Av(1324, 1342, 2341, 2413, 3241)
Generating Function
\(\displaystyle \frac{2 x^{5}+3 x^{4}-x^{3}-7 x^{2}+5 x -1}{\left(x^{2}+2 x -1\right) \left(2 x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 58, 171, 488, 1355, 3678, 9799, 25708, 66591, 170666, 433523, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{2}+2 x -1\right) \left(2 x -1\right)^{2} F \! \left(x \right)+2 x^{5}+3 x^{4}-x^{3}-7 x^{2}+5 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 58\)
\(\displaystyle a \! \left(n +4\right) = 4 a \! \left(n \right)+4 a \! \left(n +1\right)-11 a \! \left(n +2\right)+6 a \! \left(n +3\right), \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 58\)
\(\displaystyle a \! \left(n +4\right) = 4 a \! \left(n \right)+4 a \! \left(n +1\right)-11 a \! \left(n +2\right)+6 a \! \left(n +3\right), \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \frac{\left(-3 \sqrt{2}+6\right) \left(-1-\sqrt{2}\right)^{-n}}{4}+\frac{\left(3 \sqrt{2}+6\right) \left(\sqrt{2}-1\right)^{-n}}{4}-2^{-1+n} n -\\\frac{9 \,2^{n}}{4} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 25 rules.
Found on July 23, 2021.Finding the specification took 2 seconds.
Copy 25 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{13}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{16}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{13}\! \left(x \right) &= x\\
F_{14}\! \left(x \right) &= F_{11}\! \left(x \right) F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{13}\! \left(x \right) F_{16}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{13}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{19}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{11}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{17}\! \left(x \right)\\
\end{align*}\)