Av(1324, 1342, 1432, 2143, 2413, 2431, 3142, 4132)
View Raw Data
Generating Function
\(\displaystyle \frac{-\left(x -1\right)^{2} \sqrt{-4 x +1}+2 x^{4}+x^{2}-2 x +1}{2 x \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 16, 45, 136, 434, 1436, 4869, 16804, 58795, 208022, 742911, 2674452, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x -1\right)^{4} F \left(x \right)^{2}-\left(2 x^{4}+x^{2}-2 x +1\right) \left(x -1\right)^{2} F \! \left(x \right)+x^{7}+x^{5}-x^{4}-3 x^{3}+6 x^{2}-4 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 16\)
\(\displaystyle a \! \left(5\right) = 45\)
\(\displaystyle a \! \left(1+n \right) = \frac{2 \left(2 n +1\right) a \! \left(n \right)}{n +2}-\frac{3 n^{2}-7 n -2}{n +2}, \quad n \geq 6\)

This specification was found using the strategy pack "Point Placements" and has 17 rules.

Found on July 23, 2021.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 17 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{5} \left(x \right)^{2} F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= x\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{5} \left(x \right)^{3}\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\ \end{align*}\)