Av(13452, 14253, 14352, 23451, 24153, 24351, 34152, 34251)
View Raw Data
Generating Function
\(\displaystyle \frac{4 x -5+\sqrt{8 x^{2}-8 x +1}}{4 x -4}\)
Counting Sequence
1, 1, 2, 6, 24, 112, 568, 3032, 16768, 95200, 551616, 3248704, 19389824, 117021824, 712934784, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -2\right) F \left(x \right)^{2}+\left(-4 x +5\right) F \! \left(x \right)+x -3 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n +3\right) = \frac{8 n a \! \left(n \right)}{n +3}-\frac{4 \left(3+4 n \right) a \! \left(n +1\right)}{n +3}+\frac{3 \left(5+3 n \right) a \! \left(n +2\right)}{n +3}, \quad n \geq 3\)

This specification was found using the strategy pack "Row And Col Placements Tracked Fusion" and has 22 rules.

Found on January 23, 2022.

Finding the specification took 59 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 22 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{3}\! \left(x \right) &= x\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\ F_{5}\! \left(x , y\right) &= F_{15}\! \left(x , y\right)+F_{6}\! \left(x , y\right)\\ F_{6}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x , y\right)\\ F_{7}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{8}\! \left(x , y\right)\\ F_{8}\! \left(x , y\right) &= F_{6}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{12}\! \left(x , y\right) F_{8}\! \left(x , y\right)\\ F_{11}\! \left(x , y\right) &= y x\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)+F_{6}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{12}\! \left(x , y\right) F_{6}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right)+F_{18}\! \left(x , y\right)+F_{20}\! \left(x , y\right)\\ F_{17}\! \left(x , y\right) &= -\frac{-y F_{6}\! \left(x , y\right)+F_{6}\! \left(x , 1\right)}{-1+y}\\ F_{18}\! \left(x , y\right) &= F_{19}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{19}\! \left(x , y\right) &= -\frac{-y F_{16}\! \left(x , y\right)+F_{16}\! \left(x , 1\right)}{-1+y}\\ F_{20}\! \left(x , y\right) &= F_{21}\! \left(x , y\right)\\ F_{21}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{12}\! \left(x , y\right) F_{16}\! \left(x , y\right)\\ \end{align*}\)

This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 30 rules.

Found on January 22, 2022.

Finding the specification took 21 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 30 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{3}\! \left(x \right) &= x\\ F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x , 1\right)\\ F_{6}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{7}\! \left(x , y\right)\\ F_{7}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x , y\right)+F_{23}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{8}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= -\frac{-y F_{10}\! \left(x , y\right)+F_{10}\! \left(x , 1\right)}{-1+y}\\ F_{10}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y\right)+F_{13}\! \left(x , y\right)+F_{14}\! \left(x , y\right)\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{12}\! \left(x , y\right) &= -\frac{-y F_{7}\! \left(x , y\right)+F_{7}\! \left(x , 1\right)}{-1+y}\\ F_{13}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{9}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{18}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , 1, y\right)\\ F_{16}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , z\right)+F_{13}\! \left(x , z\right)+F_{17}\! \left(x , z , y\right)+F_{19}\! \left(x , y , z\right)\\ F_{17}\! \left(x , y , z\right) &= F_{10}\! \left(x , y\right) F_{18}\! \left(x , z\right)\\ F_{18}\! \left(x , y\right) &= y x\\ F_{19}\! \left(x , y , z\right) &= F_{20}\! \left(x , y z , z\right)\\ F_{20}\! \left(x , y , z\right) &= F_{18}\! \left(x , z\right) F_{21}\! \left(x , y , z\right)\\ F_{21}\! \left(x , y , z\right) &= -\frac{z F_{16}\! \left(x , 1, z\right)-y F_{16}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\ F_{22}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{23}\! \left(x , y\right) &= F_{24}\! \left(x , y\right)\\ F_{24}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{25}\! \left(x , y\right) F_{7}\! \left(x , y\right)\\ F_{25}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{26}\! \left(x , y\right)\\ F_{26}\! \left(x , y\right) &= F_{27}\! \left(x , y\right)\\ F_{27}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{10}\! \left(x , 1\right)\\ \end{align*}\)