Av(1324, 2143, 2341, 2413, 3241)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{7}+2 x^{6}-5 x^{5}-5 x^{4}-3 x^{3}+11 x^{2}-6 x +1}{\left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x^{2}+2 x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 153, 415, 1107, 2919, 7635, 19857, 51439, 132889, 342693, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x^{2}+2 x -1\right) F \! \left(x \right)+x^{7}+2 x^{6}-5 x^{5}-5 x^{4}-3 x^{3}+11 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 153\)
\(\displaystyle a \! \left(7\right) = 415\)
\(\displaystyle a \! \left(n +5\right) = -2 a \! \left(n \right)+3 a \! \left(n +1\right)+11 a \! \left(n +2\right)-16 a \! \left(n +3\right)+7 a \! \left(n +4\right), \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \frac{\left(\left\{\begin{array}{cc}\frac{23}{4} & n =0 \\ \frac{7}{2} & n =1 \\ 1 & n =2 \\ 0 & \text{otherwise} \end{array}\right.\right)}{2}+\frac{3 \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n} \sqrt{5}}{5}-\frac{3 \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n} \sqrt{5}}{5}-\frac{7 \,2^{n}}{8}+\frac{\left(\sqrt{2}-1\right)^{-n}}{2}-\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}+\frac{\left(-1-\sqrt{2}\right)^{-n}}{2}-\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}\)

This specification was found using the strategy pack "Point Placements" and has 45 rules.

Found on January 17, 2022.

Finding the specification took 3 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 45 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{13}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{13}\! \left(x \right) &= x\\ F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{14}\! \left(x \right) F_{19}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{13}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{13}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{13}\! \left(x \right) F_{19}\! \left(x \right) F_{23}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{13}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{26}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{19}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{13}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{13}\! \left(x \right) F_{35}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{13}\! \left(x \right) F_{26}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{14}\! \left(x \right) F_{15}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{13}\! \left(x \right) F_{19}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{14} \left(x \right)^{2} F_{41}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{16}\! \left(x \right)\\ \end{align*}\)