Av(13452, 14352, 14532, 31452, 34152, 41352, 41532, 43152)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 112, 568, 3020, 16564, 92954, 531132, 3079790, 18078026, 107217242, 641519234, ...

This specification was found using the strategy pack "Point Placements Req Corrob" and has 141 rules.

Finding the specification took 38125 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 141 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= \frac{F_{9}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{13}\! \left(x \right) &= -F_{139}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= \frac{F_{17}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= \frac{F_{22}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= \frac{F_{25}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{25}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{27}\! \left(x \right) F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{32}\! \left(x \right) &= \frac{F_{33}\! \left(x \right)}{F_{37}\! \left(x \right) F_{4}\! \left(x \right)}\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{26}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= \frac{F_{38}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{38}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{26}\! \left(x \right) F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= \frac{F_{47}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{49}\! \left(x \right) &= -F_{82}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= \frac{F_{51}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{2}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{0}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{0}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{73}\! \left(x \right) &= \frac{F_{74}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right) F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{76}\! \left(x \right) F_{81}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{4}\! \left(x \right) F_{81}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{4}\! \left(x \right) F_{85}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{91}\! \left(x \right) &= -F_{126}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{4}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= \frac{F_{96}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= -F_{114}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= \frac{F_{99}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{112}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{111}\! \left(x \right)\\ F_{106}\! \left(x \right) &= \frac{F_{107}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{13}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{113}\! \left(x \right) &= -F_{12}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{118}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{0}\! \left(x \right) F_{117}\! \left(x \right)\\ F_{117}\! \left(x \right) &= x^{2} F_{117} \left(x \right)^{2}-2 x F_{117} \left(x \right)^{2}+F_{117}\! \left(x \right) x +2 F_{117}\! \left(x \right)-1\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{115}\! \left(x \right) F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{120}\! \left(x \right) &= \frac{F_{121}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)\\ F_{122}\! \left(x \right) &= -F_{125}\! \left(x \right)+F_{123}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{128}\! \left(x \right) &= \frac{F_{129}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{130}\! \left(x \right) &= -F_{135}\! \left(x \right)+F_{131}\! \left(x \right)\\ F_{131}\! \left(x \right) &= \frac{F_{132}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)\\ F_{133}\! \left(x \right) &= -F_{134}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{134}\! \left(x \right) &= x^{2} F_{134} \left(x \right)^{2}+2 x^{2} F_{134}\! \left(x \right)-2 x F_{134} \left(x \right)^{2}+x^{2}-3 x F_{134}\! \left(x \right)-x +2 F_{134}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{137}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{117}\! \left(x \right) F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right) F_{86}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 149 rules.

Finding the specification took 15020 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 149 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{6}\! \left(x \right) &= x^{2} F_{6} \left(x \right)^{2}-2 x F_{6} \left(x \right)^{2}+F_{6}\! \left(x \right) x +2 F_{6}\! \left(x \right)-1\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{14}\! \left(x \right) &= \frac{F_{15}\! \left(x \right)}{F_{19}\! \left(x \right) F_{4}\! \left(x \right)}\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{19}\! \left(x \right) &= \frac{F_{20}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{20}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{14}\! \left(x \right) F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{17}\! \left(x \right) F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= \frac{F_{32}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= \frac{F_{37}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= -F_{144}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{40}\! \left(x \right) &= -F_{87}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= \frac{F_{45}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= \frac{F_{48}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{48}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= \frac{F_{55}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= -F_{102}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= \frac{F_{59}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{2}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{0}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{0}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{80}\! \left(x \right) &= x^{2} F_{80} \left(x \right)^{2}+2 x^{2} F_{80}\! \left(x \right)-2 x F_{80} \left(x \right)^{2}+x^{2}-3 x F_{80}\! \left(x \right)-x +2 F_{80}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{4}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{85}\! \left(x \right) &= -F_{5}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= -F_{41}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{4}\! \left(x \right) F_{83}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{4}\! \left(x \right) F_{90}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{4}\! \left(x \right) F_{89}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{85}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{41}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{46}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{105}\! \left(x \right) &= -F_{135}\! \left(x \right)+F_{106}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{129}\! \left(x \right)\\ F_{109}\! \left(x \right) &= \frac{F_{110}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\ F_{111}\! \left(x \right) &= -F_{124}\! \left(x \right)+F_{112}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)+F_{123}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{122}\! \left(x \right)\\ F_{117}\! \left(x \right) &= \frac{F_{118}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)\\ F_{119}\! \left(x \right) &= -F_{33}\! \left(x \right)+F_{120}\! \left(x \right)\\ F_{120}\! \left(x \right) &= \frac{F_{121}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{121}\! \left(x \right) &= F_{81}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{85}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{41}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{127}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{0}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{125}\! \left(x \right) F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{129}\! \left(x \right) &= \frac{F_{130}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)\\ F_{131}\! \left(x \right) &= -F_{134}\! \left(x \right)+F_{132}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{137}\! \left(x \right) &= \frac{F_{138}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)\\ F_{139}\! \left(x \right) &= -F_{143}\! \left(x \right)+F_{140}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{117}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{11}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{144}\! \left(x \right) F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right) F_{95}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 149 rules.

