Av(13452, 13524, 13542, 31452, 31524, 31542, 35124, 35142)
Counting Sequence
1, 1, 2, 6, 24, 112, 562, 2927, 15598, 84494, 463534, 2568967, 14357212, 80801318, 457444848, ...
This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 97 rules.
Found on January 23, 2022.Finding the specification took 308 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 97 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{11}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{0}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= \frac{F_{10}\! \left(x \right)}{F_{11}\! \left(x \right)}\\
F_{10}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{11}\! \left(x \right) &= x\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{11}\! \left(x \right) F_{15}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{15}\! \left(x \right) &= \frac{F_{16}\! \left(x \right)}{F_{11}\! \left(x \right) F_{18}\! \left(x \right)}\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= -F_{23}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= \frac{F_{19}\! \left(x \right)}{F_{11}\! \left(x \right)}\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{11}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{11}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{22}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{23}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{11}\! \left(x \right) F_{15}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{11}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= \frac{F_{34}\! \left(x \right)}{F_{0}\! \left(x \right) F_{11}\! \left(x \right)}\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= -F_{96}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{38}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{38}\! \left(x \right) &= \frac{F_{39}\! \left(x \right)}{F_{11}\! \left(x \right) F_{87}\! \left(x \right)}\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= -F_{9}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{11}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= \frac{F_{45}\! \left(x \right)}{F_{11}\! \left(x \right)}\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{47}\! \left(x \right) &= -F_{9}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x , 1\right)\\
F_{49}\! \left(x , y\right) &= F_{50}\! \left(x , y\right)+F_{74}\! \left(x , y\right)\\
F_{50}\! \left(x , y\right) &= \frac{F_{51}\! \left(x , y\right) y -F_{51}\! \left(x , 1\right)}{-1+y}\\
F_{51}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{52}\! \left(x , y\right)\\
F_{52}\! \left(x , y\right) &= F_{53}\! \left(x , y\right)\\
F_{53}\! \left(x , y\right) &= F_{54}\! \left(x , y\right) F_{60}\! \left(x , y\right)\\
F_{54}\! \left(x , y\right) &= F_{55}\! \left(x , 1, y\right)\\
F_{55}\! \left(x , y , z\right) &= F_{56}\! \left(x , y z , z\right)\\
F_{56}\! \left(x , y , z\right) &= F_{57}\! \left(x , y\right)+F_{71}\! \left(x , y , z\right)\\
F_{57}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{58}\! \left(x , y\right)\\
F_{58}\! \left(x , y\right) &= F_{59}\! \left(x , y\right)\\
F_{59}\! \left(x , y\right) &= F_{60}\! \left(x , y\right) F_{61}\! \left(x , y\right)\\
F_{60}\! \left(x , y\right) &= y x\\
F_{61}\! \left(x , y\right) &= F_{62}\! \left(x , y\right)+F_{63}\! \left(x , y\right)\\
F_{62}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{60}\! \left(x , y\right)\\
F_{63}\! \left(x , y\right) &= F_{58}\! \left(x , y\right)+F_{64}\! \left(x , y\right)\\
F_{64}\! \left(x , y\right) &= F_{65}\! \left(x \right)+F_{66}\! \left(x , y\right)+F_{70}\! \left(x , y\right)\\
F_{65}\! \left(x \right) &= 0\\
F_{66}\! \left(x , y\right) &= F_{60}\! \left(x , y\right) F_{67}\! \left(x , y\right)\\
F_{67}\! \left(x , y\right) &= F_{68}\! \left(x , y\right)+F_{69}\! \left(x , y\right)\\
F_{68}\! \left(x , y\right) &= F_{60}\! \left(x , y\right)\\
F_{69}\! \left(x , y\right) &= F_{64}\! \left(x , y\right)\\
F_{70}\! \left(x , y\right) &= F_{58}\! \left(x , y\right) F_{60}\! \left(x , y\right)\\
F_{71}\! \left(x , y , z\right) &= F_{72}\! \left(x , y , z\right)\\
F_{72}\! \left(x , y , z\right) &= F_{57}\! \left(x , y\right) F_{60}\! \left(x , z\right) F_{73}\! \left(x , y , z\right)\\
F_{73}\! \left(x , y , z\right) &= \frac{-F_{55}\! \left(x , 1, z\right) z +F_{55}\! \left(x , \frac{y}{z}, z\right) y}{-z +y}\\
F_{74}\! \left(x , y\right) &= F_{75}\! \left(x , y\right)\\
F_{75}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{76}\! \left(x , y\right)\\
F_{76}\! \left(x , y\right) &= \frac{F_{77}\! \left(x , y\right) y -F_{77}\! \left(x , 1\right)}{-1+y}\\
F_{77}\! \left(x , y\right) &= F_{49}\! \left(x , y\right)+F_{78}\! \left(x , y\right)\\
F_{78}\! \left(x , y\right) &= F_{79}\! \left(x \right)+F_{84}\! \left(x , y\right)\\
F_{79}\! \left(x \right) &= -F_{9}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= -F_{46}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= \frac{F_{82}\! \left(x \right)}{F_{11}\! \left(x \right)}\\
F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= -F_{23}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{84}\! \left(x , y\right) &= F_{85}\! \left(x , y\right)\\
F_{85}\! \left(x , y\right) &= F_{54}\! \left(x , y\right) F_{60}\! \left(x , y\right) F_{79}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{84}\! \left(x , 1\right)\\
F_{87}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{88}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{11}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{11}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{87}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{11}\! \left(x \right) F_{90}\! \left(x \right) F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{87}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{11}\! \left(x \right) F_{87}\! \left(x \right) F_{93}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{0}\! \left(x \right) F_{17}\! \left(x \right)\\
\end{align*}\)