Av(1324, 1432, 2143, 2413, 3214)
Generating Function
\(\displaystyle \frac{\left(x -1\right)^{5}}{\left(2 x^{2}-2 x +1\right) \left(2 x^{3}-4 x^{2}+4 x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 57, 164, 464, 1310, 3708, 10520, 29876, 84856, 240976, 684232, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x^{2}-2 x +1\right) \left(2 x^{3}-4 x^{2}+4 x -1\right) F \! \left(x \right)-\left(x -1\right)^{5} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 57\)
\(\displaystyle a \! \left(n +5\right) = 4 a \! \left(n \right)-12 a \! \left(n +1\right)+18 a \! \left(n +2\right)-14 a \! \left(n +3\right)+6 a \! \left(n +4\right), \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 57\)
\(\displaystyle a \! \left(n +5\right) = 4 a \! \left(n \right)-12 a \! \left(n +1\right)+18 a \! \left(n +2\right)-14 a \! \left(n +3\right)+6 a \! \left(n +4\right), \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle -\frac{5 \left(\underset{\alpha =\mathit{RootOf} \left(4 Z^{5}-12 Z^{4}+18 Z^{3}-14 Z^{2}+6 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +3}\right)}{22}+\frac{13 \left(\underset{\alpha =\mathit{RootOf} \left(4 Z^{5}-12 Z^{4}+18 Z^{3}-14 Z^{2}+6 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{22}-\frac{7 \left(\underset{\alpha =\mathit{RootOf} \left(4 Z^{5}-12 Z^{4}+18 Z^{3}-14 Z^{2}+6 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{11}+\frac{15 \left(\underset{\alpha =\mathit{RootOf} \left(4 Z^{5}-12 Z^{4}+18 Z^{3}-14 Z^{2}+6 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{44}+\frac{\left(\underset{\alpha =\mathit{RootOf} \left(4 Z^{5}-12 Z^{4}+18 Z^{3}-14 Z^{2}+6 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{22}+\left(\left\{\begin{array}{cc}\frac{1}{4} & n =0 \\ 0 & \text{otherwise} \end{array}\right.\right)\)
This specification was found using the strategy pack "Point Placements" and has 53 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 53 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{10}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{19}\! \left(x \right) &= 0\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{24}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{37}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{38}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{49}\! \left(x \right)\\
\end{align*}\)