Av(12453, 13452, 14352, 23451, 24351)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 115, 614, 3511, 21050, 130686, 833434, 5429428, 35984323, 241893577, 1645390651, ...

This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Tracked Component Fusion Req Corrob Symmetries" and has 60 rules.

Finding the specification took 4873 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 60 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{10}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\ F_{7}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y_{0}\right)+F_{56}\! \left(x , y_{0}\right)+F_{8}\! \left(x , y_{0}\right)\\ F_{8}\! \left(x , y_{0}\right) &= F_{10}\! \left(x \right) F_{9}\! \left(x , y_{0}\right)\\ F_{9}\! \left(x , y_{0}\right) &= -\frac{-F_{7}\! \left(x , y_{0}\right) y_{0}+F_{7}\! \left(x , 1\right)}{-1+y_{0}}\\ F_{10}\! \left(x \right) &= x\\ F_{11}\! \left(x , y_{0}\right) &= F_{12}\! \left(x , y_{0}\right) F_{24}\! \left(x , y_{0}\right)\\ F_{12}\! \left(x , y_{0}\right) &= F_{13}\! \left(x , y_{0}, 1\right)\\ F_{13}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}\right)+F_{35}\! \left(x , y_{0}, y_{1}\right)\\ F_{14}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y_{0}\right)+F_{15}\! \left(x , y_{0}\right)+F_{17}\! \left(x , y_{0}\right)\\ F_{15}\! \left(x , y_{0}\right) &= F_{10}\! \left(x \right) F_{16}\! \left(x , y_{0}\right)\\ F_{16}\! \left(x , y_{0}\right) &= -\frac{-y_{0} F_{14}\! \left(x , y_{0}\right)+F_{14}\! \left(x , 1\right)}{-1+y_{0}}\\ F_{17}\! \left(x , y_{0}\right) &= F_{10}\! \left(x \right) F_{18}\! \left(x , y_{0}\right)\\ F_{18}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y_{0}\right)+F_{19}\! \left(x , y_{0}\right)+F_{21}\! \left(x , y_{0}\right)+F_{25}\! \left(x , y_{0}\right)\\ F_{19}\! \left(x , y_{0}\right) &= F_{10}\! \left(x \right) F_{20}\! \left(x , y_{0}\right)\\ F_{20}\! \left(x , y_{0}\right) &= -\frac{-F_{18}\! \left(x , y_{0}\right) y_{0}+F_{18}\! \left(x , 1\right)}{-1+y_{0}}\\ F_{21}\! \left(x , y_{0}\right) &= F_{22}\! \left(x , y_{0}\right) F_{24}\! \left(x , y_{0}\right)\\ F_{22}\! \left(x , y_{0}\right) &= F_{23}\! \left(x , y_{0}, 1\right)\\ F_{23}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{13}\! \left(x , y_{0}, y_{1}\right) y_{0} y_{1}-F_{13}\! \left(x , y_{0}, \frac{1}{y_{0}}\right)}{y_{0} y_{1}-1}\\ F_{24}\! \left(x , y_{0}\right) &= y_{0} x\\ F_{25}\! \left(x , y_{0}\right) &= F_{10}\! \left(x \right) F_{26}\! \left(x , y_{0}\right)\\ F_{26}\! \left(x , y_{0}\right) &= F_{27}\! \left(x , y_{0}, 1\right)\\ F_{27}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{1} F_{28}\! \left(x , y_{0}, y_{1}\right)+F_{28}\! \left(x , y_{0}, 1\right)}{-1+y_{1}}\\ F_{28}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x , y_{0}, y_{1}\right)+F_{31}\! \left(x , y_{0}, y_{1}\right)+F_{33}\! \left(x , y_{0}, y_{1}\right)+F_{34}\! \left(x , y_{0}, y_{1}\right)\\ F_{29}\! \left(x , y_{0}, y_{1}\right) &= F_{10}\! \left(x \right) F_{30}\! \left(x , y_{0}, y_{1}\right)\\ F_{30}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{28}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{28}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\ F_{31}\! \left(x , y_{0}, y_{1}\right) &= F_{24}\! \left(x , y_{0}\right) F_{32}\! \left(x , y_{0}, y_{1}\right)\\ F_{32}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{13}\! \left(x , y_{0}, 1\right) y_{0}-F_{13}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{33}\! \left(x , y_{0}, y_{1}\right) &= F_{24}\! \left(x , y_{1}\right) F_{28}\! \left(x , y_{0}, y_{1}\right)\\ F_{34}\! \left(x , y_{0}, y_{1}\right) &= F_{10}\! \left(x \right) F_{27}\! \left(x , y_{0}, y_{1}\right)\\ F_{35}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{36}\! \left(x \right)+F_{37}\! \left(x , y_{0}, y_{1}\right)+F_{51}\! \left(x , y_{0}, y_{1}\right)+F_{52}\! \left(x , y_{0}, y_{1}\right)\\ F_{36}\! \left(x \right) &= 0\\ F_{37}\! \left(x , y_{0}, y_{1}\right) &= F_{10}\! \left(x \right) F_{38}\! \left(x , y_{0}, y_{1}\right)\\ F_{38}\! \left(x , y_{0}, y_{1}\right) &= F_{39}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{39}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= 2 F_{36}\! \left(x \right)+F_{40}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{42}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{45}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{48}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{40}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{10}\! \left(x \right) F_{41}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{41}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{39}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{0}+F_{39}\! \left(x , 1, y_{1}, y_{2}\right)}{-1+y_{0}}\\ F_{42}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{24}\! \left(x , y_{0}\right) F_{43}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{43}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{y_{2} \left(F_{44}\! \left(x , y_{0}, y_{1}\right)-F_{44}\! \left(x , y_{0}, y_{1} y_{2}\right)\right)}{y_{2}-1}\\ F_{44}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{1} \left(F_{35}\! \left(x , y_{0}, 1\right)-F_{35}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right)\right)}{-y_{1}+y_{0}}\\ F_{45}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{24}\! \left(x , y_{2}\right) F_{46}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{46}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{39}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{47}\! \left(x , y_{0}, y_{1}\right)\\ F_{47}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{0} F_{14}\! \left(x , y_{0}\right)-F_{14}\! \left(x , y_{1}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{48}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{49}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{49}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{10}\! \left(x \right) F_{50}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{50}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{1} y_{2} \left(F_{39}\! \left(x , y_{0}, y_{1}, y_{2}\right)-F_{39}\! \left(x , y_{0}, y_{1}, \frac{1}{y_{1}}\right)\right)}{y_{1} y_{2}-1}\\ F_{51}\! \left(x , y_{0}, y_{1}\right) &= F_{13}\! \left(x , y_{0}, y_{1}\right) F_{24}\! \left(x , y_{1}\right)\\ F_{52}\! \left(x , y_{0}, y_{1}\right) &= F_{53}\! \left(x , y_{0}, y_{1}\right)\\ F_{53}\! \left(x , y_{0}, y_{1}\right) &= F_{10}\! \left(x \right) F_{54}\! \left(x , y_{0}, y_{1}\right)\\ F_{54}\! \left(x , y_{0}, y_{1}\right) &= F_{55}\! \left(x , y_{0}, y_{1}, 1\right)\\ F_{55}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{0} y_{1} \left(F_{35}\! \left(x , y_{0}, y_{1}\right)-F_{35}\! \left(x , y_{0}, \frac{y_{2}}{y_{0}}\right)\right)}{y_{0} y_{1}-y_{2}}\\ F_{56}\! \left(x , y_{0}\right) &= F_{10}\! \left(x \right) F_{57}\! \left(x , y_{0}\right)\\ F_{57}\! \left(x , y_{0}\right) &= -\frac{-y_{0} F_{14}\! \left(x , y_{0}\right)+F_{14}\! \left(x , 1\right)}{-1+y_{0}}\\ F_{58}\! \left(x \right) &= F_{10}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{14}\! \left(x , 1\right)\\ \end{align*}\)