Av(13254, 13524, 13542, 15324, 15342, 31254, 31524, 31542, 32154)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 111, 546, 2771, 14388, 76226, 411142, 2252125, 12498120, 70118395, 397026198, ...
Implicit Equation for the Generating Function
\(\displaystyle x^{5} \left(2 x -1\right) F \left(x \right)^{10}-3 \left(4 x +1\right) \left(2 x -1\right) x^{4} F \left(x \right)^{9}+x^{3} \left(2 x -1\right) \left(40 x^{2}+45 x +3\right) F \left(x \right)^{8}-x^{2} \left(25 x^{4}+380 x^{3}-76 x^{2}-58 x -1\right) F \left(x \right)^{7}-x^{2} \left(125 x^{4}-469 x^{3}-474 x^{2}+271 x +33\right) F \left(x \right)^{6}+x \left(310 x^{4}-1297 x^{3}+68 x^{2}+235 x +6\right) F \left(x \right)^{5}-x \left(300 x^{4}-369 x^{3}-1056 x^{2}+429 x +70\right) F \left(x \right)^{4}+\left(544 x^{4}-1160 x^{3}+3 x^{2}+200 x +4\right) F \left(x \right)^{3}+\left(-240 x^{4}+136 x^{3}+501 x^{2}-213 x -14\right) F \left(x \right)^{2}+\left(224 x^{3}-368 x^{2}+90 x +15\right) F \! \left(x \right)-64 x^{3}+80 x^{2}-12 x -5 = 0\)
Recurrence
\(\displaystyle a(0) = 1\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a(3) = 6\)
\(\displaystyle a(4) = 24\)
\(\displaystyle a(5) = 111\)
\(\displaystyle a(6) = 546\)
\(\displaystyle a(7) = 2771\)
\(\displaystyle a(8) = 14388\)
\(\displaystyle a(9) = 76226\)
\(\displaystyle a(10) = 411142\)
\(\displaystyle a(11) = 2252125\)
\(\displaystyle a(12) = 12498120\)
\(\displaystyle a(13) = 70118395\)
\(\displaystyle a(14) = 397026198\)
\(\displaystyle a(15) = 2265851491\)
\(\displaystyle a(16) = 13020160612\)
\(\displaystyle a(17) = 75267956861\)
\(\displaystyle a(18) = 437435210874\)
\(\displaystyle a(19) = 2554329386598\)
\(\displaystyle a(20) = 14979163194126\)
\(\displaystyle a(21) = 88178846315197\)
\(\displaystyle a(22) = 520896449682316\)
\(\displaystyle a(23) = 3086833871923702\)
\(\displaystyle a(24) = 18345606748612022\)
\(\displaystyle a(25) = 109321220881407831\)
\(\displaystyle a(26) = 653039245720478292\)
\(\displaystyle a(27) = 3909810710867084466\)
\(\displaystyle a(28) = 23457510166701536294\)
\(\displaystyle a(29) = 141011174063658577813\)
\(\displaystyle a(30) = 849205616043229793812\)
\(\displaystyle a(31) = 5122805773804414855511\)
\(\displaystyle a(32) = 30952205396277807479400\)
\(\displaystyle a(33) = 187292902789687994099974\)
\(\displaystyle a(34) = 1134901674715064669858244\)
\(\displaystyle a(35) = 6885998480345348919496535\)
\(\displaystyle a(36) = 41832610161439397743957250\)
\(\displaystyle a(37) = 254432522851244821962403111\)
\(\displaystyle a(38) = 1549218097685751689952831828\)
\(\displaystyle a(39) = 9442990973759997952596120720\)
\(\displaystyle a(40) = 57615639394680175349201227410\)
\(\displaystyle a(41) = 351870981114483968654896866154\)
\(\displaystyle a(42) = 2150892942323667109517739140002\)
\(\displaystyle a(43) = 13159150465736648776882700153611\)
\(\displaystyle a(44) = 80573708393092839912893496778244\)
\(\displaystyle a(45) = 493740996717107375051273346434865\)
\(\displaystyle a(46) = 3027821905738361981970946788340080\)
\(\displaystyle a(47) = 18581154823614974570117903730603516\)
\(\displaystyle a(48) = 114107225433883670724727976751481794\)
\(\displaystyle a(49) = 701195798989733980632144564858023165\)
\(\displaystyle a(50) = 4311611112979434893120179553967822214\)
\(\displaystyle a(51) = 26527912083036650140212062019275357445\)
\(\displaystyle a(52) = 163312526359359470234388805690343904902\)
\(\displaystyle a(53) = 1005956464128374279575620771268497268971\)
\(\displaystyle a(54) = 6199733201265174708108757680390471596146\)
\(\displaystyle a(55) = 38228944908093871575860357881710717703386\)
\(\displaystyle a(56) = 235846241052137749413803007504982592564254\)
\(\displaystyle a(57) = 1455711171439351243155651535154272535493936\)
\(\displaystyle a(58) = 8989256211427559064924056473090441734073308\)
\(\displaystyle a(59) = 55535111257208165922511043891905441263172410\)
\(\displaystyle a(60) = 343241889627759295296062773070737757716529004\)
\(\displaystyle a(61) = 2122342192344144672079364659274545405037315541\)
\(\displaystyle a(62) = 13128256688230417792455702364147378907656945044\)
\(\displaystyle a(63) = 81239935182758714489441563870075144643733877229\)
\(\displaystyle a(64) = 502918407724105517754258163958447953004909486676\)
\(\displaystyle a(65) = 3114481824405362643439199017745903978847743077182\)
\(\displaystyle a(66) = 19294319319127120330327981245269975190934750195584\)
\(\displaystyle a(67) = 119570439163064068248773904275231528614336298557972\)
\(\displaystyle a(68) = 741249489055615396386740292804768341061859929431516\)
\(\displaystyle a(69) = 4596708092072747131333887320192151471622540208212349\)
\(\displaystyle a(70) = 28514599780721413700382174746903609388664433957305994\)
\(\displaystyle a(71) = 176938176962862351077078061039665532438234495255773407\)
\(\displaystyle a(72) = 1098262033425795822069482369594772184767032583712879988\)
\(\displaystyle a(73) = 6818941177766090001884488434272168440076236969454784216\)
\(\displaystyle a(74) = 42349765921969784339837792264429642086828464186565082484\)
\(\displaystyle a(75) = 263090317608125096894935598508024095140004549028349040537\)
\(\displaystyle a(76) = 1634840220830455572426000502248563247220741611865896914134\)
\(\displaystyle a(77) = 10161534636036238070335594151353527210791998063417140414433\)
\(\displaystyle a(78) = 63176256728236603581230624519078901779119417886615750800194\)
\(\displaystyle a(79) = 392876680069282060177532024811153645850425123102098540194734\)
\(\displaystyle a(80) = 2443788778245828154939635023323828865436205491651696608016986\)
\(\displaystyle a{\left(n + 81 \right)} = - \frac{3629222080539824282788950323056668950838056640625 n \left(n + 1\right) \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(2 n + 1\right) \left(2 n + 3\right) \left(2 n + 5\right) a{\left(n \right)}}{166427189502976 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{41699442604561034296875 \left(n + 1\right) \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(2 n + 3\right) \left(2 n + 5\right) \left(11917083041330870931895555798 n^{2} + 111288831330857531702294848617 n + 251020765094006767266812816670\right) a{\left(n + 1 \right)}}{332854379005952 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{3005365232761155625 \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(2 n + 5\right) \left(16092343804646853543321846083076724 n^{4} + 331111252499196583030935458167844540 n^{3} + 2524623403585114253772427415519108091 n^{2} + 8427540676381900765809133716682413705 n + 10351680407104872724384095966591341550\right) a{\left(n + 2 \right)}}{998563137017856 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{649808698975385 \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(6166991494796914996887732043679918126824 n^{6} + 208128280938044161792620013619131481994132 n^{5} + 2903504880211036335802204012899968056152834 n^{4} + 21401656584547110241219179570545687072219163 n^{3} + 87775971447073764961880059695265184307845597 n^{2} + 189619976586332336596883681892845513261381310 n + 168279398999963478618941304426449956716405000\right) a{\left(n + 3 \right)}}{3994252548071424 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{3512479453921 \left(n + 4\right) \left(n + 5\right) \left(8547108547810902295593005606205326333961832 n^{7} + 387863822348731929966295410042641327521855564 n^{6} + 7518345223412843297441750173430245815871495550 n^{5} + 80651575162548163771794882250705977182297725909 n^{4} + 516820145319494422477197582889035573181856376420 n^{3} + 1977284121399098762726216571823908778574389992673 n^{2} + 4179702226630490285727499818179558826583341703932 n + 3763816291969989255799639033105997575534978418988\right) a{\left(n + 4 \right)}}{3994252548071424 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{94931877133 \left(n + 5\right) \left(918315981652926271306154663694604924680439582968 n^{8} + 53246000639932563573249013142103693597582353555508 n^{7} + 1348123026724412903626043045142141194380206138489898 n^{6} + 19461464202330688237097149847576097392804306240909303 n^{5} + 175155929339341114654914972025988454894183464709976602 n^{4} + 1006164895349277764844351182900499838287190371861881797 n^{3} + 3601719375861414273318017130936146089296720322503474632 n^{2} + 7344118915897492414614695626584528929480008714649367252 n + 6529720857795748914888605622336455423264486181602274960\right) a{\left(n + 5 \right)}}{1997126274035712000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{3 \left(10241047637561697 n^{2} + 1586064641248207082 n + 61400361468174582980\right) a{\left(n + 80 \right)}}{65010620899600 \left(n + 82\right) \left(2 n + 163\right)} - \frac{\left(559886122748238751891 n^{4} + 172337255452541588504852 n^{3} + 19891435256491249311186181 n^{2} + 1020344904721388618939836620 n + 19626182691656066605004260200\right) a{\left(n + 79 \right)}}{5200849671968000 \left(n + 81\right) \left(n + 82\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(59277883937083237315185481 n^{6} + 27195698087951918801872289652 n^{5} + 5198510786921846586310755911965 n^{4} + 529955055538457268225376426516638 n^{3} + 30388162739690718625915891797178384 n^{2} + 929290562390782327984772885550420240 n + 11840512025339608947663081166528507200\right) a{\left(n + 78 \right)}}{3744611763816960000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(42340695050945489969865425163 n^{7} + 22410339356185516283929147156519 n^{6} + 5083384244229165900949832794583049 n^{5} + 640583717790236416612244530394640337 n^{4} + 48432978357998724744819223847132237568 n^{3} + 2197095316011876893771589597039128517484 n^{2} + 55370114640283395880509201759845260483560 n + 598021210631677689619473253599091655604000\right) a{\left(n + 77 \right)}}{49928156850892800000 \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(14137988455232771706603341403355 n^{8} + 8465919498659153690109227936032116 n^{7} + 2217852742733137483175536460741492560 n^{6} + 332007068305196921393078164413842076456 n^{5} + 31062482685235954525406801553603912992629 n^{4} + 1859941407384406942105449956672070284420880 n^{3} + 69604411815726300650628650459374382034240996 n^{2} + 1488437867337202586283047683185118920210774288 n + 13925067070150720651159709630782482754394697600\right) a{\left(n + 76 \right)}}{399425254807142400000 \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(575832360111252250909287324840213007 n^{9} + 384274600234156129104824902277674927467 n^{8} + 113972056876106089533956054583926603946522 n^{7} + 19718124330498766563625821244866042749000982 n^{6} + 2193012488348741733283522052415450896381911383 n^{5} + 162599523487095820976021470710012197978779346523 n^{4} + 8037115237561022941842688730924086548733276690448 n^{3} + 255381669979224655696452838575123630458354173176228 n^{2} + 4733586040294715464737489225774494167299877612569840 n + 38994436436328818756850927202272842765128127347968000\right) a{\left(n + 75 \right)}}{479310305768570880000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(436597154374334671528774340823572931047 n^{9} + 287662666321095822434888872749739507308226 n^{8} + 84236418840501292030477508073815676125357934 n^{7} + 14388963728159470295650997894355808749150138940 n^{6} + 1580047610437811417767925988273145453513801798143 n^{5} + 115668806590154354677398253474819924904895178405354 n^{4} + 5645051237050115562061434607515190104352207141603276 n^{3} + 177105045311660261434372356839190054551629184046886680 n^{2} + 3241214989904447520065880821063857582101068261501340000 n + 26363278702892116276716488054849991960292144622260800000\right) a{\left(n + 74 \right)}}{12781608153828556800000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(425140167846971023128595119652975388754587 n^{9} + 276516680920821986319017417078496929453172572 n^{8} + 79933176084239970606473342670300408802144282078 n^{7} + 13478724606230320908306340169816042976805596227408 n^{6} + 1461114841559867870174818188663375061380623779770883 n^{5} + 105591300870757909732052918215063953890125510091080388 n^{4} + 5087217573542419408641659152581857496537830415514048772 n^{3} + 157560281914534598482864305079107672691699304024001958032 n^{2} + 2846622782764199121839932438838765029212477051007223623680 n + 22857601945446689309636205908102456778145560391080584217600\right) a{\left(n + 73 \right)}}{511264326153142272000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(360432150722592659921674819729137138863863323 n^{9} + 231379705036020080225585276069157401078685929584 n^{8} + 66015562295177133269038637105363516817518258885462 n^{7} + 10987178798461519845305847277394864499526813985596096 n^{6} + 1175554328414699649277997015764774611475079159120882267 n^{5} + 83851396474119090898190923286423708262383556273751526896 n^{4} + 3987393941356193364634610088286836638783512883081887475828 n^{3} + 121894789277167699420170912003459015033076385212168814397024 n^{2} + 2173705870695285872019435017476320011924327395245531473622720 n + 17228081394369169085320741091274653884375402329171714985612800\right) a{\left(n + 72 \right)}}{20450573046125690880000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(13479078121319473630802237061940464156116529991 n^{9} + 8538805717244512819718304650075298780273758042886 n^{8} + 2404120418619685722946006592254894539420098377924260 n^{7} + 394854363264285427307904244893584282783125741403398038 n^{6} + 41690506429736989215376490936301650037999375747740117049 n^{5} + 2934616519099098912657752146385465313196807581403908994884 n^{4} + 137714506360475420826090346953283435310344206198564190101740 n^{3} + 4154589186397412790785190697491579341158339204010832638824272 n^{2} + 73113749443243996400839421292710304650107525692356446377554880 n + 571864945117957373216539655476624466358758425884420744524812800\right) a{\left(n + 71 \right)}}{40901146092251381760000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(898949623752600261805626109799336733926805972771 n^{9} + 561858769110743984388764090787213179899346805270739 n^{8} + 156078816538268043830332364908683648351210932567141102 n^{7} + 25292122068257505562558214206467227772016228970769046298 n^{6} + 2634807940133394072394008429655562926686402158474973235007 n^{5} + 182990910062163517669927006764522508976612080077082929288431 n^{4} + 8472803482932124375996924469513098671784236407713009203538688 n^{3} + 252201549474738416685744957211115104866720781148424651128280772 n^{2} + 4379191054201800767780725405853725711173123891705718339465842192 n + 33796089705469048440604571773060597043654540924284111190920112640\right) a{\left(n + 70 \right)}}{163604584369005527040000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{94931877133 \left(810375154073136751461949467718668838643453440557428 n^{9} + 57996074683638525296241236862513840847885748428817580 n^{8} + 1841562507705176068313439898953786644126871779728416465 n^{7} + 34044939022501123236156558537737666295434426387359023750 n^{6} + 403742837060937590164752733006440276368453322107644096299 n^{5} + 3184596576750606007518531814702302527653870936922513961900 n^{4} + 16704162044217640268138399288225805642557868340641598792210 n^{3} + 56176024557052888861344685884116177978716370175515033976150 n^{2} + 109893329651594465459791560258106429586958542927291919382398 n + 95263779519750157381290467499495802044529671777087371411820\right) a{\left(n + 6 \right)}}{374461176381696000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(9707366501062798671651114049176856764974953785436607 