Av(1324, 1342, 2143, 2431, 3214)
View Raw Data
Generating Function
\(\displaystyle \frac{3 x^{5}-8 x^{4}+15 x^{3}-14 x^{2}+6 x -1}{\left(x -1\right) \left(2 x -1\right) \left(3 x^{3}-5 x^{2}+4 x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 148, 383, 974, 2458, 6176, 15465, 38611, 96160, 239005, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(2 x -1\right) \left(3 x^{3}-5 x^{2}+4 x -1\right) F \! \left(x \right)-3 x^{5}+8 x^{4}-15 x^{3}+14 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(n +4\right) = -6 a \! \left(n \right)+13 a \! \left(n +1\right)-13 a \! \left(n +2\right)+6 a \! \left(n +3\right)-1, \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \frac{612 \left(\underset{\alpha =\mathit{RootOf} \left(6 Z^{5}-19 Z^{4}+26 Z^{3}-19 Z^{2}+7 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +3}\right)}{31}-\frac{1794 \left(\underset{\alpha =\mathit{RootOf} \left(6 Z^{5}-19 Z^{4}+26 Z^{3}-19 Z^{2}+7 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{31}+\frac{2115 \left(\underset{\alpha =\mathit{RootOf} \left(6 Z^{5}-19 Z^{4}+26 Z^{3}-19 Z^{2}+7 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{31}-\frac{1227 \left(\underset{\alpha =\mathit{RootOf} \left(6 Z^{5}-19 Z^{4}+26 Z^{3}-19 Z^{2}+7 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{31}+\frac{263 \left(\underset{\alpha =\mathit{RootOf} \left(6 Z^{5}-19 Z^{4}+26 Z^{3}-19 Z^{2}+7 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{31}+\left(\left\{\begin{array}{cc}\frac{1}{2} & n =0 \\ 0 & \text{otherwise} \end{array}\right.\right)\)

This specification was found using the strategy pack "Point Placements" and has 43 rules.

Found on January 18, 2022.

Finding the specification took 0 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 43 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{14}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{13}\! \left(x \right) &= 0\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{21}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{29}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{30}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{34}\! \left(x \right)\\ \end{align*}\)