Av(12453, 12543, 15243, 21453, 21543)
Counting Sequence
1, 1, 2, 6, 24, 115, 614, 3506, 20936, 129081, 815299, 5248283, 34307925, 227141576, 1520014376, ...
This specification was found using the strategy pack "Point Placements Tracked Fusion Tracked Component Fusion Req Corrob Symmetries" and has 476 rules.
Finding the specification took 153036 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 476 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{33}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{472}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{247}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{33}\! \left(x \right) F_{471}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{0}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= x^{2} F_{23} \left(x \right)^{2}+2 x^{2} F_{23}\! \left(x \right)+4 x F_{23} \left(x \right)^{2}+x^{2}-13 x F_{23}\! \left(x \right)-F_{23} \left(x \right)^{2}+8 x +4 F_{23}\! \left(x \right)-2\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{33}\! \left(x \right) &= x\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{33}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{30}\! \left(x \right) F_{33}\! \left(x \right) F_{35}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{33}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x , 1\right)\\
F_{44}\! \left(x , y\right) &= F_{45}\! \left(x \right)+F_{57}\! \left(x , y\right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{33}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{30}\! \left(x \right) F_{33}\! \left(x \right) F_{46}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x , 1\right)\\
F_{52}\! \left(x , y\right) &= -\frac{-y F_{53}\! \left(x , y\right)+F_{53}\! \left(x , 1\right)}{-1+y}\\
F_{53}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{54}\! \left(x , y\right)\\
F_{54}\! \left(x , y\right) &= F_{55}\! \left(x , y\right)\\
F_{55}\! \left(x , y\right) &= F_{53}\! \left(x , y\right)^{2} F_{56}\! \left(x , y\right)\\
F_{56}\! \left(x , y\right) &= y x\\
F_{57}\! \left(x , y\right) &= F_{58}\! \left(x , y\right)\\
F_{58}\! \left(x , y\right) &= F_{30}\! \left(x \right) F_{44}\! \left(x , y\right) F_{56}\! \left(x , y\right)\\
F_{59}\! \left(x \right) &= F_{51}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= x^{2} F_{60} \left(x \right)^{2}+4 x^{2} F_{60}\! \left(x \right)+4 x F_{60} \left(x \right)^{2}+4 x^{2}-5 x F_{60}\! \left(x \right)-F_{60} \left(x \right)^{2}-x +2 F_{60}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{30}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{27}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{33}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{466}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{465}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{2}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{51}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{33}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{2}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{235}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{33}\! \left(x \right) F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= -F_{85}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= \frac{F_{84}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{84}\! \left(x \right) &= F_{78}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{33}\! \left(x \right) F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= \frac{F_{90}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= -F_{104}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= \frac{F_{93}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{33}\! \left(x \right) F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{454}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{129}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{117}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{112}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{2}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{30}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{115}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{106}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)+F_{121}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{123}\! \left(x \right) F_{30}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{123}\! \left(x \right) &= \frac{F_{124}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)\\