n^{9} + 5985012177394181950102867552133865113891730785015902710 n^{8} + 1640047835846240163205665093095694841012178211407456619486 n^{7} + 262165408789346751847845219002016443503652309396754425665428 n^{6} + 26941362546123500999529063010017426180518551697926867904972343 n^{5} + 1845795168858549482019541778085417966877837916016198919896716910 n^{4} + 84307741332122870986562565940485985591269078501308244063922521484 n^{3} + 2475582233370918474002845959492148430919514048583478896086519134792 n^{2} + 42404871725931967157407452830237674701075679694210256342755732615520 n + 322837185560660122442106020374101612393604156319454201567626397657600\right) a{\left(n + 69 \right)}}{117795300745683979468800000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{94931877133 \left(42504979844326186482447302648883755479920630067435944 n^{9} + 3406415471716303495678348392553238564505124133215250700 n^{8} + 121215221327935125718533582274872928176421326467707701482 n^{7} + 2513270205121377541324753947906746965147078593881902229069 n^{6} + 33455508777630023664866024606992294216214709053855919237101 n^{5} + 296461203603843343517813406443017608435461019262886855240105 n^{4} + 1748540397967852090866148948187967293965260079461763010603513 n^{3} + 6618159149497519498632904529368552285421192505350873342980286 n^{2} + 14584774229165671527076835223944418007779118797189214003931400 n + 14256506544716407411947258901677822356224494037003255555046400\right) a{\left(n + 7 \right)}}{4992815685089280000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(109937869100347432974033598900263581665500180750617321 n^{9} + 66849350949511838858357737034231745562334212575062528244 n^{8} + 18066658485979414713050246534867912004008417147304538529514 n^{7} + 2848320008305823640092355766386640452688892350176553286965176 n^{6} + 288687476620132247358983255079346835035677085056571609422327129 n^{5} + 19506970496960095061100564817381799448042664294932577855004040036 n^{4} + 878768866759317418161595624733071008783789140616026712598854551476 n^{3} + 25450036882989207966511552024122523628483794602257043189147083815344 n^{2} + 429965532445200325378784041973083245266333307630738933197168832065760 n + 3228577848207611879260747384212114764738792751972325929962718116515200\right) a{\left(n + 68 \right)}}{98162750621403316224000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(6810987317895755301976901177831546788367943026186440441 n^{9} + 4083743698011352897614187692940100140027210503977087720688 n^{8} + 1088279761676556721327006235694518185494450798195704963951544 n^{7} + 169182662892461179002365876637481275186052536098422165582155702 n^{6} + 16908392220610367769145879169875013979282989763557965298262402579 n^{5} + 1126612167053338510334542734809932032813775472603561918087183518002 n^{4} + 50046357369025852172620890598721513696821745603461135255767826550876 n^{3} + 1429230904287652646647756473357162202391235877320304563562050143987208 n^{2} + 23810404811732849399469194233840723026040781786935941605632795495498560 n + 176305778789581597782490107634874059142563016939986124751904783054089600\right) a{\left(n + 67 \right)}}{490813753107016581120000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{2565726409 \left(10581303814992044850895809341161292840748414118351690728 n^{9} + 938694572918418200321761746935780821000860694404386283452 n^{8} + 36993786500715787620654939639315832314763336274623848916250 n^{7} + 849937490235725388974444394708129502690482659120299304576405 n^{6} + 12543973558409295112149560283916376249039357559887500718676563 n^{5} + 123313186153010290994237833940109826383113296960826549701435733 n^{4} + 807338492846938270452926109904292078397366192092568261235749155 n^{3} + 3394127984093847853102184673225511060925034626895075028970136810 n^{2} + 8313459626256616747503276945975184804093816993311212792082911064 n + 9038006301545706720567431706021110307203951727870608436161758080\right) a{\left(n + 8 \right)}}{9985631370178560000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(232034656306663019703706372581201505892477575251167997433 n^{9} + 137154517098289173175667443707279789630051153531481112526243 n^{8} + 36033293817620412904302063499613806336788401837795965549845540 n^{7} + 5522477651125069469384570156303388037808215851006753115433670714 n^{6} + 544124227746429293651025975650287695992715665308225555052086624557 n^{5} + 35742981510296145916840804884396730996780487603324256931676088773307 n^{4} + 1565353254195548556475481406971593112002810612187124485863643307878150 n^{3} + 44072613336932491720158837167011753373596240739588675364115202311734216 n^{2} + 723873502128578232495093984663697410741372014313902503568289058938665040 n + 5284390824107761407945555257402185003591955573198820819020956041731808000\right) a{\left(n + 66 \right)}}{1472441259321049743360000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(3234185402326278539523677837479122659209940035130495034557 n^{9} + 1884255231964444518714474877396260935163263558766481868672466 n^{8} + 487926100129440891139154148044213192254604189049260419671881022 n^{7} + 73706782072477452359847271783845737598143786478218673916057607592 n^{6} + 7158101915490726898227635775361648070909123335763715913517411133201 n^{5} + 463468114162341385281153227859873381038065911717370176063497816446974 n^{4} + 20006617258809553296353984735086111209137133228757886744990382113311348 n^{3} + 555220229817587859189118582114858243195875283577591385665384145641821608 n^{2} + 8988708464777113539327073340450895393834389001364485119104322783750672352 n + 64680095401676983942967075819737926895810864736069602539382798915234318080\right) a{\left(n + 65 \right)}}{1963255012428066324480000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(15620462397845933342621022152450242000970006398386889645819 n^{9} + 8967960031713133162072522697772357475831531890624615098561688 n^{8} + 2288420586381607384047439575204407757979120476677866617767636892 n^{7} + 340659116699989113780947345883733065040046443927959522386117525076 n^{6} + 32601991128103940472631230006880969977828139265413063797291730673163 n^{5} + 2080188588085805036534706643333053607699909710545641182211354813525452 n^{4} + 88490375501752069241357805857352918486115930658037431183789799303604838 n^{3} + 2420082158134965681124054611118627253802974299496822296088551684496974344 n^{2} + 38610685341578756948946393200686229098505280821075089962573346370605101528 n + 273797318914694901384603897633341272135481530432720320471842957035187821920\right) a{\left(n + 64 \right)}}{981627506214033162240000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(69934490113645127855644985514340024081319266546778011494599 n^{9} + 39556933366399724334656281013473001134886394905212087877755929 n^{8} + 9944869578176601231403819713294678605874482094929913867517917699 n^{7} + 1458547004809126866087579382656594988258595472903409017442307193069 n^{6} + 137525927745298134106749312674855617130069437223722820344242236660688 n^{5} + 8645419921742679216865055839438510741557447597504852967071213650692986 n^{4} + 362347465315839500218870020889742008482483091261020102004253088124779766 n^{3} + 9763555298410815692860510893509469894236972225356770464384472866495447016 n^{2} + 153474761473461050678796523580880851597392648875624906690033489966797736408 n + 1072292109267769525071106060517559286359179899914010306357677520017826799520\right) a{\left(n + 63 \right)}}{490813753107016581120000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{69343957 \left(214946171049068269453455505497340746642985522928916850943728 n^{9} + 20911160064429608702563742866962458408083762668269966967437580 n^{8} + 904053600068148635383835717641830337540047906592416176776175010 n^{7} + 22794122435691630382532517587072977979798757494886835253690608260 n^{6} + 369326189892968548692093723891431909439267147725439145840609861749 n^{5} + 3987501798110844589306788336355598573671153623575708811148473796890 n^{4} + 28684583703549342297917717411984048554513393713770377659247422467615 n^{3} + 132560667703843659095910296287646639468325749977725948877148408302140 n^{2} + 357075454245903397925493884569345173738933389011197415795656747058248 n + 427116213408533151414185758388659802913253701203273474165044001133480\right) a{\left(n + 9 \right)}}{1872305881908480000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(1164067428396286343323139366563397070239014139126839606366187 n^{9} + 648554813920248688681946863625062607630826642997333394111829741 n^{8} + 160606577546470410407398316760988011791644522442652899165440296762 n^{7} + 23202118885981225572844582475899789555405200315866514779586654597210 n^{6} + 2154952007027112805522409989814911501808603199205697026184897474487867 n^{5} + 133440521688620698261510776306201250208648811148068654207154290462464589 n^{4} + 5509070167887429442223445692381299116179452214361194903144379278185094608 n^{3} + 146222875724858514531398896170296237191037751889720991182389902537890751340 n^{2} + 2264130038932323385301207716461681884812269935819736897341598676905820513296 n + 15582509179175208767110003197231883504777726146502852884286111268499958302720\right) a{\left(n + 62 \right)}}{981627506214033162240000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(30081705274633731646436346891492847799437797803066155731980027 n^{9} + 16504949067635214368188157921222588487041887685871469407575621954 n^{8} + 4025100724843846143867327754702029243759203026706084065003946726338 n^{7} + 572650615231868506846656597783562028071969801273611218011736270043816 n^{6} + 52378261207921172608831144556078000191472184294024645441566705078159983 n^{5} + 3194150134135497651368855566535623089677888074077147514789488354769730286 n^{4} + 129868176398796773267170572848250666912720709253544825885603117386769843092 n^{3} + 3394683764530003220865379185298236075683469451234666778378176494205389103144 n^{2} + 51766362391888620952773585536376663713183337010609478418232181338947448647360 n + 350871958670514116097996083003653208307275251773500857479309111737432548771200\right) a{\left(n + 61 \right)}}{3272091687380110540800000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{1874161 \left(685232399766652047786239188192294853521924847333636562474633808 n^{9} + 72542507796541771129424821611323403361906881080505774864665875900 n^{8} + 3413636853371969618911078138253957057742793793968817034230547515520 n^{7} + 93705613039936685218786021412697601077672512126823077250330959167885 n^{6} + 1653450022515897424340528534975325638436550933095316501503595518949359 n^{5} + 19446695404897004820515028575383535242386604294035450142309889113877095 n^{4} + 152436702106591562302287938427630918520119520324028996792549629401227405 n^{3} + 767873409407126732222812837409852437862111885229020948154794723693954640 n^{2} + 2255339454125449185035975781510845139262914067349209007875366432784913108 n + 2942541023648548794651843689679732273628461157772991476304158508583522080\right) a{\left(n + 10 \right)}}{62410196063616000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{1874161 \left(3163374081356678534462775771808566786032290144718904404552494736 n^{9} + 362070064028380495870591681769282596867166130509565252663761016548 n^{8} + 18423662192524618959607148068772254047701562354024445868446397159964 n^{7} + 546966652077312617966890067598508917335695260011407964290721788805905 n^{6} + 10440161744341957361195071383741046089281585107080015917690354485521861 n^{5} + 132853498674741022862746774943248442137482340168259056915734648119992117 n^{4} + 1126998113290771436560219536715021990983394942480483827123132044209131631 n^{3} + 6145114804404427632483768735547057915591470793072299524401504171902467030 n^{2} + 19541759248494341022657751399438735125586252646953791526593804678351481728 n + 27611767495060299804403377007480154684711751934012456219817894927761186080\right) a{\left(n + 11 \right)}}{124820392127232000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(4896580361754260312321024718353708685594390028674864664249897501 n^{9} + 2645173252799932691852117971058386262398671447683215422908510120268 n^{8} + 635139037076048321301523816188784611294534942957743519543125070225664 n^{7} + 88968551281512594252857770165042597918462507413184255542684206415120912 n^{6} + 8012263169716925479249351169541564087939688554532637930411142035740429449 n^{5} + 481082319289495388571102570083994298799490425385652414022160818344796669892 n^{4} + 19258805553250685858351821200212808084856857819820225421691387170770982658866 n^{3} + 495668191571159864030473566829005867254367092071572438521897286573838262987328 n^{2} + 7442298271048155396433748269968514460703190919704742765148128285585301499818120 n + 49668191635686294053714164020945194234865138026220636420119146061502584025974400\right) a{\left(n + 60 \right)}}{73622062966052487168000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(7356087237610047378576604258008455537036448139470157510749811073 n^{9} + 3911696090948860821937737580772574872068655868291071349092666193998 n^{8} + 924568813680309606987048719806317017288830792506711185242316214753030 n^{7} + 127487864255803268098973089159639701989684301230014175654369978229961664 n^{6} + 11301910336432403094359457520516250751300435907259298904029795564366200637 n^{5} + 668009739437935704132453012600965491450654250181422735063170766951952111962 n^{4} + 26324607435792152176319711736699336700448103106840213206199519465440900535420 n^{3} + 666952892182674689485910623255252269521285298942398090334293602786338122097816 n^{2} + 9857916217070385771374069527249385192158053758269269617366053151803763310417600 n + 64763858117840922154221115225672624361625716049954742865829774476937427245542400\right) a{\left(n + 59 \right)}}{16360458436900552704000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(69772529296809165943751712156062357511947384777647689077348912918 n^{9} + 36514836634373884569577918591523515002040073294009880689936013634989 n^{8} + 8494002172867037812934728303966419429539091487742139089161046395560024 n^{7} + 1152691373031176957023993601470785637952524801868232153741914388003573570 n^{6} + 100570198870798420883212444222457635124279031765680910010981175675416863006 n^{5} + 5850266771061715288402480028367910208879156748689949120000073004718271012101 n^{4} + 226898883593582647877697762192262423999469358419602775498114731939538042008996 n^{3} + 5657770606799814214888198896908140729534960541898038819788396509231916960005900 n^{2} + 82303279484166439636592788049622067886560027060928824317201329801487691053181776 n + 532167906808226431338684599767638942524846751048599530540613823433576787535659520\right) a{\left(n + 58 \right)}}{24540687655350829056000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(762358942837502134612808152776009324776108013624351892662410570612 n^{9} + 386209643468223632180708355499513393905172981021364864549721308747633 n^{8} + 86965712917630911708878228293954749005373864802552185151571431656625082 n^{7} + 11424412273296288632296871348680873357914156427161051059069906126386539814 n^{6} + 964891358393093312151424303563119322061566504168401314278678061705887026804 n^{5} + 54334563001918969712552228116552573932849021290111797061339968205630215029637 n^{4} + 2039986749514916349377809985170179438723488706363465040641416536418468975384598 n^{3} + 49242244714327608065606307919326399492276941861877041932054296818094007667641796 