Av(1324, 1432, 2341, 3142, 3241)
Generating Function
\(\displaystyle \frac{x^{6}+x^{5}-4 x^{4}-3 x^{3}-x^{2}+3 x -1}{\left(x -1\right) \left(x^{2}+2 x -1\right) \left(x^{3}+x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 54, 147, 387, 994, 2511, 6268, 15512, 38149, 93388, 227829, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(x^{2}+2 x -1\right) \left(x^{3}+x^{2}+x -1\right) F \! \left(x \right)-x^{6}-x^{5}+4 x^{4}+3 x^{3}+x^{2}-3 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 54\)
\(\displaystyle a \! \left(6\right) = 147\)
\(\displaystyle a \! \left(n +2\right) = -\frac{a \! \left(n \right)}{2}-\frac{3 a \! \left(n +1\right)}{2}+\frac{3 a \! \left(n +4\right)}{2}-\frac{a \! \left(n +5\right)}{2}+2, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 54\)
\(\displaystyle a \! \left(6\right) = 147\)
\(\displaystyle a \! \left(n +2\right) = -\frac{a \! \left(n \right)}{2}-\frac{3 a \! \left(n +1\right)}{2}+\frac{3 a \! \left(n +4\right)}{2}-\frac{a \! \left(n +5\right)}{2}+2, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \frac{225 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}+2 Z^{5}-Z^{4}-2 Z^{3}-3 Z^{2}+4 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +4}\right)}{88}+\frac{1145 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}+2 Z^{5}-Z^{4}-2 Z^{3}-3 Z^{2}+4 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +3}\right)}{176}+\frac{49 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}+2 Z^{5}-Z^{4}-2 Z^{3}-3 Z^{2}+4 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{44}-\frac{185 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}+2 Z^{5}-Z^{4}-2 Z^{3}-3 Z^{2}+4 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{44}-\frac{437 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}+2 Z^{5}-Z^{4}-2 Z^{3}-3 Z^{2}+4 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{44}+\frac{873 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}+2 Z^{5}-Z^{4}-2 Z^{3}-3 Z^{2}+4 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{176}+\left(\left\{\begin{array}{cc}1 & n =0 \\ 0 & \text{otherwise} \end{array}\right.\right)\)
This specification was found using the strategy pack "Point Placements" and has 58 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 58 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{9}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{12}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{12}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{32}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{31}\! \left(x \right) &= 0\\
F_{32}\! \left(x \right) &= F_{12}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{36}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{12}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{12}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{44}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{12}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{12}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{12}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{12}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{12}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{52}\! \left(x \right)\\
\end{align*}\)