right)\\ F_{1873}\! \left(x \right) &= F_{1874}\! \left(x \right)\\ F_{1874}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1875}\! \left(x \right)\\ F_{1875}\! \left(x \right) &= F_{1876}\! \left(x \right)+F_{1879}\! \left(x \right)\\ F_{1876}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1877}\! \left(x \right)\\ F_{1877}\! \left(x \right) &= F_{1878}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1878}\! \left(x \right) &= F_{1152}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1879}\! \left(x \right) &= F_{1880}\! \left(x \right)+F_{1881}\! \left(x \right)\\ F_{1880}\! \left(x \right) &= F_{1877}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1881}\! \left(x \right) &= F_{1882}\! \left(x \right)+F_{1883}\! \left(x \right)\\ F_{1882}\! \left(x \right) &= F_{2}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{1883}\! \left(x \right) &= F_{1878}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{1884}\! \left(x \right) &= F_{1885}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{1885}\! \left(x \right) &= F_{1886}\! \left(x \right)\\ F_{1886}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1887}\! \left(x \right)\\ F_{1887}\! \left(x \right) &= F_{1888}\! \left(x \right)+F_{1894}\! \left(x \right)\\ F_{1888}\! \left(x \right) &= F_{0}\! \left(x \right) F_{1889}\! \left(x \right)\\ F_{1889}\! \left(x \right) &= F_{1890}\! \left(x \right)+F_{1892}\! \left(x \right)\\ F_{1890}\! \left(x \right) &= F_{1891}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{1891}\! \left(x \right) &= F_{1279}\! \left(x \right)+F_{399}\! \left(x \right)\\ F_{1892}\! \left(x \right) &= F_{1893}\! \left(x \right)\\ F_{1893}\! \left(x \right) &= F_{1270}\! \left(x \right)+F_{1281}\! \left(x \right)\\ F_{1894}\! \left(x \right) &= F_{1895}\! \left(x \right)+F_{1896}\! \left(x \right)\\ F_{1895}\! \left(x \right) &= F_{1889}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1896}\! \left(x \right) &= F_{1897}\! \left(x \right)+F_{1899}\! \left(x \right)\\ F_{1897}\! \left(x \right) &= F_{1462}\! \left(x \right)+F_{1898}\! \left(x \right)\\ F_{1898}\! \left(x \right) &= F_{1891}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{1899}\! \left(x \right) &= F_{1900}\! \left(x \right)\\ F_{1900}\! \left(x \right) &= F_{1893}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{1901}\! \left(x \right) &= F_{1902}\! \left(x \right)+F_{1904}\! \left(x \right)\\ F_{1902}\! \left(x \right) &= F_{1903}\! \left(x \right)\\ F_{1903}\! \left(x \right) &= F_{2}\! \left(x \right) F_{317}\! \left(x \right)\\ F_{1904}\! \left(x \right) &= F_{1905}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{1905}\! \left(x \right) &= F_{1906}\! \left(x \right)\\ F_{1906}\! \left(x \right) &= F_{14}\! \left(x \right) F_{1907}\! \left(x \right)\\ F_{1907}\! \left(x \right) &= F_{1908}\! \left(x \right)+F_{1909}\! \left(x \right)\\ F_{1908}\! \left(x \right) &= F_{1664}\! \left(x \right)+F_{1669}\! \left(x \right)\\ F_{1909}\! \left(x \right) &= F_{1910}\! \left(x \right)+F_{1913}\! \left(x \right)\\ F_{1910}\! \left(x \right) &= F_{1911}\! \left(x \right)+F_{1912}\! \left(x \right)\\ F_{1911}\! \left(x \right) &= F_{1014}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{1912}\! \left(x \right) &= F_{1031}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{1913}\! \left(x \right) &= F_{1914}\! \left(x \right)+F_{1915}\! \left(x \right)\\ F_{1914}\! \left(x \right) &= F_{1014} \left(x \right)^{2}\\ F_{1915}\! \left(x \right) &= F_{1031}\! \left(x \right) F_{1038}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point And Row Placements Req Corrob" and has 754 rules.

Finding the specification took 64345 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 754 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{8}\! \left(x \right) &= x\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{17}\! \left(x \right) &= 0\\ F_{18}\! \left(x \right) &= F_{11}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{22}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{27}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{6}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{41}\! \left(x \right)+F_{42}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{21}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{44}\! \left(x \right) &= 0\\ F_{45}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{46}\! \left(x \right)+F_{753}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{487}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{153}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{17}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{60}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{68}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{69}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{63}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{8}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{8}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{83}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{69}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{8}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{72}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{115}\! \left(x \right)+F_{17}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{8}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{8}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{55}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{96}\! \left(x \right) &= 3 F_{17}\! \left(x \right)+F_{97}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{8}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{8}\! \left(x \right) F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{137}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{115}\! \left(x \right)+F_{17}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{105}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{110}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{109}\! \left(x \right)+F_{17}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{72}\! \left(x \right)\\ F_{109}\! \left(x \right) &= 0\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{113}\! \left(x \right)+F_{114}\! \left(x \right)+F_{17}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{113}\! \left(x \right) &= 0\\ F_{114}\! \left(x \right) &= 0\\ F_{115}\! \left(x \right) &= F_{116}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{127}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)+F_{125}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{124}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{120}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{124}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)\\ F_{128}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{129}\! \left(x \right)+F_{135}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)+F_{134}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{134}\! \left(x \right)\\ F_{137}\! \left(x \right) &= 3 