n^{2} + 693442040229751293588629810064716433901403276266358944253452501772684809167746184 n + 4340554225479266936251936628593208866988689015979284283215431566660418671698869600\right) a{\left(n + 56 \right)}}{8180229218450276352000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(1238717749060710474133631544306154541483457581222181905360971695125 n^{9} + 637877301483606019931987958040214827325241263176489104038664034271046 n^{8} + 146003044421473360327656954079468583610019287807191492993747534910558654 n^{7} + 19496030390169623663774246229065907605967504390579269938772861094853261500 n^{6} + 1673739623436128454412406405549411090698588745949048907709165788735677085221 n^{5} + 95803530057622811099743546725267316625907268126710575760657645786663486606774 n^{4} + 3656177315929677759318512974599845126420525596375651641258100077082812971938456 n^{3} + 89707974941618233590390015265845865115296696503706537775265264876139121581697640 n^{2} + 1284089942561632634645069206671291626238027040392080345200389262722535569827173584 n + 8169985933706541698643747381427915241924123032507433276889465570321796173154087680\right) a{\left(n + 57 \right)}}{73622062966052487168000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{1874161 \left(1481371191446461152618802900912477961418081230517323853508208616688 n^{9} + 182302618218420004561309919481938861596849602455664221230454672329860 n^{8} + 9974991955634378195068191714785546726957824766089814540308989766030140 n^{7} + 318484759318933323654698757721519925748817614450796756995963974542811775 n^{6} + 6538623560846067249197385928514364005005970366694198188680156588098363729 n^{5} + 89509330106976592731734332555898622404698062221238144609746391598560341925 n^{4} + 816966131648783600807025864128739192892943428215557943788691782521684712435 n^{3} + 4793689056880849426606969407375952265551316157804819857929495829262515082900 n^{2} + 16407397536654681837371057571800198357345071817505452387837884710626320155708 n + 24956692518791080997685865747850019337893108903179613481113543593935979779440\right) a{\left(n + 12 \right)}}{28084588228627200000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(7901207144560329299232868464151012061997420323466009417763773014203 n^{9} + 3937167373810643542749911361035596287041718053103091713709178883270418 n^{8} + 872039658596261583650600610955960573421025903733967920940838036202278746 n^{7} + 112680828600170558916882979407845201836997587983000584783881186561471992808 n^{6} + 9361019161847374866993092495568373015267528304069263284843426500384361959303 n^{5} + 518501471962182640719436137390839055969056641035030434294160115160396879364862 n^{4} + 19148324856659366888928358967258300668286850772956360273035114492299880500967044 n^{3} + 454643950303027190694707760980849444681959167892637099661721115414812143428790312 n^{2} + 6297589760677664863653517658678220109966652506281015210312676930108021143134133504 n + 38773988780541465806174570022669768386491145397290400482374778967978554594691849600\right) a{\left(n + 55 \right)}}{16360458436900552704000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(172188297241150039121181832941650348177966624012735341416992267688347 n^{9} + 84384640219443642970712795226761290958409426022845985583364498017174442 n^{8} + 18381650989557110266292653390136748240442108050218596363559967200960568990 n^{7} + 2335965751666395189877860135137257945863678019267183159498413151385804659224 n^{6} + 190856577103802723571227193979097463157836567030517951878063137573254361212191 n^{5} + 10396829863350376535802371915252116436609561009335171769437977056534153701501158 n^{4} + 377613974735630692459582203081199854275550450233720023786647480113083997621745400 n^{3} + 8817681096428954364122168547622937574428259729743889437213118137730651742777603896 n^{2} + 120121957179771261923636245016042853501083357345901525115142651137240324984484779152 n + 727365884346794162631604567619494816407320854698194765119396978472313169951914134400\right) a{\left(n + 54 \right)}}{73622062966052487168000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{50653 \left(230457767577528164798186140505288353978264246063465908807098001877944 n^{9} + 30348530716247311854784642697949123453432270436081374562971070194762260 n^{8} + 1777085663606097927860152024419128053203612368016477637507198235877647370 n^{7} + 60725879141402334472536345127542462482935146594550201847467563507108697645 n^{6} + 1334453472801944710602342875170947773566327654609745485890201524475410585097 n^{5} + 19555277139496553239368386612447400142380988152255765082668093301470666073795 n^{4} + 191085910059507924912965092123710740942789549876951915226536949001346913996105 n^{3} + 1200541784863278200110840568070210337778221347196061376056577611865206233262180 n^{2} + 4400347926264603411339847582287570264703597300718261485559315132571345561248484 n + 7168599106110369200680633279710463074367860740127003732198300911931575468151120\right) a{\left(n + 13 \right)}}{62410196063616000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(259235637924672694734092015288591968972545991386701045007596360571443 n^{9} + 124936764333367793430354193416565251109236704638940331263918153740449564 n^{8} + 26763606742588958559751461734780890489915012567179259852651950225077062008 n^{7} + 3344701636224285533607951486211705548118363928531583945912991174260117140394 n^{6} + 268736318340099806546866107382730957295170150564921031579141120807946105923741 n^{5} + 14396139326245763520358287338503329546266615666459416087031715759273054506997426 n^{4} + 514181682988423538884324455789073439803830571035266330310350319735882079431839752 n^{3} + 11807119354447490463448930086587190408764902239916592280203222291114210130744660456 n^{2} + 158172356704511891355309293478115548328007719013036347323051645945655080510430391376 n + 941840465144071591978173358187960098558514492226354092592103375986524167934892402240\right) a{\left(n + 53 \right)}}{24540687655350829056000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(362769790356996330740608614813622978552925972364403103832502261941532 n^{9} + 171937137119496502570132567658644816749263390849941408345772953193864951 n^{8} + 36221073683502207431886427373268586043380369696431005973722633047379184924 n^{7} + 4451492091509900769744316463190602553411409624801075726755163429418550800118 n^{6} + 351722793740694155644773525279913643142219781935837947185948217093636996497668 n^{5} + 18528513764159108354710495384756842664364461583384256565778858134726483654191519 n^{4} + 650767836787223194248048015847538267024854211736668807669334894828945147672996116 n^{3} + 14694776587579880375894744281691821377458134679742355795975696284523614017326181332 n^{2} + 193577050577389386209930108989554076354509563980244435133344449662853635520354425360 n + 1133442889756180020699243976468293470911301509720344588010183312089655656288760692480\right) a{\left(n + 52 \right)}}{8180229218450276352000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(2500716268399151795852396708075796045544432373939098339568942526305715 n^{9} + 1147294964411383059212312387432007993665520490255629721597756202734412327 n^{8} + 233939137185262616052229664703183442153390533340407126663677928701336367960 n^{7} + 27825845890675627724470546843845821735152524297434006936387661017141664255684 n^{6} + 2127700284068781847643179982713036694441508918501822426589745755638297562940409 n^{5} + 108463732118777021376778332126448397778412467179511619427059405091360875468677033 n^{4} + 3686139564938787125703624296266924896151343615990920741398733977563781205125833340 n^{3} + 80533941691584060298561813903161820910827699087080682700452342365634676867561049676 n^{2} + 1026382994197395116394274025037252070039850260536098407438632111962537571673047923616 n + 5813864925973117692510547076370133781744180394515814114621515500298387379050366793600\right) a{\left(n + 50 \right)}}{4090114609225138176000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(15989690053746652808253738782031642361618879535037995191305618933980725 n^{9} + 7228341924501957231326163990342007723341145829858349795035453882813220952 n^{8} + 1452116538091839053462322652734610741589836038874172993586625718431608226936 n^{7} + 170149670411176716722922939189880768312373536383001207200065674489903439118658 n^{6} + 12815292793357346613777570410780659249432815224188321973091243267263658117979999 n^{5} + 643414869834758056494410606340720855037564047966755364145527996877547354678711278 n^{4} + 21533852933032282994260615954372062692433166180853766146467710536327386369274547684 n^{3} + 463264505103718867232891600988188884958161482145971060007457473619325958462993232712 n^{2} + 5813235923369785554374600182212951842686621661215076608837359749063067597315427479936 n + 32418413665139739880506944268159024691545727735798459189514846713867580391155292144000\right) a{\left(n + 49 \right)}}{8180229218450276352000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{1369 \left(22155477734870098149494909836209999136727082887802475152988234717217648 n^{9} + 3109138442401920577810145888730610548430208453103334623506587092459783666 n^{8} + 194019638528058094563251993398656945199524033284490140804471472153905567949 n^{7} + 7065976409932045618145881103735074544327194711102049507973420822931546165146 n^{6} + 165497925443209210275765932798598004514836828678311775631280225211461619544523 n^{5} + 2585097537241819736548568711402380769196828539390691594541064914741184856492954 n^{4} + 26927854509556552049997163514413048474290499750602320846509923926622372627283246 n^{3} + 180363965210584273413398617036078826421151802238748938518435688150878401874168334 n^{2} + 704856952256660419333334867680504367124836507010058495580596871314066613861689074 n + 1224431250866995696067509981078001790858482794337996126054306965789712367333113460\right) a{\left(n + 14 \right)}}{93615294095424000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(25338684082375884653815919763111946580252335928061964934555072771036845 n^{9} + 11812626931348442570635095809583506817267145464716264647116311920428721074 n^{8} + 2447654692338369241959757999883517858199004875419819893609788824356730590178 n^{7} + 295865889419936619932109933849399654058368205592658218030864380021769070085284 n^{6} + 22992116129339341622894422755929257790609256206695582725853295701644676659078573 n^{5} + 1191233961576963217900303336729632283515707670103313092470658946278713517515393906 n^{4} + 41148097271845400428985988162670873998642304989738651223275625758032587490859491492 n^{3} + 913783321642286140537581227267145602758976618028151377904751268968052536046756300216 n^{2} + 11838052258183846745799075855065164333574029856597976476623039674313251758583411817632 n + 68165082392128483397988216357312034330857910904970198997004218747514276814238711349760\right) a{\left(n + 51 \right)}}{147244125932104974336000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(153281376782758354785469615719451941488663473961849959259684942309615500 n^{9} + 74115674974286506172315383974167798001239512419244411400442484519574047137 n^{8} + 15642723476300849631794753716521183819653721776422332359726644136494529201376 n^{7} + 1899182523066240703610776436853548594600787025094258567657772856523144447667420 n^{6} + 146590445666159919370055655219231779411763540165177933516616426011326409300926550 n^{5} + 7475133547999583197277997316863535643043468718167503924121980471585593918221233163 n^{4} + 252218295629356827443376381711841179200282122707766398178900068039377200900944581774 n^{3} + 5436241035663384064625892935107493996712228965285305508125442066526801124292173713960 n^{2} + 67981567662243077653251700323088528122638567113189543415600577673565251003087913671200 n + 376077271947071320438020533860032428543935580219453989170545280489518376285838960025760\right) a{\left(n + 46 \right)}}{12270343827675414528000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(399257662645823920866335882356671877238999159042771949404532655231185982 n^{9} + 178409138786198134306254847372600161117817622235752022611793164996212381245 n^{8} + 35416561225471173772477145142491930686862162606318378307574117315252207043412 n^{7} + 4099510448877890731606698864294056163989926593769332252569590231214903514802350 n^{6} + 304931543642589992481806695736232314424149432577596525641001237129597304216233898 n^{5} + 15115473586784714669357770000544293191764662408669578426972298099610700855972635385 n^{4} + 499343723658686114881427590142413718950137879697625260388040244964332681769836639028 n^{3} + 10601086306592039363290423597564909691645716559922330172712385412247227347528170696700 n^{2} + 131245560778318043344239013032574152137216837016898827827095109810802873188379618255600 n + 721956032878587489663590504188727165120274048527272544491482843394019207024405643314880\right) a{\left(n + 48 \right)}}{73622062966052487168000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(581702780392741526107125580715841597281846927682395745914683960933731391 n^{9} + 259632215484683312564404796950767522864892091648526867974734413879333903090 n^{8} + 51417320165328791909547201873598299508564371711282360431306306609432307699414 n^{7} + 5930831117884500239330682264503430340166539246229886148609746502385359675457220 n^{6} + 439167245621299655079217101875891829236032342081239740523816250548790230749147439 n^{5} + 21651901222686693503338688167827212342338440287820448730755733931822324517819355730 n^{4} + 710816915010473297071152531079282885205089221803913248879260877212482596609542398236 n^{3} + 14985118751084530320636051676016994390749974758497592256680400755828569006735837291640 n^{2} + 184094614113079393618077542593509639871299705407936315125229044719741848580236449817760 n + 1004229806953457441044123856422302089796551769116990621661890648227476618656134283869440\right) a{\left(n + 47 \right)}}{49081375310701658112000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(2078848041301283948909078258244585302654182662152667947094545594681794181 n^{9} + 751321502491070099358703560778944945016723149218947216326930550030003205613 n^{8} + 118532585865763803858007065205969720255563481280085720035077523712647744599554 n^{7} + 10648790892864612109842195960181822580874676293136068695556367343942603040499614 n^{6} + 594468820559146707098852910313619407968082258075491399429392726789020210882224357 n^{5} + 21015528152618974847923458426521221188564489629185406290787871226537838439973659777 n^{4} + 454010552033166222662480166850350118465550480564762256103440998857031766830554305076 n^{3} + 5265047868431683330721044993124399991585552073248294906301801232451831878328037246116 n^{2} + 18934843155021252471873588931519690995391056901985730630365761029080565394892315415312 n - 112124167044463532086700567961441138436182418145670534069671590580243707592815553620800\right) a{\left(n + 45 \right)}}{36811031483026243584000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(4031347351575247082168568289504998838363548861257821600645261218485345946 n^{9} + 1546345278310901252439792216551885479739142192208149231837446353225802219355 n^{8} + 263112536032901347566426035197196980212025415518250386534791062124865227974426 n^{7} + 26059489110130552156841465423857890737215854425105021257259071935823591826878270 n^{6} + 1655292081865962246914265969369105246165968758137868682318834337804512267493615854 n^{5} + 69910549059280729425117398094737854510271324922341893908910334931098064393018404755 