Av(12453, 12543, 13452, 13542, 14532, 23451, 23541, 24531, 34521)
Counting Sequence
1, 1, 2, 6, 24, 111, 546, 2762, 14198, 73842, 387820, 2054640, 10971550, 59009651, 319465794, ...
This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 30 rules.
Found on January 22, 2022.Finding the specification took 15 seconds.
Copy 30 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{3}\! \left(x \right) &= x\\
F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\
F_{5}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\
F_{6}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{7}\! \left(x , y\right)\\
F_{7}\! \left(x , y\right) &= \frac{y F_{5}\! \left(x , y\right)-F_{5}\! \left(x , 1\right)}{-1+y}\\
F_{8}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\
F_{9}\! \left(x , y\right) &= y x\\
F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , 1, y\right)\\
F_{11}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y , z\right)+F_{14}\! \left(x , y , z\right)+F_{21}\! \left(x , z , y\right)\\
F_{12}\! \left(x , y , z\right) &= F_{13}\! \left(x , y , z\right) F_{3}\! \left(x \right)\\
F_{13}\! \left(x , y , z\right) &= \frac{y z F_{11}\! \left(x , y , z\right)-F_{11}\! \left(x , \frac{1}{z}, z\right)}{y z -1}\\
F_{14}\! \left(x , y , z\right) &= F_{15}\! \left(x , y z , z\right)\\
F_{16}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x , y , z\right)+F_{17}\! \left(x , y , z\right)+F_{19}\! \left(x , z , y\right)\\
F_{16}\! \left(x , y , z\right) &= \frac{y F_{5}\! \left(x , y\right)-z F_{5}\! \left(x , z\right)}{-z +y}\\
F_{17}\! \left(x , y , z\right) &= F_{18}\! \left(x , y , z\right) F_{3}\! \left(x \right)\\
F_{18}\! \left(x , y , z\right) &= \frac{y F_{16}\! \left(x , y , z\right)-F_{16}\! \left(x , 1, z\right)}{-1+y}\\
F_{19}\! \left(x , y , z\right) &= F_{20}\! \left(x , z , y\right) F_{9}\! \left(x , y\right)\\
F_{20}\! \left(x , y , z\right) &= \frac{-z F_{11}\! \left(x , 1, z\right)+y F_{11}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\
F_{21}\! \left(x , y , z\right) &= F_{22}\! \left(x , y , z\right)\\
F_{22}\! \left(x , y , z\right) &= F_{23}\! \left(x \right) F_{25}\! \left(x , y\right) F_{25}\! \left(x , z\right) F_{27}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\
F_{23}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{23}\! \left(x \right) F_{3}\! \left(x \right)\\
F_{25}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{26}\! \left(x , y\right)\\
F_{26}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\
F_{27}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x , y\right)\\
F_{28}\! \left(x , y\right) &= F_{29}\! \left(x , y\right)\\
F_{29}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{27}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\
\end{align*}\)