Av(1342, 2413, 2431, 3142, 3214)
Generating Function
\(\displaystyle -\frac{5 x^{4}-12 x^{3}+13 x^{2}-6 x +1}{\left(x^{2}-3 x +1\right) \left(3 x^{3}-5 x^{2}+4 x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 58, 171, 493, 1401, 3940, 10988, 30429, 83764, 229405, 625509, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right) \left(3 x^{3}-5 x^{2}+4 x -1\right) F \! \left(x \right)+5 x^{4}-12 x^{3}+13 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +5\right) = 3 a \! \left(n \right)-14 a \! \left(n +1\right)+22 a \! \left(n +2\right)-18 a \! \left(n +3\right)+7 a \! \left(n +4\right), \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +5\right) = 3 a \! \left(n \right)-14 a \! \left(n +1\right)+22 a \! \left(n +2\right)-18 a \! \left(n +3\right)+7 a \! \left(n +4\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle -\frac{35 \left(\left(\left(\mathrm{I}+\frac{43 \sqrt{31}}{1085}\right) \sqrt{3}-\frac{129 \,\mathrm{I} \sqrt{31}}{1085}-1\right) 2^{\frac{1}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}+\frac{968}{35}+\frac{22 \,2^{\frac{2}{3}} \left(\left(\mathrm{I}-\frac{16 \sqrt{31}}{31}\right) \sqrt{3}-\frac{48 \,\mathrm{I} \sqrt{31}}{31}+1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{35}\right) \left(\left(\frac{197 \left(\left(\mathrm{I}-\frac{299 \sqrt{31}}{6107}\right) \sqrt{3}-\frac{733 \,\mathrm{I} \sqrt{31}}{6107}+\frac{249}{197}\right) 2^{\frac{1}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{2904}+\frac{2^{\frac{2}{3}} \left(\left(\mathrm{I}+\frac{229 \sqrt{31}}{341}\right) \sqrt{3}-\frac{49 \,\mathrm{I} \sqrt{31}}{31}-\frac{15}{11}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{24}-\frac{5}{2}+\frac{\mathrm{I} \sqrt{31}}{186}\right) \left(\frac{47 \left(\left(\mathrm{I}-\frac{9 \sqrt{31}}{47}\right) \sqrt{3}-\frac{27 \,\mathrm{I} \sqrt{31}}{47}+1\right) 2^{\frac{1}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{8712}-\frac{\mathrm{I} \sqrt{3}\, \left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{5}{9}\right)^{-n}+\left(-\frac{13 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{258 \sqrt{31}}{403}\right) \sqrt{3}-\frac{41 \,\mathrm{I} \sqrt{31}}{403}+\frac{210}{13}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{1452}-\frac{2^{\frac{2}{3}} \left(\left(\mathrm{I}+\frac{192 \sqrt{31}}{31}\right) \sqrt{3}-\frac{37 \,\mathrm{I} \sqrt{31}}{31}-12\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{132}-\frac{5}{2}-\frac{\mathrm{I} \sqrt{31}}{186}\right) \left(\frac{2^{\frac{1}{3}} \left(9 \sqrt{31}\, \sqrt{3}-47\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{4356}-\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{18}+\frac{5}{9}\right)^{-n}-\frac{57 \left(5+\sqrt{5}\right) \left(2^{\frac{1}{3}} \left(\left(\mathrm{I}+\frac{7 \sqrt{31}}{171}\right) \sqrt{3}-\frac{7 \,\mathrm{I} \sqrt{31}}{57}-1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}-\frac{3872}{57}+\frac{11 \left(\left(\mathrm{I}-\frac{5 \sqrt{31}}{9}\right) \sqrt{3}-\frac{5 \,\mathrm{I} \sqrt{31}}{3}+1\right) 2^{\frac{2}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{19}\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{4840}+\frac{57 \left(\sqrt{5}-5\right) \left(2^{\frac{1}{3}} \left(\left(\mathrm{I}+\frac{7 \sqrt{31}}{171}\right) \sqrt{3}-\frac{7 \,\mathrm{I} \sqrt{31}}{57}-1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}-\frac{3872}{57}+\frac{11 \left(\left(\mathrm{I}-\frac{5 \sqrt{31}}{9}\right) \sqrt{3}-\frac{5 \,\mathrm{I} \sqrt{31}}{3}+1\right) 2^{\frac{2}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{19}\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{4840}+\left(-\frac{47 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}+\frac{9 \sqrt{31}}{47}\right) \sqrt{3}-\frac{27 \,\mathrm{I} \sqrt{31}}{47}-1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{8712}+\frac{\mathrm{I} \sqrt{3}\, \left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{5}{9}\right)^{-n}\right)}{2904}\)
This specification was found using the strategy pack "Point Placements" and has 30 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 30 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{17}\! \left(x \right) &= 0\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{15}\! \left(x \right)\\
\end{align*}\)