n^{4} + 1962592941188240816480253139118416897479474420363140796592095533674995061716979065014 n^{3} + 35300222815341536355145611347701225005286132032162613878759410353651859356775506961620 n^{2} + 368968214969670282180265395767069415477792037389447457130506057846311806293337215129320 n + 1706579520635514929624397117307535714492737268370517911150958749854075797325851839616320\right) a{\left(n + 44 \right)}}{8180229218450276352000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(9966948659543871041655747052874838774497310661273863803195346808130897870 n^{9} + 3806229517896676906904798102351437191071142146052791934976377294804024859672 n^{8} + 645640580323382041543357902444419446063205099056196882795170692272867226591585 n^{7} + 63845526100154763990591384330880174580271350243343743004956705861098235315776495 n^{6} + 4055938485221642368241047222711733567088022553535347811995193064273384346427800271 n^{5} + 171650736126047917420078646804774796919004396114309520899617059248769216068648341333 n^{4} + 4839151858385782284509631475053416926996336242118186202918651975777300924816479806970 n^{3} + 87627688357016010347378863510733384240006887047562900741717670782595230876320473536980 n^{2} + 924773098189586908120732030531128408205741414683602313985513857586205334657979549364664 n + 4333305688934726973414260117081471489197728085593675323849395414794013165444645087640640\right) a{\left(n + 43 \right)}}{4090114609225138176000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{37 \left(10462992070624922597706880547807196587029114398899444245614379593624301720 n^{9} + 1558967697098087075584972716199702708288354808871716386939838329874188194420 n^{8} + 103294886229124614323423066647488001954888623286698065615997832068158572039662 n^{7} + 3994462638095758685469743244289946655888750322429510082711843717940589734798159 n^{6} + 99346322133072685836882037074964801917681262147594929318806332300532494481874399 n^{5} + 1647904842411295202185461791036301090943538052135368187497128813056060669347086395 n^{4} + 18229658693742040744747929755116584390783871916758828026787514686055083981335234083 n^{3} + 129681004863203721187902119527063688600718425968638513256268624779910070984130525746 n^{2} + 538279744292028267795655513173750457172134361883103736715305652405377383729237672776 n + 993241467752339790195947173425598111731006961598987238398235143265352093408645256640\right) a{\left(n + 15 \right)}}{748922352763392000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{37 \left(20607523233391418362383138933492965844964737746962110682414076848759232360 n^{9} + 3249479354956860257242694592774159666966532625620247464320900190969471051564 n^{8} + 227860780823575173278942965411226716751876334549014629015825758818938860389354 n^{7} + 9325523908203015984977175249452037311250509017858408708682159091741792116780609 n^{6} + 245472812087880030069331028651174075163219171252716302755454444358485351700917943 n^{5} + 4309585989028462858017473198076413790693500577386873776628686335198937723440617501 n^{4} + 50460462930247580778757850169353842061543860794007807350401257522262248926624323751 n^{3} + 379960140129255161999691321993889617231713100358734742217069345682312700405947974926 n^{2} + 1669477349908614998774725397942516265909950802152775732201564658875585599003171008872 n + 3261084257297159587036511749396206261718851958319164814427679766982767627592342981120\right) a{\left(n + 16 \right)}}{998563137017856000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{37 \left(56620130037613222575455966901829058000081866849938528789118811116908474584 n^{9} + 9420930409854825391946813680053290392829568054723510685920182653109215556460 n^{8} + 697086882175258932451595998061582190393287837139614663181364360180040815622502 n^{7} + 30104578842530709452412965026594601681212120497203306845562931194566783497120441 n^{6} + 836202771485204715134429352610065382871853576650445201322645990844455718568162153 n^{5} + 15491793359425577447419037731489968713566457840612041920321268113856903291400588595 n^{4} + 191419612332645310248584378888744539947180053962377384860898984800799441364115600053 n^{3} + 1521091692008931997333806855788493728147110911209430678669301492366119839259144076224 n^{2} + 7053343363166822243650795873049573821609369171262659180900496918420927615489769738348 n + 14540871664060184154279886639531876789001304808358412339453787719178377517731655748400\right) a{\left(n + 17 \right)}}{1997126274035712000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(138898541057680866007063600174861451765388637069886784962136929930957169316 n^{9} + 51323210830388466479413989411885791893995265992765671066143132071350726779284 n^{8} + 8428220303870017862397549468863962468285638810990739145348577221775140511051535 n^{7} + 807347203753516880512948412436633218709351888066516335898562827377309394265474739 n^{6} + 49714368806564764648411720001950786011106829748585568598648901864989385308424702199 n^{5} + 2040759328018939051218242582737977609902069069310202421370545048540838648431493373901 n^{4} + 55845305297260085020046059299048160453745419785854244343890459739819100738708343470310 n^{3} + 982355966766734525139339294904993489442705652770405652649721099192545830158907295510196 n^{2} + 10079458188083217777036991784179403251089859849657913922940481286049378664550765907865160 n + 45960898445498187051790530976834542570785033022098286539974026724293492489073887769733760\right) a{\left(n + 41 \right)}}{4090114609225138176000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(357820989986301903745021823689558281716114755521221072205895004767393666729 n^{9} + 134667507029423282607151506402327828989815569545492175414250462772573405908962 n^{8} + 22521216037041479497331135693154628320558143400060291759086308283257193303536998 n^{7} + 2196573515841821725021088084408811894236995661907670829571883962778675440726341754 n^{6} + 137694119704864244855454447311150045975563336626246711017950118684613276140669599155 n^{5} + 5752912988388869553486369654611137845572721768048664084964484156807387660458005410408 n^{4} + 160197327884428543458438744695813426687698577209541076174922989157100011031774641145102 n^{3} + 2866918238526893735066014621418203505306994709729621793933490724913536580794168157315676 n^{2} + 29919993997567377434180572625152190662851095492246829550195634587011643241682874537453296 n + 138734736509991583199822872778453625492354719742209811739335438396997293646013743221508320\right) a{\left(n + 42 \right)}}{36811031483026243584000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(658633462133831094164280894800219809559439617484189976727133903287052025139 n^{9} + 238448549305497321291228390592983318946338364422498221681438929334545875232152 n^{8} + 38370019966426345486349867037934573508479194761486959658248202300105687990379609 n^{7} + 3601916464244863321792355689310074609323442253877467927965731228087829524289959216 n^{6} + 217378029583033513088025234279196412616151881744529407983085173399057488027578700995 n^{5} + 8746427761522049262027528394090752543418726475285268011234379591246034879773268165968 n^{4} + 234626551286211772065042980389577337550732298007209547199341130020951205923214062728701 n^{3} + 4046308294573728178312985279620939242760252034568025390972482431979000866346834776191104 n^{2} + 40707709062294427077338997298388456761184488398341211045060765069901934985195917486049756 n + 182024164618987102671630174570689992872531829463655820595876900105260974549935967870401280\right) a{\left(n + 40 \right)}}{6135171913837707264000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(5168886683099293561688131448401874972013749168515429009956355587916844931796 n^{9} + 1789595200411546426900697276104321868059559485935952443013502663490098405437794 n^{8} + 275424813519080189723250526021583949332915379822991429342473063749419532612996244 n^{7} + 24730923518183507213292992308528182364073601804828701418712047465702280244327201943 n^{6} + 1427787264738660142941572390061859853974828501909866172675606732889414266096622869305 n^{5} + 54962441498496826471392442089819451295848579267947563800408224117400837989718995450531 n^{4} + 1410740123654605167714314530480229393095800845461462895599683506899975826397007477436771 n^{3} + 23281521607098608056680802485480036103998126974807504340623880697059743335475505874569612 n^{2} + 224161205534134996929249101760453532316321451969913741580541084253377245177579964700402644 n + 959387478710902829220317581231497878761497353647940700567999368242024110906516401176520160\right) a{\left(n + 38 \right)}}{6135171913837707264000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(13027787514261334020801527157289436710353937697222890113618110678544224281297 n^{9} + 4404420508602772167829411629504513964209270072089249256711063760007053493711985 n^{8} + 661928978031235261416011873192842147311718361467324203654168452811702249160523679 n^{7} + 58041292772394481212359879995306187628163416451180429574025122949428238876740624523 n^{6} + 3272372385997970229852446565892462147517782419528998846368890530522002422939317040360 n^{5} + 123021713752819570010212355335478201831151224767839842234148092439566596196919679929660 n^{4} + 3083851052557437121739089181448907828572936180989929382370511613194612137615692256214496 n^{3} + 49705270799277107197824831660636595349471462522480723195598190620644767970856190254680112 n^{2} + 467423288040740850406186907283073105785506095942643105006553730259992030977518991546245088 n + 1953965375160087506782298897812171996317459064805949862318968703151852113154266642734995520\right) a{\left(n + 37 \right)}}{6135171913837707264000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(22979709388766348940650826124349180400839931765677902824045859749143518999327 n^{9} + 8140169539278860604058738599890659817194372294622239252198917649659037391251158 n^{8} + 1281724189977977486318477674364806496079703340761108371577118029084861010801378886 n^{7} + 117740611281963956742211919792529740089077348117557192471661792163947971509264701660 n^{6} + 6953849044052782192440865198772585718988343514947270387914563773651774188551002064783 n^{5} + 273832341517690971065222743044724029337271005511267787398564832825809707072840990779702 n^{4} + 7189582434223031699949066988089461040857892402367105059464283105051520887078373261305164 n^{3} + 121363103615312833672411729016468764723065090553084732887341124578084059307616704697797400 n^{2} + 1195184473669614727858511707108917242464419557600726574512255426503012207097104657051317120 n + 5231762098732380237816313351203409481282677490273194796376131752361653633968326980030974720\right) a{\left(n + 39 \right)}}{73622062966052487168000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(24179847235359434014325376245081210223989897103285431095611320448722115675752 n^{9} + 4234077220171916596985311657485120749228374858412896962461873246610855071345172 n^{8} + 329710458226949561160631791991159834163208685804254917473710304792762568109615690 n^{7} + 14985103476360594853136570311495774912564140159439374940286973303875526425228201079 n^{6} + 438048963366679040226449896441874774821628338553802872309968542598730908282566571119 n^{5} + 8540847823936478441632909721298411854669181995766388015455471676115949869958498065313 n^{4} + 111065748207168197521388433324591160167509995910060324323288212303471727887448465906075 n^{3} + 928862610673625511996322045119244246041747272387720198551780471098232781869496630318556 n^{2} + 4533181645433518240375897647854355143608668364444494731335423883616824743853636926251324 n + 9836074231107590837678554595856299279513716648966417258082367229688223145479330034507440\right) a{\left(n + 18 \right)}}{17974136466321408000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(30867053733912847789433100188487879177704638185928922943971491759638658649788 n^{9} + 6483318221461691619511790063192523240689651328006118373557248627075436897213676 n^{8} + 605536503537713357909429345098762153333155070855331685682037402455065103075843207 n^{7} + 33007636222091241563923514272692980161872043054187567795698138371349580677931779438 n^{6} + 1157199567860526251233220794168764001578003337012668495319946606140891326928584471385 n^{5} + 27058709545135446664937492100727456686680128710324982637044275084547869201507478653544 n^{4} + 421989723810730782126132102663347206693127043638514297028261767869060039660458980355818 n^{3} + 4232426436102456130985042745138906428007945481335416475651412176561200354395641813086762 n^{2} + 24772117248914982331724234305920086643381948998868879428759916549678377282733515086696842 n + 64463644592048453031317066103510837900316785639611773016660045465357022952379835224598660\right) a{\left(n + 22 \right)}}{15977010192285696000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(38718834621604783634809131150900475162746772050086387456127410496463806587864 n^{9} + 7117984470215597553550172670917954892119572670610228257404774286560735398557436 n^{8} + 581910455696194803112740245489671622710708999447044059814967075525163224997422566 n^{7} + 27765515995578389932908344122020046004775938267350033371982886090548639522006453821 n^{6} + 852099528060125281360120014783371421258313196115277145241280051332081283969099725597 n^{5} + 17441791283192326167078047057206185288542343702765595721434161054050807002535296215669 n^{4} + 238119559580488085610607957949338553956959425418516076123312406906136491638017421374829 n^{3} + 2090716702228243669578266421906588331753000252651200781413521501580533813265538642421994 n^{2} + 10712259648149870580600627648016657197537519889974362526934941277370587410153418245929184 n + 24402873660088829367749440588519665632841072397539722587002206659849452654226467508142880\right) a{\left(n + 19 \right)}}{23965515288428544000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(43658081236804828587442203513823444926402606843446157834828882949770519556088 n^{9} + 8407389620553236317908254504712519366465920410843045077716846106814484517443724 n^{8} + 719971917131043432449832013169960488826741132869254877007892100629138478775401710 n^{7} + 35984497373802893185282745229826416383761951335820364480018145519845830691061421053 n^{6} + 1156769614184318629679521236749414631572203528751411212442748590652968812422453853959 n^{5} + 24802333176923353409466132075922782828530147817995259977488259307812666739415200865071 n^{4} + 354683455628196666213604598383863076322027736029715121677847705828776648743713352853475 n^{3} + 3262018183513482408798528686548676617944423860831009066618170672956651026790497404160172 n^{2} + 17507329403998319969138053574766373678635904115116057352043171913340691774680208110899908 n + 41776402093661368967282809131672252446180299388846183579151767975570490740246234209761360\right) a{\left(n + 20 \right)}}{23965515288428544000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(47636253221487314145364200019978449831731481360722543695869937473406831053291 n^{9} + 14917077514576756142173301901762960840597911951298498306670376706187655631820506 n^{8} + 2076658020381968014556637532908575682242180797186640725816756712772523764952264478 n^{7} + 168686121700470342081259768112145097943991432019415475944003268088253847561330210676 n^{6} + 8810960051886026657461799999280671521524219161715294217409227033079180740864398231611 n^{5} + 306894813190912827263368702781727938791549944791282172542836555895321669491138570829014 n^{4} + 