F_{125}\! \left(x \right) &= -F_{126}\! \left(x \right)+F_{104}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{114}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{131}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{34}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{133}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{464}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{110}\! \left(x \right) F_{135}\! \left(x \right)\\
F_{135}\! \left(x \right) &= \frac{F_{136}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)\\
F_{137}\! \left(x \right) &= -F_{23}\! \left(x \right)+F_{138}\! \left(x \right)\\
F_{138}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{139}\! \left(x \right)\\
F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{141}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{146}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{143}\! \left(x \right)\\
F_{143}\! \left(x \right) &= -F_{146}\! \left(x \right)+F_{144}\! \left(x \right)\\
F_{144}\! \left(x \right) &= \frac{F_{145}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{145}\! \left(x \right) &= F_{94}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{148}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)+F_{177}\! \left(x \right)\\
F_{149}\! \left(x \right) &= \frac{F_{150}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)\\
F_{151}\! \left(x \right) &= -F_{154}\! \left(x \right)+F_{152}\! \left(x \right)\\
F_{152}\! \left(x \right) &= \frac{F_{153}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{153}\! \left(x \right) &= F_{94}\! \left(x \right)\\
F_{154}\! \left(x \right) &= -F_{159}\! \left(x \right)+F_{155}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{157}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{0}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{157}\! \left(x \right) &= -F_{158}\! \left(x \right)+F_{152}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{2}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)\\
F_{161}\! \left(x \right) &= F_{162}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{162}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{184}\! \left(x \right)\\
F_{163}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{165}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{0}\! \left(x \right) F_{159}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{166}\! \left(x \right)\\
F_{166}\! \left(x \right) &= F_{167}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{169}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{159}\! \left(x \right) F_{99}\! \left(x \right)\\
F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)\\
F_{170}\! \left(x \right) &= F_{171}\! \left(x \right) F_{176}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{171}\! \left(x \right) &= \frac{F_{172}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)\\
F_{173}\! \left(x \right) &= -F_{82}\! \left(x \right)+F_{174}\! \left(x \right)\\
F_{174}\! \left(x \right) &= \frac{F_{175}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{175}\! \left(x \right) &= F_{71}\! \left(x \right)\\
F_{176}\! \left(x \right) &= \frac{F_{177}\! \left(x \right)}{F_{60}\! \left(x \right)}\\
F_{177}\! \left(x \right) &= -F_{181}\! \left(x \right)+F_{178}\! \left(x \right)\\
F_{178}\! \left(x \right) &= \frac{F_{179}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{179}\! \left(x \right) &= F_{180}\! \left(x \right)\\
