Av(1324, 1342, 2143, 2341, 2413)
View Raw Data
Generating Function
\(\displaystyle \frac{2 x^{6}-6 x^{5}+10 x^{4}-20 x^{3}+18 x^{2}-7 x +1}{\left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x^{3}-2 x^{2}+3 x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 157, 428, 1147, 3039, 7989, 20889, 54421, 141444, 367084, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x^{3}-2 x^{2}+3 x -1\right) F \! \left(x \right)-2 x^{6}+6 x^{5}-10 x^{4}+20 x^{3}-18 x^{2}+7 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(6\right) = 157\)
\(\displaystyle a \! \left(n +6\right) = -2 a \! \left(n \right)+11 a \! \left(n +1\right)-25 a \! \left(n +2\right)+34 a \! \left(n +3\right)-24 a \! \left(n +4\right)+8 a \! \left(n +5\right), \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(23 \,2^{\frac{1}{3}} \left(\left(-\frac{29 \sqrt{23}}{23}+\mathrm{I}\right) \sqrt{3}-\frac{87 \,\mathrm{I} \sqrt{23}}{23}+1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}+4600-575 \left(\left(\frac{\sqrt{23}}{23}+\mathrm{I}\right) \sqrt{3}-\frac{3 \,\mathrm{I} \sqrt{23}}{23}-1\right) 2^{\frac{2}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{11 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}+1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}-\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{13800}\\+\\\frac{\left(575 \,2^{\frac{2}{3}} \left(\left(-\frac{\sqrt{23}}{23}+\mathrm{I}\right) \sqrt{3}-\frac{3 \,\mathrm{I} \sqrt{23}}{23}+1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+4600-23 \,2^{\frac{1}{3}} \left(\left(\frac{29 \sqrt{23}}{23}+\mathrm{I}\right) \sqrt{3}-\frac{87 \,\mathrm{I} \sqrt{23}}{23}-1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{11 \left(\left(\mathrm{I}+\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}-1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}+\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{13800}\\+\\\frac{\left(\left(50 \sqrt{3}\, 2^{\frac{2}{3}} \sqrt{23}-1150 \,2^{\frac{2}{3}}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+4600+\left(58 \sqrt{23}\, \sqrt{3}\, 2^{\frac{1}{3}}-46 \,2^{\frac{1}{3}}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{2^{\frac{1}{3}} \left(3 \sqrt{23}\, \sqrt{3}-11\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{300}-\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{2}{3}\right)^{-n}}{13800}\\+\frac{\sqrt{5}\, \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{5}-\frac{\sqrt{5}\, \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{5}-2^{n} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 27 rules.

Found on July 23, 2021.

Finding the specification took 2 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 27 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{15}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{13}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= x\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{10}\! \left(x \right) F_{15}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{13}\! \left(x \right) F_{20}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{15}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{13}\! \left(x \right) F_{15}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{13} \left(x \right)^{2} F_{2}\! \left(x \right)\\ \end{align*}\)