Finding the specification took 15020 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 149 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{6}\! \left(x \right) &= x^{2} F_{6} \left(x \right)^{2}-2 x F_{6} \left(x \right)^{2}+F_{6}\! \left(x \right) x +2 F_{6}\! \left(x \right)-1\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{14}\! \left(x \right) &= \frac{F_{15}\! \left(x \right)}{F_{19}\! \left(x \right) F_{4}\! \left(x \right)}\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{19}\! \left(x \right) &= \frac{F_{20}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{20}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{14}\! \left(x \right) F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{17}\! \left(x \right) F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= \frac{F_{32}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= \frac{F_{37}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= -F_{144}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{40}\! \left(x \right) &= -F_{87}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= \frac{F_{45}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= \frac{F_{48}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{48}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= \frac{F_{55}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= -F_{102}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= \frac{F_{59}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{2}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{0}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{0}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{80}\! \left(x \right) &= x^{2} F_{80} \left(x \right)^{2}+2 x^{2} F_{80}\! \left(x \right)-2 x F_{80} \left(x \right)^{2}+x^{2}-3 x F_{80}\! \left(x \right)-x +2 F_{80}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{4}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{85}\! \left(x \right) &= -F_{5}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= -F_{41}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{4}\! \left(x \right) F_{83}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{4}\! \left(x \right) F_{90}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{4}\! \left(x \right) F_{89}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{85}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{41}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{46}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{105}\! \left(x \right) &= -F_{135}\! \left(x \right)+F_{106}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{129}\! \left(x \right)\\ F_{109}\! \left(x \right) &= \frac{F_{110}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\ F_{111}\! \left(x \right) &= -F_{124}\! \left(x \right)+F_{112}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)+F_{123}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{122}\! \left(x \right)\\ F_{117}\! \left(x \right) &= \frac{F_{118}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)\\ F_{119}\! \left(x \right) &= -F_{33}\! \left(x \right)+F_{120}\! \left(x \right)\\ F_{120}\! \left(x \right) &= \frac{F_{121}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{121}\! \left(x \right) &= F_{81}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{85}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{41}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{127}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{0}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{125}\! \left(x \right) F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{129}\! \left(x \right) &= \frac{F_{130}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)\\ F_{131}\! \left(x \right) &= -F_{134}\! \left(x \right)+F_{132}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{137}\! \left(x \right) &= \frac{F_{138}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)\\ F_{139}\! \left(x \right) &= -F_{143}\! \left(x \right)+F_{140}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{117}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{11}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{144}\! \left(x \right) F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right) F_{95}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 182 rules.