F_{180}\! \left(x \right) &= -F_{151}\! \left(x \right)+F_{157}\! \left(x \right)\\
F_{181}\! \left(x \right) &= F_{182}\! \left(x \right)+F_{183}\! \left(x \right)\\
F_{182}\! \left(x \right) &= F_{149}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{183}\! \left(x \right) &= F_{176}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{184}\! \left(x \right) &= -F_{459}\! \left(x \right)+F_{185}\! \left(x \right)\\
F_{185}\! \left(x \right) &= -F_{191}\! \left(x \right)+F_{186}\! \left(x \right)\\
F_{186}\! \left(x \right) &= \frac{F_{187}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{187}\! \left(x \right) &= F_{188}\! \left(x \right)\\
F_{188}\! \left(x \right) &= -F_{189}\! \left(x \right)+F_{155}\! \left(x \right)\\
F_{189}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{190}\! \left(x \right)\\
F_{190}\! \left(x \right) &= F_{0} \left(x \right)^{2}\\
F_{191}\! \left(x \right) &= F_{192}\! \left(x \right)+F_{193}\! \left(x \right)\\
F_{192}\! \left(x \right) &= F_{189}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)\\
F_{194}\! \left(x \right) &= F_{195}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{195}\! \left(x \right) &= F_{196}\! \left(x \right)+F_{197}\! \left(x \right)\\
F_{196}\! \left(x \right) &= F_{149}\! \left(x \right) F_{189}\! \left(x \right)\\
F_{197}\! \left(x \right) &= F_{176}\! \left(x \right) F_{198}\! \left(x \right)\\
F_{198}\! \left(x \right) &= -F_{189}\! \left(x \right)+F_{199}\! \left(x \right)\\
F_{199}\! \left(x \right) &= -F_{449}\! \left(x \right)+F_{200}\! \left(x \right)\\
F_{200}\! \left(x \right) &= \frac{F_{201}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{201}\! \left(x \right) &= F_{202}\! \left(x \right)\\
F_{202}\! \left(x \right) &= -F_{205}\! \left(x \right)+F_{203}\! \left(x \right)\\
F_{203}\! \left(x \right) &= \frac{F_{204}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{204}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{205}\! \left(x \right) &= F_{206}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)\\
F_{207}\! \left(x \right) &= F_{208}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{208}\! \left(x \right) &= F_{209}\! \left(x \right)+F_{440}\! \left(x \right)\\
F_{209}\! \left(x \right) &= F_{210}\! \left(x \right)\\
F_{210}\! \left(x \right) &= F_{211}\! \left(x \right) F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{211}\! \left(x \right) &= \frac{F_{212}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{212}\! \left(x \right) &= F_{213}\! \left(x \right)\\
F_{213}\! \left(x \right) &= F_{214}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{214}\! \left(x \right) &= F_{215}\! \left(x \right)\\
F_{215}\! \left(x \right) &= F_{216}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{216}\! \left(x \right) &= F_{213}\! \left(x \right)+F_{217}\! \left(x \right)\\
F_{217}\! \left(x \right) &= F_{218}\! \left(x \right)+F_{439}\! \left(x \right)\\
F_{218}\! \left(x \right) &= F_{219}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{219}\! \left(x \right) &= F_{220}\! \left(x \right)\\
F_{220}\! \left(x \right) &= F_{221}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{221}\! \left(x \right) &= F_{222}\! \left(x \right)+F_{223}\! \left(x \right)\\
F_{222}\! \left(x \right) &= F_{213}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{223}\! \left(x \right) &= F_{224}\! \left(x \right)\\
F_{224}\! \left(x \right) &= F_{20}\! \left(x \right) F_{225}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{225}\! \left(x \right) &= \frac{F_{226}\! \left(x \right)}{F_{30}\! \left(x \right) F_{33}\! \left(x \right)}\\
F_{226}\! \left(x \right) &= F_{227}\! \left(x \right)\\
F_{227}\! \left(x \right) &= \frac{F_{228}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{228}\! \left(x \right) &= F_{229}\! \left(x \right)\\
F_{229}\! \left(x \right) &= -F_{436}\! \left(x \right)+F_{230}\! \left(x \right)\\
F_{230}\! \left(x \right) &= -F_{395}\! \left(x \right)+F_{231}\! \left(x \right)\\
