Av(12453, 12543, 14253, 21453, 21543, 24153, 41253, 42153)
Counting Sequence
1, 1, 2, 6, 24, 112, 568, 3032, 16768, 95200, 551616, 3248704, 19389824, 117021824, 712934784, ...
This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 26 rules.
Found on January 22, 2022.Finding the specification took 18 seconds.
Copy 26 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{5}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x , 1\right)\\
F_{6}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y\right)+F_{11}\! \left(x , y\right)+F_{7}\! \left(x , y\right)\\
F_{7}\! \left(x , y\right) &= F_{8}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{8}\! \left(x , y\right) &= \frac{y F_{6}\! \left(x , y\right)-F_{6}\! \left(x , 1\right)}{-1+y}\\
F_{9}\! \left(x \right) &= x\\
F_{10}\! \left(x , y\right) &= F_{8}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{16}\! \left(x , y\right)\\
F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , 1, y\right)\\
F_{13}\! \left(x , y , z\right) &= F_{14}\! \left(x , y z , z\right)\\
F_{14}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , z\right)+F_{15}\! \left(x , y , z\right)+F_{17}\! \left(x , y , z\right)+F_{7}\! \left(x , z\right)\\
F_{15}\! \left(x , y , z\right) &= F_{16}\! \left(x , y\right) F_{6}\! \left(x , z\right)\\
F_{16}\! \left(x , y\right) &= y x\\
F_{18}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y , z\right)+F_{19}\! \left(x , y , z\right)+F_{21}\! \left(x , y , z\right)+F_{22}\! \left(x , y , z\right)\\
F_{18}\! \left(x , y , z\right) &= \frac{y F_{6}\! \left(x , y\right)-z F_{6}\! \left(x , z\right)}{-z +y}\\
F_{19}\! \left(x , y , z\right) &= F_{20}\! \left(x , y , z\right) F_{9}\! \left(x \right)\\
F_{20}\! \left(x , y , z\right) &= \frac{y F_{18}\! \left(x , y , z\right)-F_{18}\! \left(x , 1, z\right)}{-1+y}\\
F_{21}\! \left(x , y , z\right) &= F_{20}\! \left(x , y , z\right) F_{9}\! \left(x \right)\\
F_{22}\! \left(x , y , z\right) &= F_{16}\! \left(x , y\right) F_{23}\! \left(x , y , z\right)\\
F_{23}\! \left(x , y , z\right) &= \frac{y F_{24}\! \left(x , y , 1\right)-z F_{24}\! \left(x , y , \frac{z}{y}\right)}{-z +y}\\
F_{24}\! \left(x , y , z\right) &= F_{14}\! \left(x , y , y z \right)\\
F_{25}\! \left(x \right) &= F_{5}\! \left(x \right) F_{9}\! \left(x \right)\\
\end{align*}\)