7128151628531180665070136535279792748523167948590620956212179432129531935413433322008372 n^{3} + 106460794280496499130603766283043883796719764846450871676251727521259567564109346394179964 n^{2} + 927745273359823957615341998591436531455486877197934193446546059284626794102674757869293768 n + 3594125988927653017899891725749849627630721629143263710982282146322611246488880705405133280\right) a{\left(n + 34 \right)}}{2045057304612569088000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(61558368636634156166845354368650839483904110366204858511347519686978972038230 n^{9} + 20304158879786367041240607079390966260378739155037633194170218086440192664073629 n^{8} + 2977137922241614653691470343748393328055136071267037255474119018647494776795159170 n^{7} + 254699101442176273897306757221938789584369764263542075932557172649274903798820327086 n^{6} + 14010936633952858003338778552024274920016272096393664606846079512935706543945350269390 n^{5} + 513938995142664605909266598885461989222953162270111796504858542916469476171852899942001 n^{4} + 12570706019750642945846892398219759452405477851086470779840394467916026468018497426118770 n^{3} + 197704348092375352095197152731218022754895230707962880386497663005982566258163286103290244 n^{2} + 1814189036232327321496937469705324428615533048048627237236568870355726900988391366549099560 n + 7400452535584502865131923562290984904134319310646840158451054953179057344850139268243346880\right) a{\left(n + 36 \right)}}{12270343827675414528000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(136691739192176840815793593837827910105301289344367398676088639451504491858909 n^{9} + 43949070330546935529113176876148207039599367388845059876603172770032072244753902 n^{8} + 6281786394257521359412265458206050795407122446840852541845781182637448869297703320 n^{7} + 523891033513009373927754686412009351047832139080131231493226123613335253274771536646 n^{6} + 28094396616859213381122047336647147442969990999273236678165030578463933287606179413419 n^{5} + 1004644852633395597662613572042725031381256840186490252856583159142420603365869826440508 n^{4} + 23956225740452491354120132271449397081862452699755654537728372267401095653102065079176000 n^{3} + 367317635463157429483664879635258184117937542101582703268618589605344616470579719484588544 n^{2} + 3286123201388186091391145827877432360449918806632498086027152056555878870292498414617128432 n + 13069050936409603405987006323698164568413218132252297479031807367798054511436298500292638720\right) a{\left(n + 35 \right)}}{12270343827675414528000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(174796552672296228812029388636042057078537092532728679684558628610186414320720 n^{9} + 51785459961839939613802487056021697946047308721959909519809706381396425533590891 n^{8} + 6820787290961471232782566737924316933426001423465651409945159709392006220603597034 n^{7} + 524216020282522610167159188783811419826325225969330039686562248514123865083385554138 n^{6} + 25907823770898969352702771650563899945787922480677684787275809106706674681358025416260 n^{5} + 853864065625513508551915054021850763998259939490627798827636451932262254055464298063319 n^{4} + 18766431072934563795107944676363574663612906428950588858187024505839300706565527260920346 n^{3} + 265224400789004920744141941416630075312577114122477697403257003519033782772754397693368852 n^{2} + 2187179104051287484120790380914455170525891308108676359202843972439792544889543366023065400 n + 8018495395229044237004680548329153217218402950883305914878828412327520976833105299872044800\right) a{\left(n + 32 \right)}}{2045057304612569088000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(232918824934724932117458228635603231653906370483074195053501978644349160570216 n^{9} + 50953434707635820868105764659893108854337582168989730864934867119343311528294700 n^{8} + 4956483157112191849987364017759069636754626484230507309378380605585529511411531770 n^{7} + 281382119360468678819511822727163495635471344328120393695727221267944069407837164405 n^{6} + 10273816294690956946785997077044150504387008245770920664402281671823172527564821949365 n^{5} + 250187647835017254218212331549636030396782306581676456621054824253030483186483058048865 n^{4} + 4063411222941126145835496979687712741463198897897021005137897231404714067926533361440225 n^{3} + 42442832775521022417503921771416923497589720281676496169286080902297033608458202023645150 n^{2} + 258702770188854230634013823310649098384792458973711317617715269634951518790550695911235304 n + 701090038200070173665681707811847540816786215949249484557745360683503287297634595961065600\right) a{\left(n + 23 \right)}}{127816081538285568000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(297816193414814777832460338351886234466803456901258523654401635800096452938348 n^{9} + 78051583752256092589195657686740606323790911212935729690490216315894461725599772 n^{8} + 9094936162659632656738707899973497585659114424997981170334013654330323004441041131 n^{7} + 618440062236621718867101038666282215051223717736853341174503769709186118138625250205 n^{6} + 27043906514550029950994831558313202668411590694891444325169179898296126352128017621497 n^{5} + 788688418723357017054236843452153765394872605257107428042151658001611299233072719402333 n^{4} + 15339168043504310856683299278162605603696901805650031267637588619925256868493266474789244 n^{3} + 191849306971750046814186530187950908303284069398954531217561759637222885084293604194019930 n^{2} + 1400164628010506477259969094744291889202129678207267161068393507551989618095415025870128340 n + 4543129419972115477736023536788051951210953136776665322835215986052782815006858684933351040\right) a{\left(n + 28 \right)}}{511264326153142272000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(349300711955473213651021606224082985513365454046410742310234427378484046592552 n^{9} + 82488647868787293840106714393095820264810740557822564163934547098531771082575660 n^{8} + 8661653446505952286074111039001243932206683980732661968530719310482686880868281566 n^{7} + 530777664210074812000596341044175007441600095254373250436477399396370708386045435691 n^{6} + 20918056814690943974610238752786351494246994236208409732181386084515372410838358174641 n^{5} + 549813139111772033675772078145049740412965743867987450483902823847368602408519855859605 n^{4} + 9638021694922051401058441447821980665538798751322799255446398962859951192416877688159009 n^{3} + 108652408254742484205073158150662270513477664611401571787243269001840897816146105646294064 n^{2} + 714769053373784256163098377955637552892061528762761383739479908252060790148376005620647492 n + 2090555438485043779862413091526611676852899550447812858725556896891301372413733731536842880\right) a{\left(n + 25 \right)}}{255632163076571136000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(400973021951058547052794178166892778082116269101297289199579563887346460325712 n^{9} + 108531344521254652279686955450219328320126609759100124952142569983767349787532266 n^{8} + 13060844222702976501345005506505532525289791420861500689085308199470816798052808687 n^{7} + 917190248436736897691275262346890074302292413428698910229178368860574403205516594979 n^{6} + 41420383906612549148948336728357974250268006218645867454458085656109529047185955384337 n^{5} + 1247458971640847889805104224655082112627274756265456263190789859194626006029325812044239 n^{4} + 25054891538406443045329563187874623451158002349305470626814340019860730130959440682223768 n^{3} + 323605009992278615885343290359482287412018718886344526783015762019286495222754995941206396 n^{2} + 2438896155014110193054529216606062798072793885444526140847421976337836255672627628038753216 n + 8171917986745066341925271435615850116555645181987695412573622981414330807398541393120686720\right) a{\left(n + 29 \right)}}{1022528652306284544000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(460925226861827958861070693993168904301156256855895243900993305880342531011006 n^{9} + 132637153995504000607428028656748249478622731517441384304445648696319224062093731 n^{8} + 16969132428071327925150635207809472280986371791879475805578977035955843257704501362 n^{7} + 1266808130140635570024527884085481020672561819742486490914400152910477954052212622796 n^{6} + 60815482781656747993081652917235907811451779399421539944722923074925473473904329615484 n^{5} + 1946980005082128962472803992452201899901187177900948429519371735776844222160722775703049 n^{4} + 41567168101616833395912479102207139445241785840292733146894422776827126745609737511561068 n^{3} + 570669016417273089141128902032969118183440634772460270975459473635016434281387236369766504 n^{2} + 4571544081439151324297454149897209576119755656714709528715729524277392063614337675675827800 n + 16281127722922581858984754506279548736806032525214295936327755763700828927690676892776808960\right) a{\left(n + 31 \right)}}{3067585956918853632000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(555775511306905887158301224744935689609970173326459879767753583041941193822456 n^{9} + 111882837834303310273517739137623665356899249861415954289245204328205122171470700 n^{8} + 10015609155598338371062945914675580244759352880096536296974891343003057095155719646 n^{7} + 523275166593145792733815412427544741837047444262004295860423996163255825269565247401 n^{6} + 17583654893958737423133337959365531946504495552584574062289002661590965515211656362349 n^{5} + 394092777346248895659524259345895795696979411460438362590484095548062884351454225824695 n^{4} + 5890984831494202871425307648358468134762844005470419339708627421750513548875320967736689 n^{3} + 56633453452359888426963186175687548032845001963754264506060605592565406865277368604921324 n^{2} + 317721185942157243813780821398063622105723677772903176420336458888682689226316518456967700 n + 792497747411301995240418835148073191517761072591076342066850736956782920186088632018869200\right) a{\left(n + 21 \right)}}{287586183461142528000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(845307938926875684813816024680232588732910056219374642325058265897229749206681 n^{9} + 257585431633397237992833299326237605041652984851899518458663299343280883316510412 n^{8} + 34895641866661177625021730486733639551019805331051307652444618752187367512167159059 n^{7} + 2758432685708863017437948802727694790335023165434324433953254491054380882204797832813 n^{6} + 140213871774698207916667317678748470758879464104128452298799516248005863134620285868094 n^{5} + 4752800690802245767134568421105690572192857800724971178782616145357793487087565687562883 n^{4} + 107432723648243857832493985377313040232988048262748178766516933338033970590589431100507126 n^{3} + 1561550254772620410210065026624964950432221949758702343296192986543818000419192589862331372 n^{2} + 13243669334000435465846736206605094551993074657816011080837824694977190087198261780029835320 n + 49933568283388516770093488141504850530720313492391102983098630573467152318222371275551233280\right) a{\left(n + 33 \right)}}{18405515741513121792000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(1667896248831554101160214516700619432421579824186230510135433437716890736126464 n^{9} + 408334135033394313763801787726679800704960359205258709706980316339345165976274796 n^{8} + 44449287206359303992856142415468588571238473750833281305106159903848378176688095252 n^{7} + 2823647639856361282944788692164597529618256409007062936553182731515815956824492289457 n^{6} + 115357342312494170645844363743891056797537578885339303050743080851413528600038824164735 n^{5} + 3143098851148025210063425691918178214117343829605480666922230606047179853831086729807339 n^{4} + 57114137354344655986448532674372720739723169095804957456683834981730957026672493774522313 n^{3} + 667424944410615362759373642617256787019401525999885349958086077522469213991612599225165448 n^{2} + 4551258525651774841181990065505764886718558630882984743149605584865501091682151884814191316 n + 13798320675728943489829446771125084034253057983465213677984951942621212900149205838378388000\right) a{\left(n + 26 \right)}}{1533792978459426816000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(2297393908034114527174172653717256629610125490934986646630227548327467656953306 n^{9} + 641504955936936398870363570542243208687186166386568575960988875517434349885495225 n^{8} + 79640204897659401196066927415060370068149075894494074139304572814254417116081880876 n^{7} + 5769379506123191471462038520441773630364512668329209061514125117341887465221674571757 n^{6} + 268772691087205096712913200606409698217315945127144585883658751139023210698862789074075 n^{5} + 8350104675021305315386657470151066263054019415118799175523492963407553775075140683352270 n^{4} + 173000197219217800510408866525062894591915995254316780469853581410844139012093097858160459 n^{3} + 2304899669507012938298784940823072429694831491895610227681374158849140618925812577059528468 n^{2} + 17918745880902013561255406235619778439646501563738927650546080139619415429093050143570128044 n + 61931429291071928907896520886943445918278284914192910326866957955400014126992190928253141760\right) a{\left(n + 30 \right)}}{9202757870756560896000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} - \frac{\left(3734602352044269100943268644990602282668473625964778543786012761542425498999512 n^{9} + 849495951682035747352638122980521505414406080025059967128848267932874480053137476 n^{8} + 85921100706503422885590717509416491087973559577177913283723980448658515085248780406 n^{7} + 5071685633031052438114001883273173300567953545084275553298903210886578406774340014043 n^{6} + 192534934850666884907559105248255002805938077424438754857602862268611577076733670638269 n^{5} + 4874822433394645375731934990649147250513687069773696675722101632844697123204494428976579 n^{4} + 82317685905746416486858444107003672925449467439779745083630392628749781639546583455353709 n^{3} + 893946217815767658088524959129417994031906211208016967991456958858242088393718452895615742 n^{2} + 5665117403410647340626539975726321981431244103549511048077135568070131823041225053278063784 n + 15961713780481268527222856892708692403077499329129378379608819362778735581380157209288209280\right) a{\left(n + 24 \right)}}{2300689467689140224000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)} + \frac{\left(3765695213455176802617928422469180164619651522872373740165765979894967193846020 n^{9} + 954462499784573757290530807155975457442945536849631142065805034843259969934739584 n^{8} + 107563740770195428776013354782322529700660540830237974247071618855119894214975595349 n^{7} + 7073935601896151099345383143846438149894374177880516224457652548582431597215944279871 n^{6} + 299183517382759368614158467553015627695699834589477353567361258870624214541826153440153 n^{5} + 8438889824517148496879136115363366004383403904169470025071890581639774943703416761352121 n^{4} + 158744797533963061434779870527153135600548640972280282601520503697116430431566766794680066 n^{3} + 1920354329024761934185840394654983659495106952133565538225910908343047139411950232325765884 n^{2} + 13555908987266603554307554377040943570384853531769745066622609271105421330214186033930749832 n + 42543911082378330942118412022041337557054923727112290168578952492713711877015081416020316800\right) a{\left(n + 27 \right)}}{4601378935378280448000000000000000 \left(n + 77\right) \left(n + 78\right) \left(n + 79\right) \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(2 n + 159\right) \left(2 n + 161\right) \left(2 n + 163\right)}, \quad n \geq 81\)

This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 90 rules.