F_{231}\! \left(x \right) &= F_{232}\! \left(x \right)\\
F_{232}\! \left(x \right) &= -F_{238}\! \left(x \right)+F_{233}\! \left(x \right)\\
F_{233}\! \left(x \right) &= \frac{F_{234}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{234}\! \left(x \right) &= F_{235}\! \left(x \right)\\
F_{235}\! \left(x \right) &= -F_{74}\! \left(x \right)+F_{236}\! \left(x \right)\\
F_{236}\! \left(x \right) &= -F_{237}\! \left(x \right)+F_{203}\! \left(x \right)\\
F_{237}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{238}\! \left(x \right) &= F_{239}\! \left(x \right)+F_{435}\! \left(x \right)\\
F_{239}\! \left(x \right) &= -F_{430}\! \left(x \right)+F_{240}\! \left(x \right)\\
F_{240}\! \left(x \right) &= \frac{F_{241}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{241}\! \left(x \right) &= F_{242}\! \left(x \right)\\
F_{242}\! \left(x \right) &= -F_{245}\! \left(x \right)+F_{243}\! \left(x \right)\\
F_{243}\! \left(x \right) &= \frac{F_{244}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{244}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{245}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{246}\! \left(x \right)\\
F_{246}\! \left(x \right) &= F_{247}\! \left(x \right)+F_{420}\! \left(x \right)\\
F_{247}\! \left(x \right) &= F_{248}\! \left(x \right)\\
F_{248}\! \left(x \right) &= F_{249}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{249}\! \left(x \right) &= F_{250}\! \left(x \right)+F_{251}\! \left(x \right)\\
F_{250}\! \left(x \right) &= F_{12}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{251}\! \left(x \right) &= F_{157}\! \left(x \right)+F_{252}\! \left(x \right)\\
F_{252}\! \left(x \right) &= F_{253}\! \left(x \right)\\
F_{253}\! \left(x \right) &= F_{254}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{254}\! \left(x \right) &= F_{255}\! \left(x \right)+F_{256}\! \left(x \right)\\
F_{255}\! \left(x \right) &= F_{12}\! \left(x \right) F_{149}\! \left(x \right)\\
F_{256}\! \left(x \right) &= F_{176}\! \left(x \right) F_{257}\! \left(x \right)\\
F_{257}\! \left(x \right) &= -F_{419}\! \left(x \right)+F_{258}\! \left(x \right)\\
F_{258}\! \left(x \right) &= F_{259}\! \left(x \right)+F_{416}\! \left(x \right)\\
F_{259}\! \left(x \right) &= F_{260}\! \left(x \right)+F_{262}\! \left(x \right)\\
F_{260}\! \left(x \right) &= F_{261}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{261}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{262}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{263}\! \left(x \right)\\
F_{263}\! \left(x \right) &= F_{264}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{264}\! \left(x \right) &= F_{265}\! \left(x \right)\\
F_{265}\! \left(x \right) &= F_{266}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{266}\! \left(x \right) &= F_{267}\! \left(x \right)+F_{268}\! \left(x \right)\\
F_{267}\! \left(x \right) &= F_{4}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{268}\! \left(x \right) &= F_{269}\! \left(x \right)\\
F_{269}\! \left(x \right) &= F_{20}\! \left(x \right) F_{270}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{270}\! \left(x \right) &= \frac{F_{271}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{271}\! \left(x \right) &= F_{272}\! \left(x \right)\\
F_{272}\! \left(x \right) &= -F_{30}\! \left(x \right)+F_{273}\! \left(x \right)\\
F_{273}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{274}\! \left(x \right)\\
F_{274}\! \left(x \right) &= F_{275}\! \left(x \right)\\
F_{275}\! \left(x \right) &= F_{276}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{276}\! \left(x \right) &= F_{277}\! \left(x \right)+F_{414}\! \left(x \right)\\
F_{277}\! \left(x \right) &= F_{278}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{278}\! \left(x \right) &= \frac{F_{279}\! \left(x \right)}{F_{60}\! \left(x \right)}\\
F_{279}\! \left(x \right) &= -F_{412}\! \left(x \right)+F_{280}\! \left(x \right)\\
F_{280}\! \left(x \right) &= -F_{408}\! \left(x \right)+F_{281}\! \left(x \right)\\
