Av(1324, 1342, 1423, 1432, 2413, 2431, 3142, 3412, 4132)
Generating Function
\(\displaystyle -\frac{x^{4}-x^{3}+2 x -1}{x^{2}-3 x +1}\)
Counting Sequence
1, 1, 2, 6, 15, 39, 102, 267, 699, 1830, 4791, 12543, 32838, 85971, 225075, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right) F \! \left(x \right)+x^{4}-x^{3}+2 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 15\)
\(\displaystyle a \! \left(n +2\right) = -a \! \left(n \right)+3 a \! \left(n +1\right), \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 15\)
\(\displaystyle a \! \left(n +2\right) = -a \! \left(n \right)+3 a \! \left(n +1\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ 2 & n =2 \\ \frac{\left(-6 \sqrt{5}+15\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{5}+\frac{\left(6 \sqrt{5}+15\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{5} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 19 rules.
Found on July 23, 2021.Finding the specification took 1 seconds.
Copy 19 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{13}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{11}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= x\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{13}\! \left(x \right) F_{16}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{11}\! \left(x \right) F_{7}\! \left(x \right)\\
\end{align*}\)