Av(1324, 2341, 2413, 2431, 3241)
Generating Function
\(\displaystyle \frac{x^{6}+4 x^{5}-7 x^{3}-2 x^{2}+4 x -1}{\left(x^{2}+x -1\right) \left(x^{2}+2 x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 59, 179, 527, 1513, 4252, 11742, 31961, 85962, 228905, 604432, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}+x -1\right) \left(x^{2}+2 x -1\right)^{2} F \! \left(x \right)-x^{6}-4 x^{5}+7 x^{3}+2 x^{2}-4 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 59\)
\(\displaystyle a \! \left(6\right) = 179\)
\(\displaystyle a \! \left(n +6\right) = a \! \left(n \right)+5 a \! \left(n +1\right)+5 a \! \left(n +2\right)-6 a \! \left(n +3\right)-5 a \! \left(n +4\right)+5 a \! \left(n +5\right), \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 59\)
\(\displaystyle a \! \left(6\right) = 179\)
\(\displaystyle a \! \left(n +6\right) = a \! \left(n \right)+5 a \! \left(n +1\right)+5 a \! \left(n +2\right)-6 a \! \left(n +3\right)-5 a \! \left(n +4\right)+5 a \! \left(n +5\right), \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}+\left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}-\\\frac{\left(4 \sqrt{2}\, n +5 \sqrt{2}+2 n +16\right) \left(-1-\sqrt{2}\right)^{-n}}{16}+\\\frac{\left(4 \sqrt{2}\, n +5 \sqrt{2}-2 n -16\right) \left(\sqrt{2}-1\right)^{-n}}{16} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 40 rules.
Found on January 17, 2022.Finding the specification took 3 seconds.
Copy 40 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{17}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{13}\! \left(x \right) F_{16}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= x\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{17}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{17}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{11}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{11}\! \left(x \right) F_{17}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{17}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{13}\! \left(x \right) F_{17}\! \left(x \right) F_{34}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{16}\! \left(x \right) F_{17}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{16}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{17}\! \left(x \right) F_{20}\! \left(x \right)\\
\end{align*}\)