F_{281}\! \left(x \right) &= \frac{F_{282}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{282}\! \left(x \right) &= F_{283}\! \left(x \right)\\
F_{283}\! \left(x \right) &= -F_{405}\! \left(x \right)+F_{284}\! \left(x \right)\\
F_{284}\! \left(x \right) &= -F_{287}\! \left(x \right)+F_{285}\! \left(x \right)\\
F_{285}\! \left(x \right) &= \frac{F_{286}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{286}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{287}\! \left(x \right) &= F_{288}\! \left(x \right)+F_{289}\! \left(x \right)\\
F_{288}\! \left(x \right) &= F_{138}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{289}\! \left(x \right) &= F_{290}\! \left(x \right)\\
F_{290}\! \left(x \right) &= F_{291}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{291}\! \left(x \right) &= F_{292}\! \left(x \right)+F_{319}\! \left(x \right)\\
F_{292}\! \left(x \right) &= F_{293}\! \left(x \right)+F_{299}\! \left(x \right)\\
F_{293}\! \left(x \right) &= F_{294}\! \left(x \right)+F_{295}\! \left(x \right)\\
F_{294}\! \left(x \right) &= F_{141}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{295}\! \left(x \right) &= F_{296}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{296}\! \left(x \right) &= F_{277}\! \left(x \right)+F_{297}\! \left(x \right)\\
F_{297}\! \left(x \right) &= F_{298}\! \left(x \right)\\
F_{298}\! \left(x \right) &= F_{176}\! \left(x \right) F_{30}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{299}\! \left(x \right) &= F_{300}\! \left(x \right) F_{79}\! \left(x \right)\\
F_{300}\! \left(x \right) &= F_{301}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{301}\! \left(x \right) &= \frac{F_{302}\! \left(x \right)}{F_{316}\! \left(x \right)}\\
F_{302}\! \left(x \right) &= F_{303}\! \left(x \right)\\
F_{303}\! \left(x \right) &= -F_{307}\! \left(x \right)+F_{304}\! \left(x \right)\\
F_{304}\! \left(x \right) &= \frac{F_{305}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{305}\! \left(x \right) &= F_{306}\! \left(x \right)\\
F_{306}\! \left(x \right) &= -F_{95}\! \left(x \right)+F_{151}\! \left(x \right)\\
F_{307}\! \left(x \right) &= -F_{317}\! \left(x \right)+F_{308}\! \left(x \right)\\
F_{308}\! \left(x \right) &= \frac{F_{309}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{309}\! \left(x \right) &= F_{310}\! \left(x \right)\\
F_{310}\! \left(x \right) &= -F_{97}\! \left(x \right)+F_{311}\! \left(x \right)\\
F_{311}\! \left(x \right) &= F_{312}\! \left(x \right)\\
F_{312}\! \left(x \right) &= F_{313}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{313}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{314}\! \left(x \right)\\
F_{314}\! \left(x \right) &= F_{315}\! \left(x \right)\\
F_{315}\! \left(x \right) &= F_{176}\! \left(x \right) F_{316}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{316}\! \left(x \right) &= F_{213}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{317}\! \left(x \right) &= F_{318}\! \left(x \right)\\
F_{318}\! \left(x \right) &= F_{176}\! \left(x \right) F_{316}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{319}\! \left(x \right) &= F_{320}\! \left(x \right)+F_{325}\! \left(x \right)\\
F_{320}\! \left(x \right) &= F_{321}\! \left(x \right)+F_{323}\! \left(x \right)\\
F_{321}\! \left(x \right) &= F_{141}\! \left(x \right) F_{322}\! \left(x \right)\\
F_{322}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{323}\! \left(x \right) &= F_{296}\! \left(x \right) F_{324}\! \left(x \right)\\
F_{324}\! \left(x \right) &= -F_{322}\! \left(x \right)+F_{202}\! \left(x \right)\\
F_{325}\! \left(x \right) &= F_{300}\! \left(x \right) F_{326}\! \left(x \right)\\
F_{326}\! \left(x \right) &= F_{327}\! \left(x \right)\\
F_{327}\! \left(x \right) &= F_{328}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{328}\! \left(x \right) &= F_{329}\! \left(x \right)+F_{330}\! \left(x \right)\\
F_{329}\! \left(x \right) &= -F_{200}\! \left(x \right)+F_{171}\! \left(x \right)\\
