Av(12453, 13452, 21453, 23451, 31452, 32451, 41352, 42351)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 112, 568, 3024, 16600, 93008, 528632, 3036016, 17572504, 102318256, 598547640, ...

This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 40 rules.

Finding the specification took 109 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 40 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{11}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{39}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{36}\! \left(x \right)+F_{38}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{11}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x , 1\right)\\ F_{8}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y\right)+F_{34}\! \left(x , y\right)+F_{35}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{11}\! \left(x \right)\\ F_{10}\! \left(x , y\right) &= -\frac{-F_{8}\! \left(x , y\right) y +F_{8}\! \left(x , 1\right)}{-1+y}\\ F_{11}\! \left(x \right) &= x\\ F_{12}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{13}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= -\frac{-y F_{14}\! \left(x , y\right)+F_{14}\! \left(x , 1\right)}{-1+y}\\ F_{14}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y\right)+F_{15}\! \left(x , y\right)+F_{17}\! \left(x , y\right)+F_{6}\! \left(x \right)\\ F_{15}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{16}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= y x\\ F_{17}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{18}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x , y\right)+F_{17}\! \left(x , y\right)+F_{19}\! \left(x \right)+F_{22}\! \left(x , y\right)+F_{25}\! \left(x , y\right)\\ F_{19}\! \left(x \right) &= F_{11}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x , 1\right)\\ F_{21}\! \left(x , y\right) &= -\frac{-F_{8}\! \left(x , y\right) y +F_{8}\! \left(x , 1\right)}{-1+y}\\ F_{22}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{23}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= -\frac{-F_{24}\! \left(x , y\right) y +F_{24}\! \left(x , 1\right)}{-1+y}\\ F_{24}\! \left(x , y\right) &= -\frac{-y F_{14}\! \left(x , y\right)+F_{14}\! \left(x , 1\right)}{-1+y}\\ F_{25}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{26}\! \left(x , y\right)\\ F_{26}\! \left(x , y\right) &= F_{27}\! \left(x , y , 1\right)\\ F_{27}\! \left(x , y , z\right) &= -\frac{-F_{28}\! \left(x , y , z\right) z +F_{28}\! \left(x , y , 1\right)}{-1+z}\\ F_{28}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x , y\right)+F_{29}\! \left(x , y , z\right)+F_{32}\! \left(x , y , z\right)+F_{33}\! \left(x , y , z\right)+F_{9}\! \left(x , z\right)\\ F_{29}\! \left(x , y , z\right) &= F_{11}\! \left(x \right) F_{30}\! \left(x , y , z\right)\\ F_{30}\! \left(x , y , z\right) &= -\frac{-F_{31}\! \left(x , y , z\right) y +F_{31}\! \left(x , 1, z\right)}{-1+y}\\ F_{31}\! \left(x , y , z\right) &= \frac{y F_{14}\! \left(x , y\right)-z F_{14}\! \left(x , z\right)}{-z +y}\\ F_{32}\! \left(x , y , z\right) &= F_{16}\! \left(x , z\right) F_{28}\! \left(x , y , z\right)\\ F_{33}\! \left(x , y , z\right) &= F_{11}\! \left(x \right) F_{27}\! \left(x , y , z\right)\\ F_{34}\! \left(x , y\right) &= F_{16}\! \left(x , y\right) F_{8}\! \left(x , y\right)\\ F_{35}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{21}\! \left(x , y\right)\\ F_{36}\! \left(x \right) &= F_{11}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{14}\! \left(x , 1\right)\\ F_{38}\! \left(x \right) &= F_{11}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right)\\ \end{align*}\)