Av(1324, 1342, 2341, 2413, 3142)
Generating Function
\(\displaystyle \frac{x^{6}-4 x^{5}+10 x^{4}-20 x^{3}+18 x^{2}-7 x +1}{\left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x^{3}-2 x^{2}+3 x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 58, 172, 500, 1431, 4043, 11300, 31298, 86027, 234930, 638035, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x^{3}-2 x^{2}+3 x -1\right) F \! \left(x \right)-x^{6}+4 x^{5}-10 x^{4}+20 x^{3}-18 x^{2}+7 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 58\)
\(\displaystyle a \! \left(6\right) = 172\)
\(\displaystyle a \! \left(n +6\right) = -2 a \! \left(n \right)+11 a \! \left(n +1\right)-25 a \! \left(n +2\right)+34 a \! \left(n +3\right)-24 a \! \left(n +4\right)+8 a \! \left(n +5\right), \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 58\)
\(\displaystyle a \! \left(6\right) = 172\)
\(\displaystyle a \! \left(n +6\right) = -2 a \! \left(n \right)+11 a \! \left(n +1\right)-25 a \! \left(n +2\right)+34 a \! \left(n +3\right)-24 a \! \left(n +4\right)+8 a \! \left(n +5\right), \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(92 \left(\left(\mathrm{I}-\frac{3 \sqrt{23}}{46}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{46}+1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}-920-23 \,2^{\frac{2}{3}} \left(\left(\mathrm{I}-\frac{21 \sqrt{23}}{23}\right) \sqrt{3}+\frac{63 \,\mathrm{I} \sqrt{23}}{23}-1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{11 \left(\left(\mathrm{I}-\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}+1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}-\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{2760}\\+\\\frac{\left(23 \,2^{\frac{2}{3}} \left(\left(\mathrm{I}+\frac{21 \sqrt{23}}{23}\right) \sqrt{3}+\frac{63 \,\mathrm{I} \sqrt{23}}{23}+1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}-920-92 \left(\left(\mathrm{I}+\frac{3 \sqrt{23}}{46}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{46}-1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{11 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}+\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}-1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}+\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{2760}\\+\\\frac{\left(\left(-42 \sqrt{3}\, 2^{\frac{2}{3}} \sqrt{23}-46 \,2^{\frac{2}{3}}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}-920+\left(12 \sqrt{23}\, \sqrt{3}\, 2^{\frac{1}{3}}-184 \,2^{\frac{1}{3}}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{2^{\frac{1}{3}} \left(3 \sqrt{23}\, \sqrt{3}-11\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{300}-\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{2}{3}\right)^{-n}}{2760}\\+\frac{\left(828 \sqrt{5}+1380\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{2760}+\frac{\left(-828 \sqrt{5}+1380\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{2760}+\\2^{n -1} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 22 rules.
Found on July 23, 2021.Finding the specification took 1 seconds.
Copy 22 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{14}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= x\\
F_{15}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{14}\! \left(x \right) F_{15}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{2}\! \left(x \right)\\
\end{align*}\)