F_{17}\! \left(x \right)+F_{138}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{139}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{143}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{120}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right) F_{8}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{160}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{14}\! \left(x \right) F_{148}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{150}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{151}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)+F_{153}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{148}\! \left(x \right)\\ F_{153}\! \left(x \right) &= -F_{159}\! \left(x \right)+F_{154}\! \left(x \right)\\ F_{154}\! \left(x \right) &= \frac{F_{155}\! \left(x \right)}{F_{8}\! \left(x \right)}\\ F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)\\ F_{156}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{157}\! \left(x \right)\\ F_{157}\! \left(x \right) &= \frac{F_{158}\! \left(x \right)}{F_{8}\! \left(x \right)}\\ F_{158}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{157}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{162}\! \left(x \right) F_{8}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{163}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{741}\! \left(x \right)\\ F_{164}\! \left(x \right) &= -F_{704}\! \left(x \right)+F_{165}\! \left(x \right)\\ F_{165}\! \left(x \right) &= -F_{166}\! \left(x \right)+F_{151}\! \left(x \right)\\ F_{166}\! \left(x \right) &= -F_{167}\! \left(x \right)+F_{154}\! \left(x \right)\\ F_{167}\! \left(x \right) &= -F_{688}\! \left(x \right)+F_{168}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{170}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{171}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{172}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{685}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)+F_{632}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{175}\! \left(x \right)+F_{626}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{176}\! \left(x \right)+F_{180}\! \left(x \right)+F_{48}\! \left(x \right)+F_{610}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{177}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{0}\! \left(x \right) F_{178}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{0}\! \left(x \right) F_{181}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{182}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{182}\! \left(x \right) &= F_{183}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{184}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{185}\! \left(x \right)+F_{311}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{191}\! \left(x \right)\\ F_{186}\! \left(x \right) &= \frac{F_{187}\! \left(x \right)}{F_{8}\! \left(x \right)}\\ F_{187}\! \left(x \right) &= F_{188}\! \left(x \right)\\ F_{188}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{189}\! \left(x \right)\\ F_{189}\! \left(x \right) &= \frac{F_{190}\! \left(x \right)}{F_{8}\! \left(x \right)}\\ F_{190}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{192}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{0}\! \left(x \right) F_{193}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)+F_{306}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{195}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{196}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{197}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{198}\! \left(x \right)+F_{298}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)+F_{211}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{201}\! \left(x \right)+F_{210}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{202}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{199}\! \left(x \right)+F_{203}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{207}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)\\ F_{205}\! \left(x \right) &= F_{206}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{206}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{208}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{209}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{207}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{8}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{212}\! \left(x \right)+F_{255}\! \left(x \right)\\ F_{212}\! \left(x \right) &= F_{213}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{214}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{215}\! \left(x \right)+F_{216}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{212}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{217}\! \left(x \right)+F_{228}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{218}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{219}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{220}\! \left(x \right)+F_{221}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{217}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{222}\! \left(x \right)+F_{224}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{223}\! \left(x \right)\\ F_{223}\! \left(x \right) &= x^{2}\\ F_{224}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{225}\! \left(x \right)+F_{226}\! \left(x \right)\\ F_{225}\! \left(x \right) &= F_{217}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{226}\! \left(x \right) &= F_{227}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{227}\! \left(x \right) &= F_{221}\! \left(x \right)\\ F_{228}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{229}\! \left(x \right)+F_{244}\! \left(x \right)\\ F_{229}\! \left(x \right) &= F_{230}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{230}\! \left(x \right) &= F_{231}\! \left(x \right)+F_{242}\! \left(x \right)\\ F_{231}\! \left(x \right) &= F_{212}\! \left(x \right)+F_{232}\! \left(x \right)\\ F_{232}\! \left(x \right) &= F_{233}\! \left(x \right)\\ F_{233}\! \left(x \right) &= F_{234}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{234}\! \left(x \right) &= F_{231}\! \left(x \right)+F_{235}\! \left(x \right)\\ F_{235}\! \left(x \right) &= F_{236}\! \left(x \right)+F_{238}\! \left(x \right)\\ F_{236}\! \left(x \right) &= F_{237}\! \left(x \right)\\ F_{237}\! \left(x \right) &= F_{212}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{238}\! \left(x \right) &= 3 F_{17}\! \left(x \right)+F_{239}\! \left(x \right)+F_{240}\! \left(x \right)\\ F_{239}\! \left(x \right) &= F_{232}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{240}\! \left(x \right) &= F_{241}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{241}\! \left(x \right) &= F_{235}\! \left(x \right)\\ F_{242}\! \left(x \right) &= F_{243}\! \left(x \right)+F_{252}\! \left(x \right)\\ F_{243}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{237}\! \left(x \right)+F_{244}\! \left(x \right)\\ F_{244}\! \left(x \right) &= F_{245}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{245}\! \left(x \right) &= F_{246}\! \left(x \right)+F_{247}\! \left(x \right)\\ F_{246}\! \left(x \right) &= F_{222}\! \left(x \right)+F_{243}\! \left(x \right)\\ F_{247}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{248}\! \left(x \right)\\ F_{248}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{239}\! \left(x \right)+F_{249}\! \left(x \right)+F_{251}\! \left(x \right)\\ F_{249}\! \left(x \right) &= F_{250}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{250}\! \left(x \right) &= F_{242}\! \left(x \right)\\ F_{251}\! \left(x \right) &= 0\\ F_{252}\! \left(x \right) &= 3 F_{17}\! \left(x \right)+F_{239}\! \left(x \right)+F_{253}\! \left(x \right)\\ F_{253}\! \left(x \right) &= F_{254}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{254}\! \left(x \right) &= F_{242}\! \left(x \right)\\ F_{255}\! \left(x \right) &= F_{256}\! \left(x \right)\\ F_{256}\! \left(x \right) &= F_{257}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{257}\! \left(x \right) &= F_{258}\! \left(x \right)+F_{259}\! \left(x \right)\\ F_{258}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{255}\! \left(x \right)\\ F_{259}\! \left(x \right) &= F_{260}\! \left(x \right)+F_{271}\! \left(x \right)\\ F_{260}\! \left(x \right) &= F_{261}\! \left(x \right)\\ F_{261}\! \left(x \right) &= F_{262}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{262}\! \left(x \right) &= F_{263}\! \left(x \right)+F_{264}\! \left(x \right)\\ F_{263}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{260}\! \left(x \right)\\ F_{264}\! \left(x \right) &= F_{265}\! \left(x \right)+F_{267}\! \left(x \right)\\ F_{265}\! \left(x \right) &= F_{266}\! \left(x \right)\\ F_{266}\! \left(x \right) &= F_{200}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{267}\! \left(x \right) &= 3 F_{17}\! \left(x \right)+F_{268}\! \left(x \right)+F_{269}\! \left(x \right)\\ F_{268}\! \left(x \right) &= F_{260}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{269}\! \left(x \right) &= F_{270}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{270}\! \left(x \right) &= F_{264}\! \left(x \right)\\ F_{271}\! \left(x \right) &= 3 F_{17}\! \left(x \right)+F_{272}\! \left(x \right)+F_{287}\! \left(x \right)\\ F_{272}\! \left(x \right) &= F_{273}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{273}\! \left(x \right) &= F_{274}\! \left(x \right)+F_{285}\! \left(x \right)\\ F_{274}\! \left(x \right) &= F_{255}\! \left(x \right)+F_{275}\! \left(x \right)\\ F_{275}\! \left(x \right) &= F_{276}\! \left(x \right)\\ F_{276}\! \left(x \right) &= F_{277}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{277}\! \left(x \right) &= F_{274}\! \left(x \right)+F_{278}\! \left(x \right)\\ F_{278}\! \left(x \right) &= F_{279}\! \left(x \right)+F_{281}\! \left(x \right)\\ F_{279}\! \left(x \right) &= F_{280}\! \left(x \right)\\ F_{280}\! \left(x \right) &= F_{255}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{281}\! \left(x \right) &= 4 F_{17}\! \left(x \right)+F_{282}\! \left(x \right)+F_{283}\! \left(x \right)\\ F_{282}\! \left(x \right) &= F_{275}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{283}\! \left(x \right) &= F_{284}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{284}\! \left(x \right) &= F_{278}\! \left(x \right)\\ F_{285}\! \left(x \right) &= F_{286}\! \left(x \right)+F_{295}\! \left(x \right)\\ F_{286}\! \left(x \right) &= 3 F_{17}\! \left(x \right)+F_{280}\! \left(x \right)+F_{287}\! \left(x \right)\\ F_{287}\! \left(x \right) &= F_{288}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{288}\! \left(x \right) &= F_{289}\! \left(x \right)+F_{290}\! \left(x \right)\\ F_{289}\! \left(x \right) &= F_{265}\! \left(x \right)+F_{286}\! \left(x \right)\\ F_{290}\! \left(x \right) &= F_{267}\! \left(x \right)+F_{291}\! \left(x \right)\\ F_{291}\! \left(x \right) &= 3 F_{17}\! \left(x \right)+F_{282}\! \left(x \right)+F_{292}\! \left(x \right)+F_{294}\! \left(x \right)\\ F_{292}\! \left(x \right) &= F_{293}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{293}\! \left(x \right) &= F_{285}\! \left(x \right)\\ F_{294}\! \left(x \right) &= 0\\ F_{295}\! \left(x \right) &= 4 F_{17}\! \left(x \right)+F_{282}\! \left(x \right)+F_{296}\! \left(x \right)\\ F_{296}\! \left(x \right) &= F_{297}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{297}\! \left(x \right) &= F_{285}\! \left(x \right)\\ F_{298}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{299}\! \left(x \right)+F_{301}\! \left(x \right)+F_{303}\! \left(x \right)\\ F_{299}\! \left(x \right) &= F_{300}\! \left(x \right)\\ F_{300}\! \left(x \right) &= F_{199}\! \left(x \right) F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{301}\! \left(x \right) &= F_{302}\! \left(x \right)\\ F_{302}\! \left(x \right) &= F_{298}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{303}\! \left(x \right) &= F_{304}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{304}\! \left(x \right) &= F_{305}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{305}\! \left(x \right) &= F_{298}\! \left(x \right)\\ F_{306}\! \left(x \right) &= F_{307}\! \left(x \right)\\ F_{307}\! \left(x \right) &= F_{14}\! \left(x \right) F_{308}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{308}\! \left(x \right) &= F_{309}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{309}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{310}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{310}\! \left(x \right) &= F_{308}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{311}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{312}\! \left(x \right)+F_{575}\! \left(x \right)+F_{606}\! \left(x \right)+F_{608}\! \left(x \right)\\ F_{312}\! \left(x \right) &= F_{313}\! \left(x \right)\\ F_{313}\! \left(x \right) &= F_{314}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{314}\! \left(x \right) &= F_{315}\! \left(x \right)+F_{574}\! \left(x \right)\\ F_{315}\! \left(x \right) &= F_{316}\! \left(x \right)+F_{572}\! \left(x \right)\\ F_{316}\! \left(x \right) &= F_{317}\! \left(x \right)\\ F_{317}\! \left(x \right) &= -F_{568}\! \left(x \right)+F_{318}\! \left(x \right)\\ F_{318}\! \left(x \right) &= \frac{F_{319}\! \left(x \right)}{F_{8}\! \left(x \right)}\\ F_{319}\! \left(x \right) &= F_{320}\! \left(x \right)\\ F_{320}\! \left(x \right) &= -F_{17}\! \left(x \right)-F_{567}\! \left(x \right)+F_{321}\! \left(x \right)\\ F_{321}\! \left(x \right) &= F_{322}\! \left(x \right)+F_{324}\! \left(x \right)\\ F_{322}\! \left(x \right) &= F_{323}\! \left(x \right)\\ F_{323}\! \left(x \right) &= F_{186}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{324}\! \left(x \right) &= -F_{565}\! \left(x \right)+F_{325}\! \left(x \right)\\ F_{325}\! \left(x \right) &= F_{326}\! \left(x \right)\\ F_{326}\! \left(x \right) &= F_{327}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{327}\! \left(x \right) &= F_{328}\! \left(x \right)+F_{337}\! \left(x \right)\\ F_{328}\! \left(x \right) &= F_{0}\! \left(x \right) F_{329}\! \left(x \right)\\ F_{329}\! \left(x \right) &= \frac{F_{330}\! \left(x \right)}{F_{8}\! \left(x \right)}\\ F_{330}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{336}\! \left(x \right)+F_{331}\! \left(x \right)\\ F_{331}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{332}\! \left(x \right)\\ F_{332}\! \left(x \right) &= F_{333}\! \left(x \right)\\ F_{333}\! \left(x \right) &= F_{334}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{334}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{335}\! \left(x \right)\\ F_{335}\! \left(x \right) &= F_{14}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{336}\! \left(x \right) &= F_{195}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{337}\! \left(x \right) &= F_{338}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{338}\! \left(x \right) &= F_{339}\! \left(x \right)+F_{348}\! \left(x \right)\\ F_{339}\! \left(x \right) &= F_{340}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{340}\! \left(x \right) &= \frac{F_{341}\! \left(x \right)}{F_{8}\! \left(x \right)}\\ F_{341}\! \left(x \right) &= F_{342}\! \left(x \right)\\ F_{342}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{343}\! \left(x \right)\\ F_{343}\! \left(x \right) &= F_{344}\! \left(x \right)\\ F_{344}\! \left(x \right) &= F_{345}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{345}\! \left(x \right) &= F_{325}\! \left(x \right)+F_{346}\! \left(x \right)\\ F_{346}\! \left(x \right) &= -F_{347}\! \left(x \right)+F_{186}\! \left(x \right)\\ F_{347}\! \left(x \right) &= F_{325}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{348}\! \left(x \right) &= F_{349}\! \left(x \right)\\ F_{349}\! \left(x \right) &= F_{350}\! \left(x \right) F_{366}\! \left(x \right)\\ F_{350}\! \left(x \right) &= F_{351}\! \left(x \right)+F_{362}\! \left(x \right)\\ F_{351}\! \left(x \right) &= F_{352}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{352}\! \left(x \right) &= F_{353}\! \left(x \right)\\ F_{353}\! \left(x \right) &= F_{354}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{354}\! \left(x \right) &= F_{355}\! \left(x \right)+F_{359}\! \left(x \right)\\ F_{355}\! \left(x \right) &= F_{356}\! \left(x \right)+F_{357}\! \left(x \right)\\ F_{356}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{357}\! \left(x \right) &= F_{358}\! \left(x \right)\\ F_{358}\! \left(x \right) &= F_{338}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{359}\! \left(x \right) &= F_{14}\! \left(x \right) F_{360}\! \left(x \right)\\ F_{360}\! \left(x \right) &= F_{361}\! \left(x \right)\\ F_{361}\! \left(x \right) &= F_{350}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{362}\! \left(x \right) &= F_{0}\! \left(x \right) F_{363}\! \left(x \right)\\ F_{363}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{364}\! \left(x \right)+F_{365}\! \left(x \right)\\ F_{364}\! \left(x \right) &= F_{14}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{365}\! \left(x \right) &= F_{366}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{366}\! \left(x \right) &= F_{363}\! \left(x \right)+F_{367}\! \left(x \right)\\ F_{367}\! \left(x \right) &= F_{368}\! \left(x \right)\\ F_{368}\! \left(x \right) &= F_{369}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{369}\! \left(x \right) &= F_{370}\! \left(x \right)+F_{373}\! \left(x \right)\\ F_{370}\! \left(x \right) &= F_{366}\! \left(x \right)+F_{371}\! \left(x \right)\\ F_{371}\! \left(x \right) &= F_{372}\! \left(x \right)\\ F_{372}\! \left(x \right) &= F_{370}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{373}\! \left(x \right) &= \frac{F_{374}\! \left(x \right)}{F_{8}\! \left(x \right)}\\ F_{374}\! \left(x \right) &= F_{375}\! \left(x \right)\\ F_{375}\! \left(x \right) &= \frac{F_{376}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{376}\! \left(x \right) &= F_{377}\! \left(x \right)\\ F_{377}\! \left(x \right) &= -F_{557}\! \left(x \right)+F_{378}\! \left(x \right)\\ F_{378}\! \left(x \right) &= \frac{F_{379}\! \left(x \right)}{F_{8}\! \left(x \right)}\\ F_{379}\! \left(x \right) &= F_{380}\! \left(x \right)\\ F_{380}\! \left(x \right) &= -F_{483}\! \left(x \right)+F_{381}\! \left(x \right)\\ F_{381}\! \left(x \right) &= F_{382}\! \left(x \right)+F_{481}\! \left(x \right)\\ F_{382}\! \left(x \right) &= F_{2}\! \left(x \right) F_{383}\! \left(x \right)\\ F_{383}\! \left(x \right) &= F_{199}\! \left(x \right)+F_{384}\! \left(x \right)\\ F_{384}\! \left(x \right) &= F_{385}\! \left(x \right)+F_{433}\! \left(x \right)\\ F_{385}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{386}\! \left(x \right)+F_{432}\! \left(x \right)\\ F_{386}\! \left(x \right) &= F_{387}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{387}\! \left(x \right) &= F_{388}\! \left(x \right)+F_{389}\! \left(x \right)\\ F_{388}\! \left(x \right) &= F_{385}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{389}\! \left(x \right) &= F_{390}\! \left(x \right)+F_{399}\! \left(x \right)\\ F_{390}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{391}\! \left(x \right)+F_{395}\! \left(x \right)\\ F_{391}\! \left(x \right) &= F_{392}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{392}\! \left(x \right) &= F_{220}\! \left(x \right)+F_{393}\! \left(x \right)\\ F_{393}\! \left(x \right) &= F_{394}\! \left(x \right)+F_{396}\! \left(x \right)\\ F_{394}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{223}\! \left(x \right)+F_{395}\! \left(x \right)\\ F_{395}\! \left(x \right) &= x^{2}\\ F_{396}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{225}\! \left(x \right)+F_{397}\! \left(x \right)\\ F_{397}\! \left(x \right) &= F_{398}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{398}\! \left(x \right) &= F_{393}\! \left(x \right)\\ F_{399}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{400}\! \left(x \right)+F_{415}\! \left(x \right)+F_{428}\! \left(x \right)\\ F_{400}\! \left(x \right) &= F_{401}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{401}\! \left(x \right) &= F_{402}\! \left(x \right)+F_{413}\! \left(x \right)\\ F_{402}\! \left(x \right) &= F_{385}\! \left(x \right)+F_{403}\! \left(x \right)\\ F_{403}\! \left(x \right) &= F_{404}\! \left(x \right)\\ F_{404}\! \left(x \right) &= F_{405}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{405}\! \left(x \right) &= F_{402}\! \left(x \right)+F_{406}\! \left(x \right)\\ F_{406}\! \left(x \right) &= F_{407}\! \left(x \right)+F_{409}\! \left(x \right)\\ F_{407}\! \left(x \right) &= F_{408}\! \left(x \right)\\ F_{408}\! \left(x \right) &= F_{385}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{409}\! \left(x \right) &= 3 F_{17}\! \left(x \right)+F_{410}\! \left(x \right)+F_{411}\! \left(x \right)\\ F_{410}\! \left(x \right) &= F_{403}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{411}\! \left(x \right) &= F_{412}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{412}\! \left(x \right) &= F_{406}\! \left(x \right)\\ F_{413}\! \left(x \right) &= F_{414}\! \left(x \right)+F_{429}\! \left(x \right)\\ F_{414}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{408}\! \left(x \right)+F_{415}\! \left(x \right)+F_{428}\! \left(x \right)\\ F_{415}\! \left(x \right) &= F_{416}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{416}\! \left(x \right) &= F_{417}\! \left(x \right)+F_{418}\! \left(x \right)\\ F_{417}\! \left(x \right) &= F_{394}\! \left(x \right)+F_{414}\! \left(x \right)\\ F_{418}\! \left(x \right) &= F_{419}\! \left(x \right)+F_{423}\! \left(x \right)\\ F_{419}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{225}\! \left(x \right)+F_{420}\! \left(x \right)+F_{422}\! \left(x \right)\\ F_{420}\! \left(x \right) &= F_{421}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{421}\! \left(x \right) &= F_{393}\! \left(x \right)\\ F_{422}\! \left(x \right) &= 0\\ F_{423}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{410}\! \left(x \right)+F_{424}\! \left(x \right)+F_{426}\! \left(x \right)+F_{427}\! \left(x \right)\\ F_{424}\! \left(x \right) &= F_{425}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{425}\! \left(x \right) &= F_{413}\! \left(x \right)\\ F_{426}\! \left(x \right) &= 0\\ F_{427}\! \left(x \right) &= 0\\ F_{428}\! \left(x \right) &= F_{118}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{429}\! \left(x \right) &= 3 F_{17}\! \left(x \right)+F_{410}\! \left(x \right)+F_{430}\! \left(x \right)\\ F_{430}\! \left(x \right) &= F_{431}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{431}\! \left(x \right) &= F_{413}\! \left(x \right)\\ F_{432}\! \left(x \right) &= F_{120}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{433}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{434}\! \left(x \right)+F_{480}\! \left(x \right)\\ F_{434}\! \left(x \right) &= F_{435}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{435}\! \left(x \right) &= F_{436}\! \left(x \right)+F_{437}\! \left(x \right)\\ F_{436}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{433}\! \left(x \right)\\ F_{437}\! \left(x \right) &= F_{438}\! \left(x \right)+F_{447}\! \left(x \right)\\ F_{438}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{439}\! \left(x \right)+F_{443}\! \left(x \right)\\ F_{439}\! \left(x \right) &= F_{440}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{440}\! \left(x \right) &= F_{263}\! \left(x \right)+F_{441}\! \left(x \right)\\ F_{441}\! \left(x \right) &= F_{442}\! \left(x \right)+F_{444}\! \left(x \right)\\ F_{442}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{266}\! \left(x \right)+F_{443}\! \left(x \right)\\ F_{443}\! \left(x \right) &= F_{78}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{444}\! \left(x \right) &= 3 F_{17}\! \left(x \right)+F_{268}\! \left(x \right)+F_{445}\! \left(x \right)\\ F_{445}\! \left(x \right) &= F_{446}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{446}\! \left(x \right) &= F_{441}\! \left(x \right)\\ F_{447}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{448}\! \left(x \right)+F_{463}\! \left(x \right)+F_{476}\! \left(x \right)\\ F_{448}\! \left(x \right) &= F_{449}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{449}\! \left(x \right) &= F_{450}\! \left(x \right)+F_{461}\! \left(x \right)\\ F_{450}\! \left(x \right) &= F_{433}\! \left(x \right)+F_{451}\! \left(x \right)\\ F_{451}\! \left(x \right) &= F_{452}\! \left(x \right)\\ F_{452}\! \left(x \right) &= F_{453}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{453}\! \left(x \right) &= F_{450}\! \left(x \right)+F_{454}\! \left(x \right)\\ F_{454}\! \left(x \right) &= F_{455}\! \left(x \right)+F_{457}\! \left(x \right)\\ F_{455}\! \left(x \right) &= F_{456}\! \left(x \right)\\ F_{456}\! \left(x \right) &= F_{433}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{457}\! \left(x \right) &= 4 F_{17}\! \left(x \right)+F_{458}\! \left(x \right)+F_{459}\! \left(x \right)\\ F_{458}\! \left(x \right) &= F_{451}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{459}\! \left(x \right) &= F_{460}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{460}\! \left(x \right) &= F_{454}\! \left(x \right)\\ F_{461}\! \left(x \right) &= F_{462}\! \left(x \right)+F_{477}\! \left(x \right)\\ F_{462}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{456}\! \left(x \right)+F_{463}\! \left(x \right)+F_{476}\! \left(x \right)\\ F_{463}\! \left(x \right) &= F_{464}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{464}\! \left(x \right) &= F_{465}\! \left(x \right)+F_{466}\! \left(x \right)\\ F_{465}\! \left(x \right) &= F_{442}\! \left(x \right)+F_{462}\! \left(x \right)\\ F_{466}\! \left(x \right) &= F_{467}\! \left(x \right)+F_{471}\! \left(x \right)\\ F_{467}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{268}\! \left(x \right)+F_{468}\! \left(x \right)+F_{470}\! \left(x \right)\\ F_{468}\! \left(x \right) &= F_{469}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{469}\! \left(x \right) &= F_{441}\! \left(x \right)\\ F_{470}\! \left(x \right) &= 0\\ F_{471}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{458}\! \left(x \right)+F_{472}\! \left(x \right)+F_{474}\! \left(x \right)+F_{475}\! \left(x \right)\\ F_{472}\! \left(x \right) &= F_{473}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{473}\! \left(x \right) &= F_{461}\! \left(x \right)\\ F_{474}\! \left(x \right) &= 0\\ F_{475}\! \left(x \right) &= 0\\ F_{476}\! \left(x \right) &= F_{128}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{477}\! \left(x \right) &= 4 F_{17}\! \left(x \right)+F_{458}\! \left(x \right)+F_{478}\! \left(x \right)\\ F_{478}\! \left(x \right) &= F_{479}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{479}\! \left(x \right) &= F_{461}\! \left(x \right)\\ F_{480}\! \left(x \right) &= F_{130}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{481}\! \left(x \right) &= -F_{482}\! \left(x \right)+F_{311}\! \left(x \right)\\ F_{482}\! \left(x \right) &= F_{0}\! \left(x \right) F_{383}\! \left(x \right)\\ F_{483}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{303}\! \left(x \right)+F_{484}\! \left(x \right)+F_{552}\! \left(x \right)+F_{555}\! \left(x \right)\\ F_{484}\! \left(x \right) &= F_{485}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{485}\! \left(x \right) &= F_{486}\! \left(x \right)+F_{544}\! \left(x \right)\\ F_{486}\! \left(x \right) &= F_{487}\! \left(x \right)\\ F_{487}\! \left(x \right) &= F_{488}\! \left(x \right)\\ F_{488}\! \left(x \right) &= F_{489}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{489}\! \left(x \right) &= F_{490}\! \left(x \right)+F_{543}\! \left(x \right)\\ F_{490}\! \left(x \right) &= F_{491}\! \left(x \right)+F_{492}\! \left(x \right)\\ F_{491}\! \left(x \right) &= F_{0}\! \left(x \right) F_{181}\! \left(x \right)\\ F_{492}\! \left(x \right) &= F_{493}\! \left(x \right)\\ F_{493}\! \left(x \right) &= F_{494}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{494}\! \left(x \right) &= F_{495}\! \left(x \right)+F_{496}\! \left(x \right)\\ F_{495}\! \left(x \right) &= F_{181}\! \left(x \right) F_{340}\! \left(x \right)\\ F_{496}\! \left(x \right) &= F_{497}\! \left(x \right)\\ F_{497}\! \left(x \right) &= F_{350}\! \left(x \right) F_{498}\! \left(x \right)\\ F_{498}\! \left(x \right) &= F_{366}\! \left(x \right)+F_{499}\! \left(x \right)\\ F_{499}\! \left(x \right) &= F_{500}\! \left(x \right)\\ F_{500}\! \left(x \right) &= F_{501}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{501}\! \left(x \right) &= F_{502}\! \left(x \right)+F_{504}\! \left(x \right)\\ F_{502}\! \left(x \right) &= F_{503}\! \left(x \right)\\ F_{503}\! \left(x \right) &= F_{370}\! \left(x \right)+F_{375}\! \left(x \right)\\ F_{504}\! \left(x \right) &= F_{505}\! \left(x \right)+F_{508}\! \left(x \right)\\ F_{505}\! \left(x \right) &= F_{373}\! \left(x \right)+F_{506}\! \left(x \right)\\ F_{506}\! \left(x \right) &= F_{507}\! \left(x \right)\\ F_{507}\! \left(x \right) &= F_{193}\! \left(x \right) F_{363}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{508}\! \left(x \right) &= F_{509}\! \left(x \right)+F_{511}\! \left(x \right)\\ F_{509}\! \left(x \right) &= F_{510}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{510}\! \left(x \right) &= F_{383}\! \left(x \right)+F_{483}\! \left(x \right)\\ F_{511}\! \left(x \right) &= F_{512}\! \left(x \right)\\ F_{512}\! \left(x \right) &= F_{513}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{513}\! \left(x \right) &= F_{514}\! \left(x \right)+F_{523}\! \left(x \right)\\ F_{514}\! \left(x \right) &= F_{510}\! \left(x \right) F_{515}\! \left(x \right)\\ F_{515}\! \left(x \right) &= F_{516}\! \left(x \right)+F_{520}\! \left(x \right)\\ F_{516}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{517}\! \left(x \right)+F_{519}\! \left(x \right)\\ F_{517}\! \left(x \right) &= F_{518}\! \left(x \right)\\ F_{518}\! \left(x \right) &= F_{14}\! \left(x \right) F_{8}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{519}\! \left(x \right) &= F_{370}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{520}\! \left(x \right) &= F_{363}\! \left(x \right)+F_{521}\! \left(x \right)\\ F_{521}\! \left(x \right) &= F_{522}\! \left(x \right)\\ F_{522}\! \left(x \right) &= F_{373}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{523}\! \left(x \right) &= F_{524}\! \left(x \right)\\ F_{524}\! \left(x \right) &= F_{375}\! \left(x \right) F_{525}\! \left(x \right)\\ F_{525}\! \left(x \right) &= F_{363}\! \left(x \right)+F_{526}\! \left(x \right)\\ F_{526}\! \left(x \right) &= F_{363}\! \left(x \right)+F_{527}\! \left(x \right)\\ F_{527}\! \left(x \right) &= F_{528}\! \left(x \right)\\ F_{528}\! \left(x \right) &= F_{529}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{529}\! \left(x \right) &= F_{530}\! \left(x \right)+F_{540}\! \left(x \right)\\ F_{530}\! \left(x \right) &= -F_{531}\! \left(x \right)+F_{373}\! \left(x \right)\\ F_{531}\! \left(x \right) &= -F_{532}\! \left(x \right)+F_{505}\! \left(x \right)\\ F_{532}\! \left(x \right) &= F_{533}\! \left(x \right)+F_{534}\! \left(x \right)\\ F_{533}\! \left(x \right) &= F_{195}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{534}\! \left(x \right) &= F_{535}\! \left(x \right)\\ F_{535}\! \left(x \right) &= F_{536}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{536}\! \left(x \right) &= F_{537}\! \left(x \right)+F_{538}\! \left(x \right)\\ F_{537}\! \left(x \right) &= F_{195}\! \left(x \right) F_{515}\! \left(x \right)\\ F_{538}\! \left(x \right) &= F_{539}\! \left(x \right)\\ F_{539}\! \left(x \right) &= F_{366}\! \left(x \right) F_{525}\! \left(x \right)\\ F_{540}\! \left(x \right) &= F_{14}\! \left(x \right) F_{541}\! \left(x \right)\\ F_{541}\! \left(x \right) &= F_{542}\! \left(x \right)\\ F_{542}\! \left(x \right) &= F_{525}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{543}\! \left(x \right) &= F_{0}\! \left(x \right) F_{498}\! \left(x \right)\\ F_{544}\! \left(x \right) &= F_{545}\! \left(x \right)\\ F_{545}\! \left(x \right) &= 3 F_{17}\! \left(x \right)+F_{546}\! \left(x \right)+F_{550}\! \left(x \right)\\ F_{546}\! \left(x \right) &= F_{547}\! \left(x \right)\\ F_{547}\! \left(x \right) &= F_{548}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{548}\! \left(x \right) &= F_{545}\! \left(x \right)+F_{549}\! \left(x \right)\\ F_{549}\! \left(x \right) &= F_{323}\! \left(x \right)\\ F_{550}\! \left(x \right) &= F_{551}\! \left(x \right)\\ F_{551}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{552}\! \left(x \right) &= F_{553}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{553}\! \left(x \right) &= F_{554}\! \left(x \right)\\ F_{554}\! \left(x \right) &= -F_{54}\! \left(x \right)+F_{182}\! \left(x \right)\\ F_{555}\! \left(x \right) &= F_{556}\! \left(x \right)\\ F_{556}\! \left(x \right) &= F_{483}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{557}\! \left(x \right) &= F_{558}\! \left(x \right)+F_{559}\! \left(x \right)\\ F_{558}\! \left(x \right) &= F_{0}\! \left(x \right) F_{510}\! \left(x \right)\\ F_{559}\! \left(x \right) &= F_{560}\! \left(x \right)\\ F_{560}\! \left(x \right) &= F_{561}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{561}\! \left(x \right) &= F_{562}\! \left(x \right)+F_{563}\! \left(x \right)\\ F_{562}\! \left(x \right) &= F_{340}\! \left(x \right) F_{510}\! \left(x \right)\\ F_{563}\! \left(x \right) &= F_{564}\! \left(x \right)\\ F_{564}\! \left(x \right) &= F_{350}\! \left(x \right) F_{375}\! \left(x \right)\\ F_{565}\! \left(x \right) &= F_{566}\! \left(x \right)\\ F_{566}\! \left(x \right) &= F_{350}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{567}\! \left(x \right) &= F_{322}\! \left(x \right)\\ F_{568}\! \left(x \right) &= F_{322}\! \left(x \right) F_{569}\! \left(x \right)\\ F_{569}\! \left(x \right) &= F_{570}\! \left(x \right)\\ F_{570}\! \left(x \right) &= F_{571}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{571}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{565}\! \left(x \right)\\ F_{572}\! \left(x \right) &= F_{573}\! \left(x \right)\\ F_{573}\! \left(x \right) &= F_{0}\! \left(x \right) F_{545}\! \left(x \right)\\ F_{574}\! \left(x \right) &= F_{549}\! \left(x \right) F_{569}\! \left(x \right)\\ F_{575}\! \left(x \right) &= F_{576}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{576}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{577}\! \left(x \right)+F_{601}\! \left(x \right)+F_{605}\! \left(x \right)+F_{606}\! \left(x \right)\\ F_{577}\! \left(x \right) &= -F_{17}\! \left(x \right)-F_{599}\! \left(x \right)-F_{601}\! \left(x \right)-F_{603}\! \left(x \right)+F_{578}\! \left(x \right)\\ F_{578}\! \left(x \right) &= F_{579}\! \left(x \right)\\ F_{579}\! \left(x \right) &= F_{182}\! \left(x \right)+F_{580}\! \left(x \right)\\ F_{580}\! \left(x \right) &= F_{581}\! \left(x \right)\\ F_{581}\! \left(x \right) &= F_{582}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{582}\! \left(x \right) &= F_{583}\! \left(x \right)+F_{591}\! \left(x \right)\\ F_{583}\! \left(x \right) &= F_{584}\! \left(x \right)\\ F_{584}\! \left(x \right) &= F_{585}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{585}\! \left(x \right) &= F_{586}\! \left(x \right)+F_{590}\! \left(x \right)\\ F_{586}\! \left(x \right) &= F_{587}\! \left(x \right)+F_{588}\! \left(x \right)\\ F_{587}\! \left(x \right) &= F_{185}\! \left(x \right) F_{189}\! \left(x \right)\\ F_{588}\! \left(x \right) &= F_{589}\! \left(x \right)\\ F_{589}\! \left(x \right) &= F_{370}\! \left(x \right) F_{571}\! \left(x \right)\\ F_{590}\! \left(x \right) &= F_{505}\! \left(x \right) F_{571}\! \left(x \right)\\ F_{591}\! \left(x \right) &= F_{592}\! \left(x \right)\\ F_{592}\! \left(x \right) &= F_{593}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{593}\! \left(x \right) &= F_{594}\! \left(x \right)+F_{598}\! \left(x \right)\\ F_{594}\! \left(x \right) &= F_{595}\! \left(x \right)+F_{596}\! \left(x \right)\\ F_{595}\! \left(x \right) &= F_{189}\! \left(x \right) F_{311}\! \left(x \right)\\ F_{596}\! \left(x \right) &= F_{597}\! \left(x \right)\\ F_{597}\! \left(x \right) &= F_{375}\! \left(x \right) F_{571}\! \left(x \right)\\ F_{598}\! \left(x \right) &= F_{508}\! \left(x \right) F_{571}\! \left(x \right)\\ F_{599}\! \left(x \right) &= F_{600}\! \left(x \right)\\ F_{600}\! \left(x \right) &= F_{578}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{601}\! \left(x \right) &= F_{602}\! \left(x \right)\\ F_{602}\! \left(x \right) &= F_{311}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{603}\! \left(x \right) &= F_{604}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{604}\! \left(x \right) &= F_{191}\! \left(x \right)+F_{347}\! \left(x \right)\\ F_{605}\! \left(x \right) &= F_{575}\! \left(x \right)\\ F_{606}\! \left(x \right) &= F_{607}\! \left(x \right)\\ F_{607}\! \left(x \right) &= F_{0}\! \left(x \right) F_{195}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{608}\! \left(x \right) &= F_{609}\! \left(x \right)\\ F_{609}\! \left(x \right) &= F_{0}\! \left(x \right) F_{510}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{610}\! \left(x \right) &= F_{611}\! \left(x \right)\\ F_{611}\! \left(x \right) &= F_{612}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{612}\! \left(x \right) &= -F_{682}\! \left(x \right)+F_{613}\! \left(x \right)\\ F_{613}\! \left(x \right) &= \frac{F_{614}\! \left(x \right)}{F_{8}\! \left(x \right)}\\ F_{614}\! \left(x \right) &= F_{615}\! \left(x \right)\\ F_{615}\! \left(x \right) &= \frac{F_{616}\! \left(x \right)}{F_{8}\! \left(x \right)}\\ F_{616}\! \left(x \right) &= -F_{17}\! \left(x \right)-F_{647}\! \left(x \right)-F_{674}\! \left(x \right)+F_{617}\! \left(x \right)\\ F_{617}\! \left(x \right) &= -F_{620}\! \left(x \right)+F_{618}\! \left(x \right)\\ F_{618}\! \left(x \right) &= \frac{F_{619}\! \left(x \right)}{F_{8}\! \left(x \right)}\\ F_{619}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{620}\! \left(x \right) &= F_{621}\! \left(x \right)+F_{622}\! \left(x \right)\\ F_{621}\! \left(x \right) &= F_{2}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{622}\! \left(x \right) &= F_{623}\! \left(x \right)\\ F_{623}\! \left(x \right) &= F_{624}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{624}\! \left(x \right) &= F_{625}\! \left(x \right)+F_{633}\! \left(x \right)\\ F_{625}\! \left(x \right) &= F_{626}\! \left(x \right)+F_{632}\! \left(x \right)\\ F_{626}\! \left(x \right) &= F_{627}\! \left(x \right)\\ F_{627}\! \left(x \right) &= F_{628}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{628}\! \left(x \right) &= F_{629}\! \left(x \right)+F_{630}\! \left(x \right)\\ F_{629}\! \left(x \right) &= F_{175}\! \left(x \right) F_{189}\! \left(x \right)\\ F_{630}\! \left(x \right) &= F_{631}\! \left(x \right)\\ F_{631}\! \left(x \right) &= F_{0}\! \left(x \right) F_{366}\! \left(x \right) F_{571}\! \left(x \right)\\ F_{632}\! \left(x \right) &= F_{0}\! \left(x \right) F_{346}\! \left(x \right)\\ F_{633}\! \left(x \right) &= F_{634}\! \left(x \right)+F_{635}\! \left(x \right)\\ F_{634}\! \left(x \right) &= F_{0}\! \left(x \right) F_{380}\! \left(x \right)\\ F_{635}\! \left(x \right) &= F_{2}\! \left(x \right) F_{636}\! \left(x \right)\\ F_{636}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{637}\! \left(x \right)+F_{641}\! \left(x \right)\\ F_{637}\! \left(x \right) &= F_{638}\! \left(x \right)\\ F_{638}\! \left(x \right) &= F_{0}\! \left(x \right) F_{639}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{639}\! \left(x \right) &= F_{640}\! \left(x \right)\\ F_{640}\! \left(x \right) &= F_{164}\! \left(x \right) F_{8}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{641}\! \left(x \right) &= F_{642}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{642}\! \left(x \right) &= F_{643}\! \left(x \right)\\ F_{643}\! \left(x \right) &= F_{0}\! \left(x \right) F_{644}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{644}\! \left(x \right) &= \frac{F_{645}\! \left(x \right)}{F_{8}\! \left(x \right)}\\ F_{645}\! \left(x \right) &= F_{646}\! \left(x \right)\\ F_{646}\! \left(x \right) &= F_{366}\! \left(x \right)+F_{375}\! \left(x \right)\\ F_{647}\! \left(x \right) &= F_{648}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{648}\! \left(x \right) &= F_{649}\! \left(x \right)+F_{659}\! \left(x \right)\\ F_{649}\! \left(x \right) &= \frac{F_{650}\! \left(x \right)}{F_{8}\! \left(x \right)}\\ F_{650}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{655}\! \left(x \right)+F_{651}\! \left(x \right)\\ F_{651}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{652}\! \left(x \right)\\ F_{652}\! \left(x \right) &= F_{653}\! \left(x \right)\\ F_{653}\! \left(x \right) &= F_{0}\! \left(x \right) F_{654}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{654}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{549}\! \left(x \right)\\ F_{655}\! \left(x \right) &= F_{656}\! \left(x \right)\\ F_{656}\! \left(x \right) &= F_{657}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{657}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{658}\! \left(x \right)\\ F_{658}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{659}\! \left(x \right) &= F_{660}\! \left(x \right)\\ F_{660}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{661}\! \left(x \right)\\ F_{661}\! \left(x \right) &= F_{662}\! \left(x \right)\\ F_{662}\! \left(x \right) &= F_{663}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{663}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{664}\! \left(x \right)+F_{672}\! \left(x \right)\\ F_{664}\! \left(x \right) &= F_{665}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{665}\! \left(x \right) &= F_{666}\! \left(x \right)+F_{670}\! \left(x \right)\\ F_{666}\! \left(x \right) &= F_{663}\! \left(x \right)+F_{667}\! \left(x \right)\\ F_{667}\! \left(x \right) &= F_{649}\! \left(x \right)+F_{668}\! \left(x \right)\\ F_{668}\! \left(x \right) &= F_{669}\! \left(x \right)\\ F_{669}\! \left(x \right) &= F_{0}\! \left(x \right) F_{48}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{670}\! \left(x \right) &= F_{671}\! \left(x \right)\\ F_{671}\! \left(x \right) &= F_{0}\! \left(x \right) F_{199}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{672}\! \left(x \right) &= F_{673}\! \left(x \right)\\ F_{673}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{48}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{674}\! \left(x \right) &= F_{675}\! \left(x \right)\\ F_{675}\! \left(x \right) &= F_{676}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{676}\! \left(x \right) &= F_{677}\! \left(x \right)+F_{678}\! \left(x \right)\\ F_{677}\! \left(x \right) &= F_{658}\! \left(x \right)\\ F_{678}\! \left(x \right) &= F_{679}\! \left(x \right)\\ F_{679}\! \left(x \right) &= F_{680}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{680}\! \left(x \right) &= F_{642}\! \left(x \right)+F_{681}\! \left(x \right)\\ F_{681}\! \left(x \right) &= F_{0}\! \left(x \right) F_{196}\! \left(x \right)\\ F_{682}\! \left(x \right) &= F_{683}\! \left(x \right)\\ F_{683}\! \left(x \right) &= F_{0}\! \left(x \right) F_{684}\! \left(x \right)\\ F_{684}\! \left(x \right) &= F_{510}\! \left(x \right)+F_{639}\! \left(x \right)\\ F_{685}\! \left(x \right) &= F_{633}\! \left(x \right)+F_{686}\! \left(x \right)\\ F_{686}\! \left(x \right) &= F_{636}\! \left(x \right)+F_{687}\! \left(x \right)\\ F_{687}\! \left(x \right) &= F_{0}\! \left(x \right) F_{510}\! \left(x \right)\\ F_{688}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{689}\! \left(x \right)+F_{697}\! \left(x \right)+F_{701}\! \left(x \right)\\ F_{689}\! \left(x \right) &= -F_{0}\! \left(x \right)-F_{690}\! \left(x \right)-F_{694}\! \left(x \right)+F_{168}\! \left(x \right)\\ F_{690}\! \left(x \right) &= F_{691}\! \left(x \right)\\ F_{691}\! \left(x \right) &= F_{0}\! \left(x \right) F_{692}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{692}\! \left(x \right) &= F_{181}\! \left(x \right)+F_{693}\! \left(x \right)\\ F_{693}\! \left(x \right) &= F_{182}\! \left(x \right)\\ F_{694}\! \left(x \right) &= F_{695}\! \left(x \right)\\ F_{695}\! \left(x \right) &= F_{696}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{696}\! \left(x \right) &= F_{175}\! \left(x \right)+F_{686}\! \left(x \right)\\ F_{697}\! \left(x \right) &= F_{698}\! \left(x \right)\\ F_{698}\! \left(x \right) &= F_{0}\! \left(x \right) F_{699}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{699}\! \left(x \right) &= F_{553}\! \left(x \right)+F_{700}\! \left(x \right)\\ F_{700}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{554}\! \left(x \right)\\ F_{701}\! \left(x \right) &= F_{702}\! \left(x \right)\\ F_{702}\! \left(x \right) &= F_{0}\! \left(x \right) F_{703}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{703}\! \left(x \right) &= F_{304}\! \left(x \right)+F_{483}\! \left(x \right)\\ F_{704}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{705}\! \left(x \right)+F_{739}\! \left(x \right)\\ F_{705}\! \left(x \right) &= F_{706}\! \left(x \right)\\ F_{706}\! \left(x \right) &= F_{2}\! \left(x \right) F_{707}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{707}\! \left(x \right) &= F_{708}\! \left(x \right)+F_{710}\! \left(x \right)\\ F_{708}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{709}\! \left(x \right)\\ F_{709}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{710}\! \left(x \right) &= F_{711}\! \left(x \right)+F_{712}\! \left(x \right)\\ F_{711}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{712}\! \left(x \right) &= F_{713}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{713}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{714}\! \left(x \right)+F_{728}\! \left(x \right)\\ F_{714}\! \left(x \right) &= F_{715}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{715}\! \left(x \right) &= F_{716}\! \left(x \right)+F_{726}\! \left(x \right)\\ F_{716}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{717}\! \left(x \right)\\ F_{717}\! \left(x \right) &= F_{718}\! \left(x \right)\\ F_{718}\! \left(x \right) &= F_{719}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{719}\! \left(x \right) &= F_{716}\! \left(x \right)+F_{720}\! \left(x \right)\\ F_{720}\! \left(x \right) &= F_{721}\! \left(x \right)+F_{722}\! \left(x \right)\\ F_{721}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{722}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{723}\! \left(x \right)+F_{724}\! \left(x \right)\\ F_{723}\! \left(x \right) &= F_{717}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{724}\! \left(x \right) &= F_{725}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{725}\! \left(x \right) &= F_{720}\! \left(x \right)\\ F_{726}\! \left(x \right) &= F_{727}\! \left(x \right)+F_{736}\! \left(x \right)\\ F_{727}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{27}\! \left(x \right)+F_{728}\! \left(x \right)\\ F_{728}\! \left(x \right) &= F_{729}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{729}\! \left(x \right) &= F_{730}\! \left(x \right)+F_{731}\! \left(x \right)\\ F_{730}\! \left(x \right) &= F_{727}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{731}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{732}\! \left(x \right)\\ F_{732}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{723}\! \left(x \right)+F_{733}\! \left(x \right)+F_{735}\! \left(x \right)\\ F_{733}\! \left(x \right) &= F_{734}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{734}\! \left(x \right) &= F_{726}\! \left(x \right)\\ F_{735}\! \left(x \right) &= 0\\ F_{736}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{723}\! \left(x \right)+F_{737}\! \left(x \right)\\ F_{737}\! \left(x \right) &= F_{738}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{738}\! \left(x \right) &= F_{726}\! \left(x \right)\\ F_{739}\! \left(x \right) &= F_{740}\! \left(x \right)\\ F_{740}\! \left(x \right) &= F_{120}\! \left(x \right) F_{2}\! \left(x \right) F_{8}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{741}\! \left(x \right) &= F_{2}\! \left(x \right) F_{742}\! \left(x \right)\\ F_{742}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{743}\! \left(x \right)\\ F_{743}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{19}\! \left(x \right)+F_{744}\! \left(x \right)\\ F_{744}\! \left(x \right) &= F_{745}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{745}\! \left(x \right) &= F_{746}\! \left(x \right)+F_{747}\! \left(x \right)\\ F_{746}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{743}\! \left(x \right)\\ F_{747}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{748}\! \left(x \right)\\ F_{748}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{749}\! \left(x \right)+F_{750}\! \left(x \right)+F_{752}\! \left(x \right)\\ F_{749}\! \left(x \right) &= F_{743}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{750}\! \left(x \right) &= F_{751}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{751}\! \left(x \right) &= F_{747}\! \left(x \right)\\ F_{752}\! \left(x \right) &= 0\\ F_{753}\! \left(x \right) &= F_{700}\! \left(x \right) F_{8}\! \left(x \right)\\ \end{align*}\)