Av(13254, 13524, 13542, 15324, 15342, 15432, 51324, 51342, 51432)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 111, 546, 2758, 14110, 72687, 375998, 1950212, 10134024, 52730484, 274647566, ...

This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 28 rules.

Found on January 22, 2022.

Finding the specification took 17 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 28 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x , 1\right)\\ F_{4}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{5}\! \left(x , y\right) &= F_{6}\! \left(x , y\right) F_{7}\! \left(x \right)\\ F_{6}\! \left(x , y\right) &= \frac{y F_{4}\! \left(x , y\right)-F_{4}\! \left(x , 1\right)}{-1+y}\\ F_{7}\! \left(x \right) &= x\\ F_{8}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= \frac{y F_{10}\! \left(x , 1, y\right)-F_{10}\! \left(x , \frac{1}{y}, y\right)}{-1+y}\\ F_{10}\! \left(x , y , z\right) &= F_{11}\! \left(x , y z , z\right)\\ F_{11}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y , z\right)+F_{18}\! \left(x , y , z\right)\\ F_{12}\! \left(x , y , z\right) &= F_{13}\! \left(x , y , z\right)\\ F_{13}\! \left(x , y , z\right) &= F_{11}\! \left(x , y , z\right) F_{14}\! \left(x , y\right) F_{17}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)^{2} F_{17}\! \left(x , y\right)\\ F_{17}\! \left(x , y\right) &= y x\\ F_{18}\! \left(x , y , z\right) &= F_{17}\! \left(x , z\right) F_{19}\! \left(x , y , z\right)\\ F_{19}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x , y , z\right)+F_{22}\! \left(x , y , z\right)+F_{26}\! \left(x , z\right)\\ F_{20}\! \left(x , y , z\right) &= F_{21}\! \left(x , y , z\right)\\ F_{21}\! \left(x , y , z\right) &= F_{14}\! \left(x , y\right) F_{17}\! \left(x , y\right) F_{19}\! \left(x , y , z\right)\\ F_{22}\! \left(x , y , z\right) &= F_{23}\! \left(x , y , z\right)\\ F_{23}\! \left(x , y , z\right) &= F_{17}\! \left(x , z\right) F_{24}\! \left(x , y , z\right) F_{25}\! \left(x , z\right)\\ F_{24}\! \left(x , y , z\right) &= \frac{y F_{14}\! \left(x , y\right)-z F_{14}\! \left(x , z\right)}{-z +y}\\ F_{25}\! \left(x , y\right) &= F_{10}\! \left(x , 1, y\right)\\ F_{26}\! \left(x , y\right) &= F_{27}\! \left(x , 1, y\right)\\ F_{27}\! \left(x , y , z\right) &= F_{18}\! \left(x , y z , z\right)\\ \end{align*}\)