Av(1342, 1432, 2341, 2413, 4123)
Generating Function
\(\displaystyle \frac{x^{7}-3 x^{6}+4 x^{5}-3 x^{4}+x^{3}-5 x^{2}+4 x -1}{\left(x -1\right) \left(x^{3}-2 x^{2}+3 x -1\right) \left(x^{3}+x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 53, 141, 362, 905, 2222, 5384, 12919, 30775, 72909, 172006, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(x^{3}-2 x^{2}+3 x -1\right) \left(x^{3}+x^{2}+x -1\right) F \! \left(x \right)-x^{7}+3 x^{6}-4 x^{5}+3 x^{4}-x^{3}+5 x^{2}-4 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 53\)
\(\displaystyle a \! \left(6\right) = 141\)
\(\displaystyle a \! \left(7\right) = 362\)
\(\displaystyle a \! \left(n +6\right) = -a \! \left(n \right)+a \! \left(n +1\right)-2 a \! \left(n +2\right)+a \! \left(n +3\right)-4 a \! \left(n +4\right)+4 a \! \left(n +5\right)+2, \quad n \geq 8\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 53\)
\(\displaystyle a \! \left(6\right) = 141\)
\(\displaystyle a \! \left(7\right) = 362\)
\(\displaystyle a \! \left(n +6\right) = -a \! \left(n \right)+a \! \left(n +1\right)-2 a \! \left(n +2\right)+a \! \left(n +3\right)-4 a \! \left(n +4\right)+4 a \! \left(n +5\right)+2, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \frac{16873 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{7}-2 Z^{6}+3 Z^{5}-3 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +5}\right)}{2783}-\frac{24459 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{7}-2 Z^{6}+3 Z^{5}-3 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +4}\right)}{2783}+\frac{37437 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{7}-2 Z^{6}+3 Z^{5}-3 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +3}\right)}{2783}-\frac{30204 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{7}-2 Z^{6}+3 Z^{5}-3 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{2783}+\frac{6234 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{7}-2 Z^{6}+3 Z^{5}-3 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{253}-\frac{97815 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{7}-2 Z^{6}+3 Z^{5}-3 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{2783}+\frac{32377 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{7}-2 Z^{6}+3 Z^{5}-3 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{2783}+\left(\left\{\begin{array}{cc}1 & n =0 \\ 0 & \text{otherwise} \end{array}\right.\right)\)
This specification was found using the strategy pack "Point Placements" and has 107 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 107 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{29}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{28}\! \left(x \right) &= 0\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= 2 F_{28}\! \left(x \right)+F_{37}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{48}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{52}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{58}\! \left(x \right)+F_{91}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= 2 F_{28}\! \left(x \right)+F_{66}\! \left(x \right)+F_{70}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{65}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{7}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= 2 F_{28}\! \left(x \right)+F_{81}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{62}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= 3 F_{28}\! \left(x \right)+F_{70}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{4}\! \left(x \right) F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{84}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{86}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{4}\! \left(x \right) F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{93}\! \left(x \right) &= 0\\
F_{94}\! \left(x \right) &= F_{4}\! \left(x \right) F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{4}\! \left(x \right) F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{104}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{74}\! \left(x \right)\\
\end{align*}\)