Finding the specification took 227 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 90 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{11}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)+F_{72}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\ F_{7}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{8}\! \left(x , y\right)\\ F_{8}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y\right)+F_{68}\! \left(x , y\right)+F_{70}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{11}\! \left(x \right)\\ F_{10}\! \left(x , y\right) &= -\frac{-F_{8}\! \left(x , y\right) y +F_{8}\! \left(x , 1\right)}{-1+y}\\ F_{11}\! \left(x \right) &= x\\ F_{12}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{13}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x , y\right)+F_{47}\! \left(x , y\right)+F_{53}\! \left(x , y\right)+F_{66}\! \left(x , y\right)+F_{67}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{15}\! \left(x , 1, y\right)\\ F_{15}\! \left(x , y , z\right) &= F_{11}\! \left(x \right) F_{16}\! \left(x , y , z\right)\\ F_{16}\! \left(x , y , z\right) &= -\frac{-z F_{17}\! \left(x , y z \right)+F_{17}\! \left(x , y\right)}{-1+z}\\ F_{17}\! \left(x , y\right) &= F_{18}\! \left(x , 1, y\right)\\ F_{18}\! \left(x , y , z\right) &= -\frac{-F_{19}\! \left(x , y , z\right) z +F_{19}\! \left(x , y , 1\right)}{-1+z}\\ F_{19}\! \left(x , y , z\right) &= F_{20}\! \left(x , y , y z \right)\\ F_{20}\! \left(x , y , z\right) &= \frac{F_{21}\! \left(x , y\right) y -F_{21}\! \left(x , z\right) z}{-z +y}\\ F_{21}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x , y\right)+F_{45}\! \left(x , y\right)+F_{7}\! \left(x , y\right)\\ F_{22}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{23}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= F_{24}\! \left(x , 1, y\right)\\ F_{24}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x , y , z\right)+F_{27}\! \left(x , y , z\right)+F_{39}\! \left(x , y , z\right)+F_{41}\! \left(x , y , z\right)\\ F_{25}\! \left(x , y , z\right) &= F_{11}\! \left(x \right) F_{26}\! \left(x , y , z\right)\\ F_{26}\! \left(x , y , z\right) &= -\frac{-F_{20}\! \left(x , y , z\right) y +F_{20}\! \left(x , 1, z\right)}{-1+y}\\ F_{27}\! \left(x , y , z\right) &= F_{28}\! \left(x , y , z\right) F_{35}\! \left(x , y\right)\\ F_{28}\! \left(x , y , z\right) &= -\frac{-F_{29}\! \left(x , y , z\right) z +F_{29}\! \left(x , y , 1\right)}{-1+z}\\ F_{29}\! \left(x , y , z\right) &= \frac{F_{30}\! \left(x , y , 1\right) y -F_{30}\! \left(x , y , \frac{z}{y}\right) z}{-z +y}\\ F_{30}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x , y , z\right)+F_{33}\! \left(x , y , z\right)+F_{36}\! \left(x , y z \right)\\ F_{31}\! \left(x , y , z\right) &= F_{32}\! \left(x , y , y z \right)\\ F_{32}\! \left(x , y , z\right) &= F_{11}\! \left(x \right) F_{20}\! \left(x , y , z\right)\\ F_{33}\! \left(x , y , z\right) &= F_{34}\! \left(x , y , y z \right)\\ F_{34}\! \left(x , y , z\right) &= F_{29}\! \left(x , y , z\right) F_{35}\! \left(x , y\right)\\ F_{35}\! \left(x , y\right) &= y x\\ F_{36}\! \left(x , y\right) &= F_{35}\! \left(x , y\right) F_{37}\! \left(x , y\right)\\ F_{37}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{36}\! \left(x , y\right)+F_{38}\! \left(x , y\right)\\ F_{38}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{21}\! \left(x , y\right)\\ F_{39}\! \left(x , y , z\right) &= F_{11}\! \left(x \right) F_{40}\! \left(x , y , z\right)\\ F_{40}\! \left(x , y , z\right) &= -\frac{-F_{24}\! \left(x , y , z\right) y +F_{24}\! \left(x , 1, z\right)}{-1+y}\\ F_{41}\! \left(x , y , z\right) &= F_{35}\! \left(x , z\right) F_{42}\! \left(x , y , z\right)\\ F_{42}\! \left(x , y , z\right) &= -\frac{-F_{43}\! \left(x , y , z\right) y +F_{43}\! \left(x , 1, z\right)}{-1+y}\\ F_{43}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{32}\! \left(x , y , z\right)+F_{34}\! \left(x , y , z\right)+F_{44}\! \left(x , y , z\right)\\ F_{44}\! \left(x , y , z\right) &= F_{35}\! \left(x , z\right) F_{43}\! \left(x , y , z\right)\\ F_{45}\! \left(x , y\right) &= F_{35}\! \left(x , y\right) F_{46}\! \left(x , y\right)\\ F_{46}\! \left(x , y\right) &= F_{43}\! \left(x , 1, y\right)\\ F_{47}\! \left(x , y\right) &= F_{48}\! \left(x , 1, y\right)\\ F_{48}\! \left(x , y , z\right) &= F_{11}\! \left(x \right) F_{49}\! \left(x , y , z\right)\\ F_{49}\! \left(x , y , z\right) &= -\frac{-F_{50}\! \left(x , y z \right) z +F_{50}\! \left(x , y\right)}{-1+z}\\ F_{50}\! \left(x , y\right) &= F_{51}\! \left(x , 1, y\right)\\ F_{51}\! \left(x , y , z\right) &= -\frac{-z F_{52}\! \left(x , y , z\right)+F_{52}\! \left(x , y , 1\right)}{-1+z}\\ F_{52}\! \left(x , y , z\right) &= F_{29}\! \left(x , y , y z \right)\\ F_{53}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{54}\! \left(x , y\right)\\ F_{54}\! \left(x , y\right) &= F_{55}\! \left(x , 1, y\right)\\ F_{55}\! \left(x , y , z\right) &= -\frac{-F_{56}\! \left(x , y , z\right) y +F_{56}\! \left(x , 1, z\right)}{-1+y}\\ F_{56}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{57}\! \left(x , y , z\right)+F_{59}\! \left(x , y , z\right)+F_{61}\! \left(x , y , z\right)+F_{62}\! \left(x , y , z\right)+F_{64}\! \left(x , y , z\right)\\ F_{57}\! \left(x , y , z\right) &= F_{11}\! \left(x \right) F_{58}\! \left(x , y , z\right)\\ F_{58}\! \left(x , y , z\right) &= -\frac{-F_{26}\! \left(x , y , z\right) y +F_{26}\! \left(x , 1, z\right)}{-1+y}\\ F_{59}\! \left(x , y , z\right) &= F_{35}\! \left(x , y\right) F_{60}\! \left(x , y , z\right)\\ F_{60}\! \left(x , y , z\right) &= -\frac{-F_{28}\! \left(x , y , z\right) z +F_{28}\! \left(x , y , 1\right)}{-1+z}\\ F_{61}\! \left(x , y , z\right) &= F_{11}\! \left(x \right) F_{55}\! \left(x , y , z\right)\\ F_{62}\! \left(x , y , z\right) &= F_{11}\! \left(x \right) F_{63}\! \left(x , y , z\right)\\ F_{63}\! \left(x , y , z\right) &= -\frac{-F_{40}\! \left(x , y , z\right) y +F_{40}\! \left(x , 1, z\right)}{-1+y}\\ F_{64}\! \left(x , y , z\right) &= F_{35}\! \left(x , z\right) F_{65}\! \left(x , y , z\right)\\ F_{65}\! \left(x , y , z\right) &= -\frac{-F_{42}\! \left(x , y , z\right) y +F_{42}\! \left(x , 1, z\right)}{-1+y}\\ F_{66}\! \left(x , y\right) &= F_{62}\! \left(x , 1, y\right)\\ F_{67}\! \left(x , y\right) &= F_{64}\! \left(x , 1, y\right)\\ F_{68}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{69}\! \left(x , y\right)\\ F_{69}\! \left(x , y\right) &= F_{40}\! \left(x , 1, y\right)\\ F_{70}\! \left(x , y\right) &= F_{35}\! \left(x , y\right) F_{71}\! \left(x , y\right)\\ F_{71}\! \left(x , y\right) &= F_{42}\! \left(x , 1, y\right)\\ F_{72}\! \left(x \right) &= F_{11}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x , 1\right)\\ F_{74}\! \left(x , y\right) &= -\frac{-F_{75}\! \left(x , y\right) y +F_{75}\! \left(x , 1\right)}{-1+y}\\ F_{75}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{76}\! \left(x , y\right)+F_{78}\! \left(x , y\right)+F_{79}\! \left(x , y\right)\\ F_{76}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{77}\! \left(x , y\right)\\ F_{77}\! \left(x , y\right) &= -\frac{-F_{21}\! \left(x , y\right) y +F_{21}\! \left(x , 1\right)}{-1+y}\\ F_{78}\! \left(x , y\right) &= F_{34}\! \left(x , 1, y\right)\\ F_{79}\! \left(x , y\right) &= F_{35}\! \left(x , y\right) F_{80}\! \left(x , y\right)\\ F_{80}\! \left(x , y\right) &= F_{81}\! \left(x , 1, y\right)\\ F_{81}\! \left(x , y , z\right) &= -\frac{F_{82}\! \left(x , 1, z\right) z -y F_{82}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\ F_{82}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{83}\! \left(x , y , z\right)+F_{84}\! \left(x , y , z\right)+F_{85}\! \left(x , y , z\right)\\ F_{83}\! \left(x , y , z\right) &= F_{32}\! \left(x , y z , z\right)\\ F_{84}\! \left(x , y , z\right) &= F_{34}\! \left(x , y z , z\right)\\ F_{85}\! \left(x , y , z\right) &= F_{35}\! \left(x , z\right) F_{86}\! \left(x , y , z\right)\\ F_{86}\! \left(x , y , z\right) &= -\frac{-y F_{82}\! \left(x , y , z\right)+F_{82}\! \left(x , 1, z\right)}{-1+y}\\ F_{87}\! \left(x \right) &= F_{79}\! \left(x , 1\right)\\ F_{88}\! \left(x \right) &= F_{11}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{75}\! \left(x , 1\right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 438 rules.

