Av(1342, 1432, 2143, 4123, 4213)
Generating Function
\(\displaystyle \frac{x^{5}+4 x^{4}-2 x +1}{\left(x -1\right) \left(2 x^{3}+x^{2}+2 x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 52, 139, 372, 991, 2636, 7011, 18644, 49575, 131820, 350507, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x -1\right) \left(2 x^{3}+x^{2}+2 x -1\right) F \! \left(x \right)+x^{5}+4 x^{4}-2 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 52\)
\(\displaystyle a \! \left(n +3\right) = 2 a \! \left(n \right)+a \! \left(n +1\right)+2 a \! \left(n +2\right)+4, \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 52\)
\(\displaystyle a \! \left(n +3\right) = 2 a \! \left(n \right)+a \! \left(n +1\right)+2 a \! \left(n +2\right)+4, \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 1 & n =1 \\ \frac{\left(\left(\left(-440 \sqrt{59}+649 \,\mathrm{I}\right) \sqrt{3}-1320 \,\mathrm{I} \sqrt{59}+649\right) \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-14278+\left(\left(226 \sqrt{59}+3481 \,\mathrm{I}\right) \sqrt{3}-678 \,\mathrm{I} \sqrt{59}-3481\right) \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(\left(71 \,\mathrm{I}+6 \sqrt{59}\right) \sqrt{3}-18 \,\mathrm{I} \sqrt{59}-71\right) \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{1452}-\frac{\mathrm{I} \sqrt{3}\, \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{1}{6}\right)^{-n}}{171336}\\+\\\frac{\left(\left(\left(226 \sqrt{59}-3481 \,\mathrm{I}\right) \sqrt{3}+678 \,\mathrm{I} \sqrt{59}-3481\right) \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}-14278+\left(\left(-440 \sqrt{59}-649 \,\mathrm{I}\right) \sqrt{3}+1320 \,\mathrm{I} \sqrt{59}+649\right) \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{\left(\left(-71 \,\mathrm{I}+6 \sqrt{59}\right) \sqrt{3}+18 \,\mathrm{I} \sqrt{59}-71\right) \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{1452}+\frac{\mathrm{I} \sqrt{3}\, \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{1}{6}\right)^{-n}}{171336}\\-1+\\\frac{\left(\left(-452 \sqrt{59}\, \sqrt{3}+6962\right) \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}+880 \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{59}\, \sqrt{3}-1298 \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-14278\right) \left(\frac{\left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{1}{6}+\frac{71 \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{726}-\frac{\left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{59}\, \sqrt{3}}{121}\right)^{-n}}{171336} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 78 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 78 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{37}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{36}\! \left(x \right) &= 0\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{41}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{37}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{48}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{49}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{59}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= x^{2}\\
F_{64}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{68}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{69}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{4}\! \left(x \right) F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
\end{align*}\)