Finding the specification took 57610 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 182 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{9}\! \left(x , 1\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right)+F_{146}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{123}\! \left(x , y\right)\\ F_{11}\! \left(x , y\right) &= F_{0}\! \left(x \right)+F_{12}\! \left(x , y\right)\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{118}\! \left(x , y\right)+F_{15}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)+F_{21}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{17}\! \left(x , y\right)\\ F_{17}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)\\ F_{19}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\ F_{20}\! \left(x , y\right) &= y x\\ F_{21}\! \left(x , y\right) &= F_{22}\! \left(x , y\right)\\ F_{22}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{23}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{23}\! \left(x , y\right) &= F_{24}\! \left(x , y\right)+F_{28}\! \left(x , y\right)\\ F_{24}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{25}\! \left(x , y\right)\\ F_{25}\! \left(x , y\right) &= F_{26}\! \left(x , y\right)+F_{5}\! \left(x \right)\\ F_{26}\! \left(x , y\right) &= F_{27}\! \left(x , y\right)\\ F_{27}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{23}\! \left(x , y\right)\\ F_{28}\! \left(x , y\right) &= F_{115}\! \left(x , y\right)+F_{29}\! \left(x , y\right)\\ F_{29}\! \left(x , y\right) &= F_{109}\! \left(x , y\right)+F_{30}\! \left(x , y\right)\\ F_{30}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= -F_{108}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{34}\! \left(x \right) &= \frac{F_{35}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= -F_{104}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{0}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{46}\! \left(x \right) &= x^{2} F_{46} \left(x \right)^{2}+2 x^{2} F_{46}\! \left(x \right)-2 x F_{46} \left(x \right)^{2}+x^{2}-3 x F_{46}\! \left(x \right)-x +2 F_{46}\! \left(x \right)\\ F_{47}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= -F_{51}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= \frac{F_{50}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{50}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{51}\! \left(x \right) &= x^{2} F_{51} \left(x \right)^{2}-2 x F_{51} \left(x \right)^{2}+F_{51}\! \left(x \right) x +2 F_{51}\! \left(x \right)-1\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= \frac{F_{61}\! \left(x \right)}{F_{4}\! \left(x \right) F_{49}\! \left(x \right)}\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{49}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{79}\! \left(x \right) &= \frac{F_{80}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{80}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{81}\! \left(x \right) &= -F_{84}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= \frac{F_{83}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{83}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{4}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{4}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{0}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{6}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right) F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{0}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{0}\! \left(x \right) F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{0}\! \left(x \right) F_{106}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right) F_{97}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{2}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{109}\! \left(x , y\right) &= F_{110}\! \left(x , y\right) F_{95}\! \left(x \right)\\ F_{110}\! \left(x , y\right) &= F_{111}\! \left(x , y\right)\\ F_{111}\! \left(x , y\right) &= F_{112}\! \left(x , y\right) F_{17}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{112}\! \left(x , y\right) &= F_{113}\! \left(x , y\right)+F_{79}\! \left(x \right)\\ F_{113}\! \left(x , y\right) &= F_{114}\! \left(x , y\right)\\ F_{114}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{112}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\ F_{115}\! \left(x , y\right) &= F_{116}\! \left(x , y\right) F_{95}\! \left(x \right)\\ F_{25}\! \left(x , y\right) &= F_{116}\! \left(x , y\right)+F_{117}\! \left(x , y\right)\\ F_{117}\! \left(x , y\right) &= F_{110}\! \left(x , y\right)+F_{17}\! \left(x , y\right)\\ F_{118}\! \left(x , y\right) &= y F_{119}\! \left(x , y\right)\\ F_{119}\! \left(x , y\right) &= F_{120}\! \left(x , y\right)\\ F_{120}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{121}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{122}\! \left(x , y\right) &= F_{121}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\ F_{122}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)\\ F_{123}\! \left(x , y\right) &= F_{124}\! \left(x , y\right)+F_{130}\! \left(x , y\right)\\ F_{124}\! \left(x , y\right) &= F_{125}\! \left(x , y\right) F_{2}\! \left(x \right)\\ F_{125}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{126}\! \left(x , y\right)\\ F_{126}\! \left(x , y\right) &= F_{127}\! \left(x , y\right)\\ F_{127}\! \left(x , y\right) &= F_{128}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\ F_{128}\! \left(x , y\right) &= F_{129}\! \left(x , y\right)+F_{17}\! \left(x , y\right)\\ F_{129}\! \left(x , y\right) &= F_{126}\! \left(x , y\right)\\ F_{130}\! \left(x , y\right) &= F_{131}\! \left(x , y\right)\\ F_{131}\! \left(x , y\right) &= F_{132}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{132}\! \left(x , y\right) &= F_{133}\! \left(x , y\right)+F_{139}\! \left(x , y\right)\\ F_{133}\! \left(x , y\right) &= F_{134}\! \left(x , y\right) F_{2}\! \left(x \right)\\ F_{135}\! \left(x , y\right) &= F_{134}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{135}\! \left(x , y\right) &= F_{136}\! \left(x , y\right)\\ F_{137}\! \left(x , y\right) &= F_{130}\! \left(x , y\right)+F_{136}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= F_{137}\! \left(x , y\right)+F_{138}\! \left(x , y\right)\\ F_{138}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{125}\! \left(x , y\right)\\ F_{139}\! \left(x , y\right) &= F_{140}\! \left(x , y\right)\\ F_{140}\! \left(x , y\right) &= F_{141}\! \left(x , y\right)+F_{142}\! \left(x , y\right)\\ F_{141}\! \left(x , y\right) &= F_{125}\! \left(x , y\right) F_{93}\! \left(x \right)\\ F_{142}\! \left(x , y\right) &= F_{143}\! \left(x , y\right) F_{17}\! \left(x , y\right)\\ F_{144}\! \left(x , y\right) &= F_{143}\! \left(x , y\right)+F_{145}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= F_{144}\! \left(x , y\right)+F_{91}\! \left(x \right)\\ F_{145}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{26}\! \left(x , y\right)\\ F_{146}\! \left(x , y\right) &= F_{147}\! \left(x , y\right)\\ F_{147}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{148}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{148}\! \left(x , y\right) &= F_{149}\! \left(x , y\right)+F_{150}\! \left(x , y\right)\\ F_{149}\! \left(x , y\right) &= -\frac{-y F_{9}\! \left(x , y\right)+F_{9}\! \left(x , 1\right)}{-1+y}\\ F_{150}\! \left(x , y\right) &= F_{151}\! \left(x , y\right)\\ F_{151}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{152}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\ F_{153}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{152}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{153}\! \left(x , y\right) &= F_{154}\! \left(x , y\right)\\ F_{154}\! \left(x , y\right) &= F_{155}\! \left(x , y\right)+F_{174}\! \left(x , y\right)\\ F_{155}\! \left(x , y\right) &= F_{156}\! \left(x , y\right)\\ F_{156}\! \left(x , y\right) &= F_{157}\! \left(x , y\right)+F_{172}\! \left(x , y\right)\\ F_{157}\! \left(x , y\right) &= F_{158}\! \left(x , y\right)\\ F_{158}\! \left(x , y\right) &= F_{159}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{160}\! \left(x , y\right) &= F_{159}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\ F_{160}\! \left(x , y\right) &= F_{161}\! \left(x , y\right)\\ F_{161}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)+F_{162}\! \left(x , y\right)\\ F_{162}\! \left(x , y\right) &= F_{163}\! \left(x , y\right)\\ F_{163}\! \left(x , y\right) &= F_{164}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{164}\! \left(x , y\right) &= F_{150}\! \left(x , y\right)+F_{165}\! \left(x , y\right)\\ F_{165}\! \left(x , y\right) &= -\frac{y \left(F_{166}\! \left(x , 1\right)-F_{166}\! \left(x , y\right)\right)}{-1+y}\\ F_{9}\! \left(x , y\right) &= F_{166}\! \left(x , y\right)+F_{167}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{169}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{171}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{172}\! \left(x , y\right) &= F_{173}\! \left(x , y\right)\\ F_{173}\! \left(x , y\right) &= F_{159}\! \left(x , y\right) F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{174}\! \left(x , y\right) &= y F_{175}\! \left(x , y\right)\\ F_{175}\! \left(x , y\right) &= F_{176}\! \left(x , y\right)\\ F_{176}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{177}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{177}\! \left(x , y\right) &= F_{178}\! \left(x , y\right)+F_{180}\! \left(x , y\right)\\ F_{178}\! \left(x , y\right) &= F_{179}\! \left(x , y\right)\\ F_{179}\! \left(x , y\right) &= F_{117}\! \left(x , y\right) F_{159}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{159}\! \left(x , y\right) &= F_{180}\! \left(x , y\right)+F_{181}\! \left(x , y\right)\\ F_{181}\! \left(x , y\right) &= F_{121}\! \left(x , y\right)+F_{178}\! \left(x , y\right)\\ \end{align*}\)