Finding the specification took 47142 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 438 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{15}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{416}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{142}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{15}\! \left(x \right) &= x\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{15}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{22}\! \left(x \right) &= 0\\ F_{23}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{15}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{15}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{415}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{15}\! \left(x \right) F_{17}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{403}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{15}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{15}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{399}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{382}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{0}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{15}\! \left(x \right) F_{17}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{375}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{15}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{15}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{59}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{15}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{59}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{15}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{15}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{15}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{18}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{15}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{15}\! \left(x \right) F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{83}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{15}\! \left(x \right) F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{15}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{94}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{15}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{15}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{116}\! \left(x \right) F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{102}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{109}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{108}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{104}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{113}\! \left(x \right)+F_{115}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{110}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{109}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{117}\! \left(x \right) &= -F_{120}\! \left(x \right)+F_{118}\! \left(x \right)\\ F_{118}\! \left(x \right) &= \frac{F_{119}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{119}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{116}\! \left(x \right) F_{122}\! \left(x \right) F_{15}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{125}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{13}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{324}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{131}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{311}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)\\ F_{133}\! \left(x \right) &= -F_{306}\! \left(x \right)+F_{134}\! \left(x \right)\\ F_{134}\! \left(x \right) &= \frac{F_{135}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)\\ F_{136}\! \left(x \right) &= -F_{140}\! \left(x \right)+F_{137}\! \left(x \right)\\ F_{137}\! \left(x \right) &= -F_{123}\! \left(x \right)+F_{138}\! \left(x \right)\\ F_{138}\! \left(x \right) &= \frac{F_{139}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{139}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)+F_{142}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{144}\! \left(x \right) F_{15}\! \left(x \right) F_{159}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{147}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{147}\! \left(x \right) &= -F_{150}\! \left(x \right)+F_{148}\! \left(x \right)\\ F_{148}\! \left(x \right) &= \frac{F_{149}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{149}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{15}\! \left(x \right) F_{152}\! \left(x \right)\\ F_{152}\! \left(x \right) &= \frac{F_{153}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{155}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{15}\! \left(x \right) F_{157}\! \left(x \right) F_{159}\! \left(x \right)\\ F_{157}\! \left(x \right) &= \frac{F_{158}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{158}\! \left(x \right) &= F_{147}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{15}\! \left(x \right) F_{162}\! \left(x \right)\\ F_{162}\! \left(x \right) &= \frac{F_{163}\! \left(x \right)}{F_{15}\! \left(x \right) F_{295}\! \left(x \right)}\\ F_{163}\! \left(x \right) &= F_{164}\! \left(x \right)\\ F_{164}\! \left(x \right) &= -F_{231}\! \left(x \right)+F_{165}\! \left(x \right)\\ F_{165}\! \left(x \right) &= \frac{F_{166}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{166}\! \left(x \right) &= F_{167}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{15}\! \left(x \right) F_{170}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{171}\! \left(x \right)+F_{219}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)+F_{174}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{15}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{175}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{176}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{116}\! \left(x \right) F_{15}\! \left(x \right) F_{177}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{192}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)+F_{180}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{15}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{15}\! \left(x \right) F_{181}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{182}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{182}\! \left(x \right) &= F_{183}\! \left(x \right)+F_{187}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{184}\! \left(x \right)+F_{185}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{15}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{15}\! \left(x \right) F_{186}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{183}\! \left(x \right)\\ F_{187}\! \left(x \right) &= F_{188}\! \left(x \right)+F_{189}\! \left(x \right)+F_{191}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{188}\! \left(x \right) &= F_{15}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{15}\! \left(x \right) F_{190}\! \left(x \right)\\ F_{190}\! \left(x \right) &= F_{187}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{15}\! \left(x \right) F_{182}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{193}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)+F_{195}\! \left(x \right)+F_{197}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{15}\! \left(x \right) F_{99}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{15}\! \left(x \right) F_{196}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{193}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{15}\! \left(x \right) F_{198}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)+F_{205}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{201}\! \left(x \right)+F_{202}\! \left(x \right)+F_{204}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{105}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{15}\! \left(x \right) F_{203}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{15}\! \left(x \right) F_{199}\! \left(x \right)\\ F_{205}\! \left(x \right) &= F_{206}\! \left(x \right)+F_{212}\! \left(x \right)\\ F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)+F_{208}\! \left(x \right)+F_{210}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{15}\! \left(x \right) F_{93}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{15}\! \left(x \right) F_{209}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{183}\! \left(x \right)+F_{206}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{15}\! \left(x \right) F_{211}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{206}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{212}\! \left(x \right) &= F_{213}\! \left(x \right)+F_{214}\! \left(x \right)+F_{216}\! \left(x \right)+F_{218}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{110}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{15}\! \left(x \right) F_{215}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{187}\! \left(x \right)+F_{212}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{15}\! \left(x \right) F_{217}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{212}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{15}\! \left(x \right) F_{205}\! \left(x \right)\\ F_{219}\! \left(x \right) &= -F_{226}\! \left(x \right)+F_{220}\! \left(x \right)\\ F_{220}\! \left(x \right) &= \frac{F_{221}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{221}\! \left(x \right) &= F_{222}\! \left(x \right)\\ F_{222}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{223}\! \left(x \right)\\ F_{223}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{224}\! \left(x \right)\\ F_{224}\! \left(x \right) &= \frac{F_{225}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{225}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{226}\! \left(x \right) &= F_{227}\! \left(x \right)\\ F_{227}\! \left(x \right) &= F_{116}\! \left(x \right) F_{15}\! \left(x \right) F_{228}\! \left(x \right)\\ F_{228}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{229}\! \left(x \right)\\ F_{229}\! \left(x \right) &= F_{192}\! \left(x \right)+F_{230}\! \left(x \right)\\ F_{230}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{178}\! \left(x \right)\\ F_{231}\! \left(x \right) &= F_{232}\! \left(x \right)+F_{233}\! \left(x \right)\\ F_{232}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{167}\! \left(x \right)\\ F_{233}\! \left(x \right) &= -F_{234}\! \left(x \right)+F_{220}\! \left(x \right)\\ F_{234}\! \left(x \right) &= F_{235}\! \left(x \right)+F_{293}\! \left(x \right)\\ F_{235}\! \left(x \right) &= F_{236}\! \left(x \right)+F_{238}\! \left(x \right)\\ F_{236}\! \left(x \right) &= F_{237}\! \left(x \right)\\ F_{237}\! \left(x \right) &= F_{116}\! \left(x \right) F_{122}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{238}\! \left(x \right) &= -F_{292}\! \left(x \right)+F_{239}\! \left(x \right)\\ F_{239}\! \left(x \right) &= -F_{240}\! \left(x \right)+F_{170}\! \left(x \right)\\ F_{240}\! \left(x \right) &= -F_{244}\! \left(x \right)+F_{241}\! \left(x \right)\\ F_{241}\! \left(x \right) &= F_{219}\! \left(x \right)+F_{242}\! \left(x \right)\\ F_{242}\! \left(x \right) &= F_{171}\! \left(x \right)+F_{243}\! \left(x \right)\\ F_{243}\! \left(x \right) &= F_{236}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{244}\! \left(x \right) &= -F_{247}\! \left(x \right)+F_{245}\! \left(x \right)\\ F_{245}\! \left(x \right) &= \frac{F_{246}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{246}\! \left(x \right) &= F_{223}\! \left(x \right)\\ F_{247}\! \left(x \right) &= F_{248}\! \left(x \right)+F_{249}\! \left(x \right)\\ F_{248}\! \left(x \right) &= F_{0}\! \left(x \right) F_{68}\! \left(x \right)\\ F_{249}\! \left(x \right) &= F_{250}\! \left(x \right)\\ F_{250}\! \left(x \right) &= F_{15}\! \left(x \right) F_{251}\! \left(x \right)\\ F_{251}\! \left(x \right) &= F_{252}\! \left(x \right)+F_{288}\! \left(x \right)\\ F_{252}\! \left(x \right) &= F_{253}\! \left(x \right) F_{277}\! \left(x \right)\\ F_{253}\! \left(x \right) &= F_{254}\! \left(x \right)+F_{255}\! \left(x \right)\\ F_{254}\! \left(x \right) &= F_{17}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{255}\! \left(x \right) &= F_{256}\! \left(x \right)\\ F_{256}\! \left(x \right) &= -F_{268}\! \left(x \right)+F_{257}\! \left(x \right)\\ F_{257}\! \left(x \right) &= -F_{258}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{258}\! \left(x \right) &= F_{259}\! \left(x \right)+F_{269}\! \left(x \right)\\ F_{259}\! \left(x \right) &= F_{260}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{260}\! \left(x \right) &= -F_{268}\! \left(x \right)+F_{261}\! \left(x \right)\\ F_{261}\! \left(x \right) &= -F_{262}\! \left(x \right)+F_{118}\! \left(x \right)\\ F_{262}\! \left(x \right) &= F_{263}\! \left(x \right)\\ F_{263}\! \left(x \right) &= F_{15}\! \left(x \right) F_{17}\! \left(x \right) F_{264}\! \left(x \right)\\ F_{264}\! \left(x \right) &= \frac{F_{265}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{265}\! \left(x \right) &= F_{266}\! \left(x \right)\\ F_{266}\! \left(x \right) &= F_{267}\! \left(x \right)\\ F_{267}\! \left(x \right) &= F_{15}\! \left(x \right) F_{157}\! \left(x \right)\\ F_{268}\! \left(x \right) &= F_{2}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{269}\! \left(x \right) &= F_{270}\! \left(x \right)\\ F_{270}\! \left(x \right) &= F_{15}\! \left(x \right) F_{271}\! \left(x \right)\\ F_{271}\! \left(x \right) &= F_{272}\! \left(x \right)\\ F_{272}\! \left(x \right) &= -F_{276}\! \left(x \right)+F_{273}\! \left(x \right)\\ F_{273}\! \left(x \right) &= \frac{F_{274}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{274}\! \left(x \right) &= F_{275}\! \left(x \right)\\ F_{275}\! \left(x \right) &= -F_{36}\! \left(x \right)+F_{262}\! \left(x \right)\\ F_{276}\! \left(x \right) &= F_{17}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{277}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{278}\! \left(x \right)\\ F_{278}\! \left(x \right) &= F_{279}\! \left(x \right)+F_{282}\! \left(x \right)\\ F_{279}\! \left(x \right) &= F_{17}\! \left(x \right) F_{280}\! \left(x \right)\\ F_{280}\! \left(x \right) &= F_{281}\! \left(x \right)\\ F_{281}\! \left(x \right) &= F_{15}\! \left(x \right) F_{277}\! \left(x \right)\\ F_{282}\! \left(x \right) &= F_{283}\! \left(x \right)\\ F_{283}\! \left(x \right) &= F_{17} \left(x \right)^{2} F_{15}\! \left(x \right) F_{284}\! \left(x \right)\\ F_{284}\! \left(x \right) &= F_{285}\! \left(x \right)\\ F_{285}\! \left(x \right) &= F_{15}\! \left(x \right) F_{286}\! \left(x \right)\\ F_{286}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{287}\! \left(x \right)\\ F_{287}\! \left(x \right) &= F_{17}\! \left(x \right) F_{284}\! \left(x \right)\\ F_{288}\! \left(x \right) &= F_{286}\! \left(x \right) F_{289}\! \left(x \right)\\ F_{289}\! \left(x \right) &= F_{290}\! \left(x \right)+F_{291}\! \left(x \right)\\ F_{290}\! \left(x \right) &= F_{17}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{291}\! \left(x \right) &= F_{269}\! \left(x \right)\\ F_{292}\! \left(x \right) &= F_{2}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{293}\! \left(x \right) &= F_{294}\! \left(x \right)\\ F_{294}\! \left(x \right) &= F_{15}\! \left(x \right) F_{229}\! \left(x \right) F_{286}\! \left(x \right)\\ F_{295}\! \left(x \right) &= F_{296}\! \left(x \right)+F_{301}\! \left(x \right)\\ F_{296}\! \left(x \right) &= F_{297}\! \left(x \right)+F_{299}\! \left(x \right)\\ F_{297}\! \left(x \right) &= F_{298}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{298}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{299}\! \left(x \right) &= F_{300}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{300}\! \left(x \right) &= F_{99}\! \left(x \right)\\ F_{301}\! \left(x \right) &= F_{302}\! \left(x \right)+F_{304}\! \left(x \right)\\ F_{302}\! \left(x \right) &= F_{230}\! \left(x \right)+F_{303}\! \left(x \right)\\ F_{303}\! \left(x \right) &= F_{178}\! \left(x \right)\\ F_{304}\! \left(x \right) &= F_{192}\! \left(x \right)+F_{305}\! \left(x \right)\\ F_{305}\! \left(x \right) &= F_{193}\! \left(x \right)\\ F_{306}\! \left(x \right) &= -F_{309}\! \left(x \right)+F_{307}\! \left(x \right)\\ F_{307}\! \left(x \right) &= \frac{F_{308}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{308}\! \left(x \right) &= F_{150}\! \left(x \right)\\ F_{309}\! \left(x \right) &= \frac{F_{310}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{310}\! \left(x \right) &= F_{140}\! \left(x \right)\\ F_{311}\! \left(x \right) &= F_{312}\! \left(x \right)\\ F_{312}\! \left(x \right) &= F_{18}\! \left(x \right) F_{313}\! \left(x \right) F_{322}\! \left(x \right)\\ F_{313}\! \left(x \right) &= \frac{F_{314}\! \left(x \right)}{F_{15}\! \left(x \right) F_{17}\! \left(x \right)}\\ F_{314}\! \left(x \right) &= F_{315}\! \left(x \right)\\ F_{315}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{316}\! \left(x \right)\\ F_{316}\! \left(x \right) &= F_{317}\! \left(x \right)\\ F_{317}\! \left(x \right) &= F_{15}\! \left(x \right) F_{318}\! \left(x \right)\\ F_{318}\! \left(x \right) &= F_{315}\! \left(x \right)+F_{319}\! \left(x \right)\\ F_{319}\! \left(x \right) &= -F_{320}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{320}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{321}\! \left(x \right)\\ F_{321}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{316}\! \left(x \right)\\ F_{322}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{323}\! \left(x \right)\\ F_{323}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{324}\! \left(x \right) &= F_{325}\! \left(x \right)\\ F_{325}\! \left(x \right) &= F_{15}\! \left(x \right) F_{326}\! \left(x \right)\\ F_{326}\! \left(x \right) &= F_{157}\! \left(x \right)+F_{327}\! \left(x \right)\\ F_{327}\! \left(x \right) &= \frac{F_{328}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{328}\! \left(x \right) &= F_{329}\! \left(x \right)\\ F_{329}\! \left(x \right) &= -F_{266}\! \left(x \right)+F_{330}\! \left(x \right)\\ F_{330}\! \left(x \right) &= F_{331}\! \left(x \right)\\ F_{331}\! \left(x \right) &= F_{15}\! \left(x \right) F_{332}\! \left(x \right)\\ F_{332}\! \left(x \right) &= \frac{F_{333}\! \left(x \right)}{F_{15}\! \left(x \right) F_{17}\! \left(x \right)}\\ F_{333}\! \left(x \right) &= F_{334}\! \left(x \right)\\ F_{334}\! \left(x \right) &= F_{15}\! \left(x \right) F_{17}\! \left(x \right) F_{335}\! \left(x \right)\\ F_{335}\! \left(x \right) &= \frac{F_{336}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{336}\! \left(x \right) &= F_{337}\! \left(x \right)\\ F_{337}\! \left(x \right) &= -F_{341}\! \left(x \right)+F_{338}\! \left(x \right)\\ F_{338}\! \left(x \right) &= \frac{F_{339}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{339}\! \left(x \right) &= F_{340}\! \left(x \right)\\ F_{340}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{341}\! \left(x \right) &= F_{342}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{342}\! \left(x \right) &= F_{343}\! \left(x \right)+F_{349}\! \left(x \right)\\ F_{343}\! \left(x \right) &= F_{344}\! \left(x \right)+F_{345}\! \left(x \right)\\ F_{344}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{345}\! \left(x \right) &= F_{17}\! \left(x \right) F_{346}\! \left(x \right)\\ F_{346}\! \left(x \right) &= F_{347}\! \left(x \right)\\ F_{347}\! \left(x \right) &= F_{15}\! \left(x \right) F_{348}\! \left(x \right)\\ F_{348}\! \left(x \right) &= F_{346}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{349}\! \left(x \right) &= F_{350}\! \left(x \right)\\ F_{350}\! \left(x \right) &= F_{15}\! \left(x \right) F_{351}\! \left(x \right)\\ F_{351}\! \left(x \right) &= F_{352}\! \left(x \right)+F_{364}\! \left(x \right)\\ F_{352}\! \left(x \right) &= -F_{355}\! \left(x \right)+F_{353}\! \left(x \right)\\ F_{353}\! \left(x \right) &= \frac{F_{354}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{354}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{355}\! \left(x \right) &= F_{356}\! \left(x \right)+F_{359}\! \left(x \right)\\ F_{356}\! \left(x \right) &= F_{357}\! \left(x \right)+F_{358}\! \left(x \right)\\ F_{357}\! \left(x \right) &= F_{17}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{358}\! \left(x \right) &= F_{18}\! \left(x \right) F_{346}\! \left(x \right)\\ F_{359}\! \left(x \right) &= F_{18}\! \left(x \right) F_{360}\! \left(x \right)\\ F_{360}\! \left(x \right) &= F_{361}\! \left(x \right)\\ F_{361}\! \left(x \right) &= F_{15}\! \left(x \right) F_{362}\! \left(x \right) F_{363}\! \left(x \right)\\ F_{362}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{363}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{364}\! \left(x \right) &= F_{319}\! \left(x \right)+F_{365}\! \left(x \right)\\ F_{365}\! \left(x \right) &= F_{366}\! \left(x \right)\\ F_{366}\! \left(x \right) &= F_{15}\! \left(x \right) F_{367}\! \left(x \right)\\ F_{367}\! \left(x \right) &= F_{368}\! \left(x \right)+F_{371}\! \left(x \right)\\ F_{368}\! \left(x \right) &= F_{2}\! \left(x \right) F_{369}\! \left(x \right)\\ F_{369}\! \left(x \right) &= \frac{F_{370}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{370}\! \left(x \right) &= F_{319}\! \left(x \right)\\ F_{371}\! \left(x \right) &= \frac{F_{372}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{372}\! \left(x \right) &= F_{373}\! \left(x \right)\\ F_{373}\! \left(x \right) &= F_{15}\! \left(x \right) F_{327}\! \left(x \right) F_{374}\! \left(x \right)\\ F_{374}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{160}\! \left(x \right)\\ F_{375}\! \left(x \right) &= -F_{378}\! \left(x \right)+F_{376}\! \left(x \right)\\ F_{376}\! \left(x \right) &= \frac{F_{377}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{377}\! \left(x \right) &= F_{349}\! \left(x \right)\\ F_{378}\! \left(x \right) &= F_{379}\! \left(x \right)\\ F_{379}\! \left(x \right) &= F_{15}\! \left(x \right) F_{380}\! \left(x \right)\\ F_{380}\! \left(x \right) &= \frac{F_{381}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{381}\! \left(x \right) &= F_{352}\! \left(x \right)\\ F_{382}\! \left(x \right) &= F_{383}\! \left(x \right)\\ F_{383}\! \left(x \right) &= F_{15}\! \left(x \right) F_{384}\! \left(x \right)\\ F_{384}\! \left(x \right) &= \frac{F_{385}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{385}\! \left(x \right) &= F_{386}\! \left(x \right)\\ F_{386}\! \left(x \right) &= -F_{401}\! \left(x \right)+F_{387}\! \left(x \right)\\ F_{387}\! \left(x \right) &= \frac{F_{388}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{388}\! \left(x \right) &= F_{389}\! \left(x \right)\\ F_{389}\! \left(x \right) &= -F_{392}\! \left(x \right)+F_{390}\! \left(x \right)\\ F_{390}\! \left(x \right) &= \frac{F_{391}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{391}\! \left(x \right) &= F_{125}\! \left(x \right)\\ F_{392}\! \left(x \right) &= F_{393}\! \left(x \right)+F_{394}\! \left(x \right)\\ F_{393}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{315}\! \left(x \right)\\ F_{394}\! \left(x \right) &= F_{15}\! \left(x \right) F_{395}\! \left(x \right)\\ F_{395}\! \left(x \right) &= F_{315}\! \left(x \right)+F_{396}\! \left(x \right)\\ F_{396}\! \left(x \right) &= F_{397}\! \left(x \right)\\ F_{397}\! \left(x \right) &= F_{15}\! \left(x \right) F_{398}\! \left(x \right)\\ F_{398}\! \left(x \right) &= F_{395}\! \left(x \right)+F_{399}\! \left(x \right)\\ F_{399}\! \left(x \right) &= F_{400}\! \left(x \right)\\ F_{400}\! \left(x \right) &= F_{15}\! \left(x \right) F_{384}\! \left(x \right)\\ F_{401}\! \left(x \right) &= \frac{F_{402}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{402}\! \left(x \right) &= F_{330}\! \left(x \right)\\ F_{403}\! \left(x \right) &= F_{404}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{404}\! \left(x \right) &= F_{405}\! \left(x \right)\\ F_{405}\! \left(x \right) &= F_{15}\! \left(x \right) F_{406}\! \left(x \right)\\ F_{406}\! \left(x \right) &= F_{407}\! \left(x \right)+F_{409}\! \left(x \right)\\ F_{407}\! \left(x \right) &= F_{408}\! \left(x \right)\\ F_{408}\! \left(x \right) &= F_{0}\! \left(x \right) F_{101}\! \left(x \right)\\ F_{409}\! \left(x \right) &= -F_{412}\! \left(x \right)+F_{410}\! \left(x \right)\\ F_{410}\! \left(x \right) &= \frac{F_{411}\! \left(x \right)}{F_{15}\! \left(x \right) F_{17}\! \left(x \right)}\\ F_{411}\! \left(x \right) &= F_{256}\! \left(x \right)\\ F_{412}\! \left(x \right) &= F_{253}\! \left(x \right)+F_{413}\! \left(x \right)\\ F_{413}\! \left(x \right) &= F_{414}\! \left(x \right)\\ F_{414}\! \left(x \right) &= F_{101}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{415}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{416}\! \left(x \right) &= F_{417}\! \left(x \right)\\ F_{417}\! \left(x \right) &= F_{15}\! \left(x \right) F_{418}\! \left(x \right)\\ F_{418}\! \left(x \right) &= F_{419}\! \left(x \right)+F_{431}\! \left(x \right)\\ F_{419}\! \left(x \right) &= -F_{428}\! \left(x \right)+F_{420}\! \left(x \right)\\ F_{420}\! \left(x \right) &= \frac{F_{421}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{421}\! \left(x \right) &= F_{422}\! \left(x \right)\\ F_{422}\! \left(x \right) &= F_{423}\! \left(x \right)+F_{424}\! \left(x \right)\\ F_{423}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{424}\! \left(x \right) &= F_{425}\! \left(x \right)\\ F_{425}\! \left(x \right) &= -F_{6}\! \left(x \right)+F_{426}\! \left(x \right)\\ F_{426}\! \left(x \right) &= -F_{427}\! \left(x \right)+F_{150}\! \left(x \right)\\ F_{427}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{428}\! \left(x \right) &= F_{2}\! \left(x \right) F_{429}\! \left(x \right)\\ F_{429}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{430}\! \left(x \right)\\ F_{430}\! \left(x \right) &= F_{150}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{431}\! \left(x \right) &= F_{432}\! \left(x \right)\\ F_{432}\! \left(x \right) &= F_{15}\! \left(x \right) F_{374}\! \left(x \right) F_{433}\! \left(x \right)\\ F_{433}\! \left(x \right) &= \frac{F_{434}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{434}\! \left(x \right) &= F_{435}\! \left(x \right)\\ F_{435}\! \left(x \right) &= F_{403}\! \left(x \right)+F_{436}\! \left(x \right)\\ F_{436}\! \left(x \right) &= F_{437}\! \left(x \right)\\ F_{437}\! \left(x \right) &= -F_{12}\! \left(x \right)+F_{266}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point And Col Placements Req Corrob" and has 150 rules.

Finding the specification took 10034 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 150 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{7}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{6}\! \left(x \right) &= 0\\ F_{7}\! \left(x \right) &= F_{27}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{17}\! \left(x \right) &= \frac{F_{18}\! \left(x \right)}{F_{27}\! \left(x \right)}\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{149}\! \left(x \right)+F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{24}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= x\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{27}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{35}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{25}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{27}\! \left(x \right) F_{32}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{38}\! \left(x \right)+F_{45}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{27}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{27}\! \left(x \right) F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{40}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{27}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= -F_{44}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{21}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{47}\! \left(x \right)+F_{48}\! \left(x \right)+F_{56}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{27}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{27}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{51}\! \left(x \right)+F_{55}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{51}\! \left(x \right) &= -F_{52}\! \left(x \right)-F_{53}\! \left(x \right)-F_{6}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{27}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{27}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{55}\! \left(x \right) &= 0\\ F_{56}\! \left(x \right) &= F_{27}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= \frac{F_{58}\! \left(x \right)}{F_{120}\! \left(x \right) F_{27}\! \left(x \right)}\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= -F_{0}\! \left(x \right)-F_{131}\! \left(x \right)-F_{140}\! \left(x \right)-F_{144}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{0}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{120}\! \left(x \right) F_{27}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= \frac{F_{65}\! \left(x \right)}{F_{27}\! \left(x \right)}\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= -F_{8}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{0}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{6}\! \left(x \right)+F_{74}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{27}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{19}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{27}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{14}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{6}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{27}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{27}\! \left(x \right) F_{87}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{87}\! \left(x \right) &= \frac{F_{88}\! \left(x \right)}{F_{27}\! \left(x \right)}\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= -F_{90}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{92}\! \left(x \right) &= \frac{F_{93}\! \left(x \right)}{F_{21}\! \left(x \right) F_{27}\! \left(x \right)}\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= -F_{104}\! \left(x \right)-F_{116}\! \left(x \right)-F_{98}\! \left(x \right)-F_{99}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= \frac{F_{96}\! \left(x \right)}{F_{27}\! \left(x \right)}\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= -F_{98}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{103}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{21}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{32}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{108}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{8}\! \left(x \right) F_{98}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{115}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{114}\! \left(x \right) &= \frac{F_{51}\! \left(x \right)}{F_{27}\! \left(x \right)}\\ F_{115}\! \left(x \right) &= F_{109}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{19}\! \left(x \right) F_{98}\! \left(x \right)\\ F_{120}\! \left(x \right) &= \frac{F_{121}\! \left(x \right)}{F_{21}\! \left(x \right) F_{27}\! \left(x \right)}\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)\\ F_{122}\! \left(x \right) &= -F_{0}\! \left(x \right)-F_{126}\! \left(x \right)-F_{127}\! \left(x \right)+F_{123}\! \left(x \right)\\ F_{123}\! \left(x \right) &= \frac{F_{124}\! \left(x \right)}{F_{27}\! \left(x \right)}\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)\\ F_{125}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{27}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{129}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{0}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{133}\! \left(x \right) &= -F_{139}\! \left(x \right)+F_{134}\! \left(x \right)\\ F_{134}\! \left(x \right) &= \frac{F_{135}\! \left(x \right)}{F_{27}\! \left(x \right)}\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)\\ F_{136}\! \left(x \right) &= -F_{9}\! \left(x \right)+F_{137}\! \left(x \right)\\ F_{137}\! \left(x \right) &= \frac{F_{138}\! \left(x \right)}{F_{27}\! \left(x \right)}\\ F_{138}\! \left(x \right) &= -F_{6}\! \left(x \right)-F_{74}\! \left(x \right)-F_{75}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{0}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{143}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{0}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{0}\! \left(x \right) F_{145}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{27}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{76}\! \left(x \right)\\ \end{align*}\)