F_{330}\! \left(x \right) &= F_{331}\! \left(x \right)+F_{404}\! \left(x \right)\\
F_{331}\! \left(x \right) &= F_{332}\! \left(x \right)+F_{394}\! \left(x \right)\\
F_{332}\! \left(x \right) &= F_{333}\! \left(x \right)+F_{355}\! \left(x \right)\\
F_{333}\! \left(x \right) &= F_{334}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{334}\! \left(x \right) &= F_{335}\! \left(x \right)\\
F_{335}\! \left(x \right) &= F_{33}\! \left(x \right) F_{336}\! \left(x \right)\\
F_{336}\! \left(x \right) &= F_{337}\! \left(x \right)+F_{353}\! \left(x \right)\\
F_{337}\! \left(x \right) &= F_{338}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{338}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{339}\! \left(x \right)\\
F_{339}\! \left(x \right) &= F_{340}\! \left(x \right)\\
F_{340}\! \left(x \right) &= F_{33}\! \left(x \right) F_{341}\! \left(x \right) F_{349}\! \left(x \right)\\
F_{341}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{342}\! \left(x \right)\\
F_{342}\! \left(x \right) &= F_{343}\! \left(x \right)\\
F_{343}\! \left(x \right) &= F_{33}\! \left(x \right) F_{344}\! \left(x \right)\\
F_{344}\! \left(x \right) &= F_{341}\! \left(x \right)+F_{345}\! \left(x \right)\\
F_{345}\! \left(x \right) &= F_{346}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{346}\! \left(x \right) &= F_{347}\! \left(x \right)\\
F_{347}\! \left(x \right) &= F_{33}\! \left(x \right) F_{348}\! \left(x \right)\\
F_{348}\! \left(x \right) &= F_{342}\! \left(x \right)+F_{346}\! \left(x \right)\\
F_{349}\! \left(x \right) &= F_{350}\! \left(x \right)+F_{351}\! \left(x \right)\\
F_{350}\! \left(x \right) &= F_{30}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{351}\! \left(x \right) &= F_{352}\! \left(x , 1\right)\\
F_{352}\! \left(x , y\right) &= -\frac{y \left(F_{54}\! \left(x , 1\right)-F_{54}\! \left(x , y\right)\right)}{-1+y}\\
F_{353}\! \left(x \right) &= F_{354}\! \left(x \right)\\
F_{354}\! \left(x \right) &= F_{33}\! \left(x \right) F_{338}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{355}\! \left(x \right) &= F_{356}\! \left(x \right)\\
F_{356}\! \left(x \right) &= F_{33}\! \left(x \right) F_{357}\! \left(x \right)\\
F_{357}\! \left(x \right) &= F_{358}\! \left(x \right)+F_{392}\! \left(x \right)\\
F_{358}\! \left(x \right) &= F_{359}\! \left(x , 1\right)\\
F_{359}\! \left(x , y\right) &= F_{360}\! \left(x \right) F_{390}\! \left(x , y\right)\\
F_{360}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{361}\! \left(x \right)\\
F_{361}\! \left(x \right) &= F_{362}\! \left(x , 1\right)\\
F_{362}\! \left(x , y\right) &= F_{363}\! \left(x , y\right)\\
F_{363}\! \left(x , y\right) &= F_{364}\! \left(x , y\right) F_{56}\! \left(x , y\right)\\
F_{364}\! \left(x , y\right) &= F_{365}\! \left(x , y\right)+F_{370}\! \left(x , y\right)\\
F_{365}\! \left(x , y\right) &= F_{366}\! \left(x , y\right) F_{367}\! \left(x , y\right)\\
F_{366}\! \left(x , y\right) &= F_{173}\! \left(x \right)+F_{362}\! \left(x , y\right)\\
F_{367}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{368}\! \left(x , y\right)\\
F_{368}\! \left(x , y\right) &= F_{369}\! \left(x , y\right)\\
F_{369}\! \left(x , y\right) &= F_{367}\! \left(x , y\right) F_{56}\! \left(x , y\right)\\
F_{371}\! \left(x , y\right) &= F_{370}\! \left(x , y\right)+F_{388}\! \left(x , y\right)\\
F_{372}\! \left(x , y\right) &= F_{371}\! \left(x , y\right) F_{56}\! \left(x , y\right)\\
F_{372}\! \left(x , y\right) &= F_{373}\! \left(x , y\right)\\
F_{374}\! \left(x , y\right) &= -\frac{y \left(F_{373}\! \left(x , 1\right)-F_{373}\! \left(x , y\right)\right)}{-1+y}\\
F_{374}\! \left(x , y\right) &= F_{375}\! \left(x , y\right)\\
F_{375}\! \left(x , y\right) &= F_{376}\! \left(x , y\right) F_{56}\! \left(x , y\right)\\
F_{376}\! \left(x , y\right) &= F_{377}\! \left(x , y\right)+F_{384}\! \left(x , y\right)\\
F_{377}\! \left(x , y\right) &= F_{378}\! \left(x \right)+F_{380}\! \left(x , y\right)\\
