Av(1342, 1423, 2413, 2431, 3412)
View Raw Data
Generating Function
\(\displaystyle -\frac{3 x^{4}-9 x^{3}+12 x^{2}-6 x +1}{\left(2 x^{3}-4 x^{2}+4 x -1\right) \left(x^{2}-3 x +1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 59, 180, 543, 1625, 4832, 14291, 42073, 123376, 360559, 1050589, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x^{3}-4 x^{2}+4 x -1\right) \left(x^{2}-3 x +1\right) F \! \left(x \right)+3 x^{4}-9 x^{3}+12 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +5\right) = 2 a \! \left(n \right)-10 a \! \left(n +1\right)+18 a \! \left(n +2\right)-17 a \! \left(n +3\right)+7 a \! \left(n +4\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle -\frac{\left(\left(\frac{13 \left(\left(\mathrm{I}-\frac{\sqrt{11}}{11}\right) \sqrt{3}-\frac{35 \,\mathrm{I} \sqrt{11}}{143}+\frac{9}{13}\right) 2^{\frac{2}{3}} \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{2}+8 \left(\left(\mathrm{I}+\frac{2 \sqrt{11}}{11}\right) \sqrt{3}-\frac{13 \,\mathrm{I} \sqrt{11}}{11}\right) 2^{\frac{1}{3}} \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}-\frac{16 \,\mathrm{I} \sqrt{11}}{11}-144\right) \left(\frac{13 \left(\left(\mathrm{I}-\frac{3 \sqrt{11}}{13}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{11}}{13}+1\right) 2^{\frac{2}{3}} \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{384}-\frac{\mathrm{I} \sqrt{3}\, \left(26+6 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(26+6 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}+\left(\left(\left(\frac{12 \sqrt{11}}{11}+\mathrm{I}\right) \sqrt{3}+\frac{\mathrm{I} \sqrt{11}}{11}-12\right) 2^{\frac{2}{3}} \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}+4 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{15 \sqrt{11}}{11}\right) \sqrt{3}-\frac{7 \,\mathrm{I} \sqrt{11}}{11}+3\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+\frac{16 \,\mathrm{I} \sqrt{11}}{11}-144\right) \left(\frac{2^{\frac{2}{3}} \left(3 \sqrt{11}\, \sqrt{3}-13\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{192}-\frac{\left(26+6 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{2}{3}\right)^{-n}-\frac{3 \sqrt{5}\, \left(\left(\left(\mathrm{I}+\frac{\sqrt{11}}{15}\right) \sqrt{3}-\frac{\mathrm{I} \sqrt{11}}{5}-1\right) 2^{\frac{2}{3}} \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}-\frac{256}{5}+\frac{8 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{\sqrt{11}}{3}\right) \sqrt{3}-\mathrm{I} \sqrt{11}+1\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{5}\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{2}+\frac{3 \sqrt{5}\, \left(\left(\left(\mathrm{I}+\frac{\sqrt{11}}{15}\right) \sqrt{3}-\frac{\mathrm{I} \sqrt{11}}{5}-1\right) 2^{\frac{2}{3}} \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}-\frac{256}{5}+\frac{8 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{\sqrt{11}}{3}\right) \sqrt{3}-\mathrm{I} \sqrt{11}+1\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{5}\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{2}-96 \left(-\frac{13 \,2^{\frac{2}{3}} \left(\left(\mathrm{I}+\frac{3 \sqrt{11}}{13}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{11}}{13}-1\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{384}+\frac{\mathrm{I} \sqrt{3}\, \left(26+6 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(26+6 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}\right) \left(\left(\left(\mathrm{I}+\frac{\sqrt{11}}{11}\right) \sqrt{3}-\frac{3 \,\mathrm{I} \sqrt{11}}{11}-1\right) 2^{\frac{2}{3}} \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}+32+2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{5 \sqrt{11}}{11}\right) \sqrt{3}-\frac{15 \,\mathrm{I} \sqrt{11}}{11}+1\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}\right)}{9216}\)

This specification was found using the strategy pack "Point Placements" and has 26 rules.

Found on July 23, 2021.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 26 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{13}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{11}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= x\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{13}\! \left(x \right) F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{20}\! \left(x \right) &= 0\\ F_{21}\! \left(x \right) &= F_{13}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{13}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{13}\! \left(x \right) F_{17}\! \left(x \right)\\ \end{align*}\)