Av(1342, 2314, 2341, 2413, 4123)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{8}-9 x^{7}+31 x^{6}-66 x^{5}+86 x^{4}-70 x^{3}+34 x^{2}-9 x +1}{\left(x^{2}-3 x +1\right) \left(3 x^{3}-5 x^{2}+4 x -1\right) \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 155, 413, 1078, 2784, 7152, 18329, 46933, 120174, 307840, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right) \left(3 x^{3}-5 x^{2}+4 x -1\right) \left(x -1\right)^{3} F \! \left(x \right)-x^{8}+9 x^{7}-31 x^{6}+66 x^{5}-86 x^{4}+70 x^{3}-34 x^{2}+9 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(6\right) = 155\)
\(\displaystyle a \! \left(7\right) = 413\)
\(\displaystyle a \! \left(8\right) = 1078\)
\(\displaystyle a \! \left(n +5\right) = -\frac{n^{2}}{2}+3 a \! \left(n \right)-14 a \! \left(n +1\right)+22 a \! \left(n +2\right)-18 a \! \left(n +3\right)+7 a \! \left(n +4\right)-\frac{n}{2}-1, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(-2945 \,2^{\frac{1}{3}} \left(\left(-\frac{51 \sqrt{31}}{589}+\mathrm{I}\right) \sqrt{3}-\frac{153 \,\mathrm{I} \sqrt{31}}{589}+1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}+300080+3410 \left(\left(-\frac{6 \sqrt{31}}{31}+\mathrm{I}\right) \sqrt{3}+\frac{18 \,\mathrm{I} \sqrt{31}}{31}-1\right) 2^{\frac{2}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{47 \left(\left(\mathrm{I}-\frac{9 \sqrt{31}}{47}\right) \sqrt{3}-\frac{27 \,\mathrm{I} \sqrt{31}}{47}+1\right) 2^{\frac{1}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{8712}-\frac{\mathrm{I} \sqrt{3}\, \left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{5}{9}\right)^{-n}}{1350360}\\+\\\frac{\left(-3410 \left(\left(\frac{6 \sqrt{31}}{31}+\mathrm{I}\right) \sqrt{3}+\frac{18 \,\mathrm{I} \sqrt{31}}{31}+1\right) 2^{\frac{2}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+300080+2945 \,2^{\frac{1}{3}} \left(\left(\frac{51 \sqrt{31}}{589}+\mathrm{I}\right) \sqrt{3}-\frac{153 \,\mathrm{I} \sqrt{31}}{589}-1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{47 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}+\frac{9 \sqrt{31}}{47}\right) \sqrt{3}-\frac{27 \,\mathrm{I} \sqrt{31}}{47}-1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{8712}+\frac{\mathrm{I} \sqrt{3}\, \left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{5}{9}\right)^{-n}}{1350360}\\+\\\frac{\left(\left(1320 \,2^{\frac{2}{3}} \sqrt{31}\, \sqrt{3}+6820 \,2^{\frac{2}{3}}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+300080+\left(-510 \,2^{\frac{1}{3}} \sqrt{3}\, \sqrt{31}+5890 \,2^{\frac{1}{3}}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{2^{\frac{1}{3}} \left(9 \sqrt{31}\, \sqrt{3}-47\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{4356}-\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{18}+\frac{5}{9}\right)^{-n}}{1350360}\\+\frac{\left(-135036 \sqrt{5}+675180\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{1350360}+\\\frac{\left(135036 \sqrt{5}+675180\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{1350360}-\frac{n^{2}}{2}+\frac{n}{2}-1 & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 58 rules.

Found on January 18, 2022.

Finding the specification took 0 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 58 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{13}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{13}\! \left(x \right) &= x\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{13}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{13}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{13}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{13}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{13}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{13}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{37}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{13}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{13}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{43}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{13}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{13}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{13}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{13}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{55}\! \left(x \right)\\ \end{align*}\)