F_{378}\! \left(x \right) &= \frac{F_{379}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{379}\! \left(x \right) &= F_{82}\! \left(x \right)\\
F_{380}\! \left(x , y\right) &= -\frac{y \left(F_{381}\! \left(x , 1\right)-F_{381}\! \left(x , y\right)\right)}{-1+y}\\
F_{381}\! \left(x , y\right) &= F_{373}\! \left(x , y\right)+F_{382}\! \left(x , y\right)\\
F_{382}\! \left(x , y\right) &= F_{383}\! \left(x , y\right)\\
F_{383}\! \left(x , y\right) &= F_{30}\! \left(x \right) F_{33}\! \left(x \right) F_{373}\! \left(x , y\right) F_{51}\! \left(x \right)\\
F_{384}\! \left(x , y\right) &= y F_{385}\! \left(x , y\right)\\
F_{385}\! \left(x , y\right) &= -\frac{-y F_{386}\! \left(x , y\right)+F_{386}\! \left(x , 1\right)}{-1+y}\\
F_{386}\! \left(x , y\right) &= F_{387}\! \left(x , y\right)\\
F_{387}\! \left(x , y\right) &= F_{30}\! \left(x \right) F_{33}\! \left(x \right) F_{371}\! \left(x , y\right)\\
F_{388}\! \left(x , y\right) &= F_{367}\! \left(x , y\right) F_{389}\! \left(x , y\right)\\
F_{389}\! \left(x , y\right) &= F_{373}\! \left(x , y\right)+F_{85}\! \left(x \right)\\
F_{390}\! \left(x , y\right) &= F_{351}\! \left(x \right)+F_{391}\! \left(x , y\right)\\
F_{391}\! \left(x , y\right) &= F_{30}\! \left(x \right) F_{367}\! \left(x , y\right)\\
F_{392}\! \left(x \right) &= F_{30}\! \left(x \right) F_{393}\! \left(x \right)\\
F_{393}\! \left(x \right) &= F_{370}\! \left(x , 1\right)\\
F_{394}\! \left(x \right) &= F_{395}\! \left(x \right)\\
F_{395}\! \left(x \right) &= F_{396}\! \left(x \right)\\
F_{396}\! \left(x \right) &= F_{33}\! \left(x \right) F_{397}\! \left(x \right)\\
F_{397}\! \left(x \right) &= F_{398}\! \left(x \right)+F_{401}\! \left(x \right)\\
F_{398}\! \left(x \right) &= F_{399}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{399}\! \left(x \right) &= F_{400}\! \left(x \right)\\
F_{400}\! \left(x \right) &= F_{211}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{401}\! \left(x \right) &= F_{173}\! \left(x \right) F_{402}\! \left(x \right)\\
F_{402}\! \left(x \right) &= F_{403}\! \left(x \right)\\
F_{403}\! \left(x \right) &= F_{225}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{404}\! \left(x \right) &= F_{230}\! \left(x \right)\\
F_{405}\! \left(x \right) &= F_{406}\! \left(x \right)\\
F_{406}\! \left(x \right) &= F_{33}\! \left(x \right) F_{407}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{407}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{408}\! \left(x \right) &= F_{409}\! \left(x \right)+F_{411}\! \left(x \right)\\
F_{409}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{410}\! \left(x \right)\\
F_{410}\! \left(x \right) &= F_{297}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{411}\! \left(x \right) &= F_{25}\! \left(x \right) F_{301}\! \left(x \right)\\
F_{412}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{413}\! \left(x \right)\\
F_{413}\! \left(x \right) &= -F_{97}\! \left(x \right)+F_{143}\! \left(x \right)\\
F_{414}\! \left(x \right) &= F_{415}\! \left(x \right)\\
F_{415}\! \left(x \right) &= F_{30}\! \left(x \right) F_{301}\! \left(x \right)\\
F_{416}\! \left(x \right) &= F_{417}\! \left(x \right)+F_{418}\! \left(x \right)\\
F_{417}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{125}\! \left(x \right)\\
F_{418}\! \left(x \right) &= F_{120}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{419}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{316}\! \left(x \right)\\
F_{420}\! \left(x \right) &= F_{421}\! \left(x \right)\\
F_{421}\! \left(x \right) &= F_{33}\! \left(x \right) F_{422}\! \left(x \right)\\
F_{422}\! \left(x \right) &= F_{423}\! \left(x \right)+F_{428}\! \left(x \right)\\
F_{423}\! \left(x \right) &= F_{424}\! \left(x \right)\\
F_{424}\! \left(x \right) &= F_{33}\! \left(x \right) F_{425}\! \left(x \right) F_{427}\! \left(x \right)\\
F_{425}\! \left(x \right) &= F_{217}\! \left(x \right)+F_{426}\! \left(x \right)\\
F_{426}\! \left(x \right) &= F_{213}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{427}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{428}\! \left(x \right) &= F_{429}\! \left(x \right)\\
F_{429}\! \left(x \right) &= F_{301}\! \left(x \right) F_{33}\! \left(x \right) F_{425}\! \left(x \right)\\
F_{430}\! \left(x \right) &= F_{431}\! \left(x \right)+F_{432}\! \left(x \right)\\
F_{431}\! \left(x \right) &= F_{23}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{432}\! \left(x \right) &= -F_{332}\! \left(x \right)+F_{433}\! \left(x \right)\\
F_{433}\! \left(x \right) &= \frac{F_{434}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{434}\! \left(x \right) &= F_{64}\! \left(x \right)\\
F_{435}\! \left(x \right) &= -F_{240}\! \left(x \right)+F_{171}\! \left(x \right)\\
F_{436}\! \left(x \right) &= F_{437}\! \left(x \right)\\
F_{437}\! \left(x \right) &= F_{33}\! \left(x \right) F_{402}\! \left(x \right) F_{438}\! \left(x \right)\\
F_{438}\! \left(x \right) &= F_{213}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{439}\! \left(x \right) &= F_{214}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{440}\! \left(x \right) &= F_{441}\! \left(x \right)\\
F_{441}\! \left(x \right) &= F_{33}\! \left(x \right) F_{442}\! \left(x \right)\\
F_{442}\! \left(x \right) &= F_{443}\! \left(x \right)+F_{445}\! \left(x \right)\\
F_{443}\! \left(x \right) &= F_{225}\! \left(x \right) F_{444}\! \left(x \right)\\
F_{444}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{324}\! \left(x \right)\\
F_{445}\! \left(x \right) &= F_{205}\! \left(x \right) F_{446}\! \left(x \right)\\
F_{446}\! \left(x \right) &= F_{316}\! \left(x \right)+F_{447}\! \left(x \right)\\
F_{447}\! \left(x \right) &= F_{448}\! \left(x \right)\\
F_{448}\! \left(x \right) &= F_{30}\! \left(x \right) F_{33}\! \left(x \right) F_{446}\! \left(x \right)\\
F_{449}\! \left(x \right) &= -F_{329}\! \left(x \right)+F_{450}\! \left(x \right)\\
F_{450}\! \left(x \right) &= -F_{457}\! \left(x \right)+F_{451}\! \left(x \right)\\
F_{451}\! \left(x \right) &= \frac{F_{452}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{452}\! \left(x \right) &= F_{453}\! \left(x \right)\\
F_{453}\! \left(x \right) &= -F_{455}\! \left(x \right)+F_{454}\! \left(x \right)\\
F_{454}\! \left(x \right) &= F_{242}\! \left(x \right)+F_{246}\! \left(x \right)\\
F_{455}\! \left(x \right) &= F_{247}\! \left(x \right)+F_{456}\! \left(x \right)\\
F_{456}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{457}\! \left(x \right) &= F_{458}\! \left(x \right)\\
F_{458}\! \left(x \right) &= F_{102}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{459}\! \left(x \right) &= F_{460}\! \left(x \right)\\
F_{460}\! \left(x \right) &= F_{33}\! \left(x \right) F_{461}\! \left(x \right) F_{462}\! \left(x \right)\\
F_{461}\! \left(x \right) &= F_{218}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{462}\! \left(x \right) &= \frac{F_{463}\! \left(x \right)}{F_{33}\! \left(x \right)}\\
F_{463}\! \left(x \right) &= F_{301}\! \left(x \right)\\
F_{464}\! \left(x \right) &= F_{118}\! \left(x \right) F_{270}\! \left(x \right)\\
F_{465}\! \left(x \right) &= F_{30}\! \left(x \right) F_{79}\! \left(x \right)\\
F_{466}\! \left(x \right) &= F_{467}\! \left(x \right)+F_{468}\! \left(x \right)\\
F_{467}\! \left(x \right) &= F_{236}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{468}\! \left(x \right) &= F_{469}\! \left(x \right)+F_{470}\! \left(x \right)\\
F_{469}\! \left(x \right) &= F_{322}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{470}\! \left(x \right) &= F_{324}\! \left(x \right) F_{351}\! \left(x \right)\\
F_{471}\! \left(x \right) &= F_{272}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{472}\! \left(x \right) &= F_{473}\! \left(x \right)\\
F_{473}\! \left(x \right) &= F_{33}\! \left(x \right) F_{474}\! \left(x \right)\\
F_{474}\! \left(x \right) &= F_{320}\! \left(x \right)+F_{475}\! \left(x \right)\\
F_{475}\! \left(x \right) &= F_{205}\! \left(x \right) F_{300}\! \left(x \right)\\
\end{align*}\)