Av(12453, 12534, 12543, 13452, 13542, 21453, 21534, 21543, 31524)
Counting Sequence
1, 1, 2, 6, 24, 111, 548, 2807, 14761, 79232, 432366, 2391522, 13378062, 75554024, 430207699, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(12 x^{6}-34 x^{5}+22 x^{4}+11 x^{3}-14 x^{2}+2\right) x F \left(x
\right)^{5}-x \left(x -1\right) \left(14 x^{6}-68 x^{5}+85 x^{4}-22 x^{3}-22 x^{2}+8 x +1\right) F \left(x
\right)^{4}+\left(x -1\right) \left(6 x^{7}-47 x^{6}+94 x^{5}-70 x^{4}+8 x^{3}+8 x^{2}-3 x -1\right) F \left(x
\right)^{3}+\left(-x^{8}+16 x^{7}-61 x^{6}+101 x^{5}-77 x^{4}+21 x^{3}+8 x^{2}-5 x -1\right) F \left(x
\right)^{2}+\left(-2 x^{7}+13 x^{6}-31 x^{5}+30 x^{4}-10 x^{3}-8 x^{2}+7 x -1\right) F \! \left(x \right)-x^{6}+4 x^{5}-5 x^{4}+2 x^{3}+3 x^{2}-3 x +1 = 0\)
Recurrence
\(\displaystyle a(0) = 1\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a(3) = 6\)
\(\displaystyle a(4) = 24\)
\(\displaystyle a(5) = 111\)
\(\displaystyle a(6) = 548\)
\(\displaystyle a(7) = 2807\)
\(\displaystyle a(8) = 14761\)
\(\displaystyle a(9) = 79232\)
\(\displaystyle a(10) = 432366\)
\(\displaystyle a(11) = 2391522\)
\(\displaystyle a(12) = 13378062\)
\(\displaystyle a(13) = 75554024\)
\(\displaystyle a(14) = 430207699\)
\(\displaystyle a(15) = 2467079421\)
\(\displaystyle a(16) = 14236023346\)
\(\displaystyle a(17) = 82599698327\)
\(\displaystyle a(18) = 481602249973\)
\(\displaystyle a(19) = 2820306961288\)
\(\displaystyle a(20) = 16581081610569\)
\(\displaystyle a(21) = 97830810120332\)
\(\displaystyle a(22) = 579087945439528\)
\(\displaystyle a(23) = 3437933586792191\)
\(\displaystyle a(24) = 20465753270888852\)
\(\displaystyle a(25) = 122135318754932187\)
\(\displaystyle a(26) = 730558343133142083\)
\(\displaystyle a(27) = 4379198940379141215\)
\(\displaystyle a(28) = 26302348416625550662\)
\(\displaystyle a(29) = 158268769395500456961\)
\(\displaystyle a(30) = 953989186867668032869\)
\(\displaystyle a(31) = 5759582953521638768410\)
\(\displaystyle a(32) = 34825256401305424314451\)
\(\displaystyle a(33) = 210869423609420023079757\)
\(\displaystyle a(34) = 1278535244983793473587492\)
\(\displaystyle a(35) = 7761729517826473707395109\)
\(\displaystyle a(36) = 47175951229532608643875487\)
\(\displaystyle a(37) = 287059089109834638253922733\)
\(\displaystyle a(38) = 1748576859730272938460819848\)
\(\displaystyle a(39) = 10661964330049896205245153403\)
\(\displaystyle a(40) = 65073903845661204380210668501\)
\(\displaystyle a(41) = 397533105800196473989858371243\)
\(\displaystyle a(42) = 2430623344258395555548642632872\)
\(\displaystyle a(43) = 14873815303835219228488664589852\)
\(\displaystyle a(44) = 91090081714298968582200182767602\)
\(\displaystyle a(45) = 558275421437231818282360101058565\)
\(\displaystyle a(46) = 3424051992550686261475326116946555\)
\(\displaystyle a(47) = 21015186442303275967695491682400375\)
\(\displaystyle a(48) = 129066835343447736247536005832680519\)
\(\displaystyle a(49) = 793181951360002765060939149918007953\)
\(\displaystyle a(50) = 4877493160093947679657087227024394099\)
\(\displaystyle a(51) = 30010676463487122746104667007469186396\)
\(\displaystyle a(52) = 184756768557342793506577821918744928455\)
\(\displaystyle a(53) = 1138049440479075352999187801985787432756\)
\(\displaystyle a(54) = 7013735058600475010562313102269656970813\)
\(\displaystyle a(55) = 43247078165478321817538605066789245863518\)
\(\displaystyle a(56) = 266793687119387754301868577784122222852899\)
\(\displaystyle a(57) = 1646638544048579247989539076196906505344644\)
\(\displaystyle a(58) = 10167587659220687862455626430175950276284453\)
\(\displaystyle a(59) = 62809859433056899657879330757808247368077108\)
\(\displaystyle a(60) = 388169695035755939443831601614683566853267712\)
\(\displaystyle a(61) = 2399900922461798889558700096121137321577524155\)
\(\displaystyle a(62) = 14843528285546837440732860827804265484322917808\)
\(\displaystyle a(63) = 91843337816001228384072655638331584215185243305\)
\(\displaystyle a(64) = 568485836042911132858244914160750500932872050351\)
\(\displaystyle a(65) = 3520044448508630038266891429617138591966005792826\)
\(\displaystyle a(66) = 21803610450600087163364802094176060185580191188191\)
\(\displaystyle a(67) = 135100177614395261473821533996241627544020780720427\)
\(\displaystyle a(68) = 837387233870311485600290196531706415150106672221630\)
\(\displaystyle a(69) = 5192010001585018382060637273044016928774300580740947\)
\(\displaystyle a(70) = 32201752704846213150285931664794689436370704073110721\)
\(\displaystyle a(71) = 199781150522192844472384815098705606449243153137979232\)
\(\displaystyle a(72) = 1239814983095556317404320690032590441207217488403654222\)
\(\displaystyle a(73) = 7696320303210121899893300902374286017518586546020717780\)
\(\displaystyle a(74) = 47789217835569275813279187804383591204746756905232328831\)
\(\displaystyle a(75) = 296820596399384931296237571144727163900970391226468066243\)
\(\displaystyle a(76) = 1844048672638369852806329028157130819156885836631098794727\)
\(\displaystyle a(77) = 11459403072187185800343163942439073618771454164340048536833\)
\(\displaystyle a(78) = 71229521718296992994899434828851123668929499641592611328257\)
\(\displaystyle a(79) = 442857224490336871654277881475204244150049748298616140862273\)
\(\displaystyle a(80) = 2754041443777266120090447469011696801349028725713131769675658\)
\(\displaystyle a(81) = 17130802076078925421631376678432699179450359504527498848531112\)
\(\displaystyle a(82) = 106581778187271135483836910276717687528492768919658374993496834\)
\(\displaystyle a(83) = 663260146180504450799248809013025382497741069623538521509822985\)
\(\displaystyle a(84) = 4128366468289836329110884791746562823896047684182093842092365434\)
\(\displaystyle a(85) = 25701814421526503777343662559685720047850396317552250916109210487\)
\(\displaystyle a(86) = 160043634875128557609219655733813855002094007089919756272180137521\)
\(\displaystyle a(87) = 996781716725554202129877805060807809501075684477005689157756335555\)
\(\displaystyle a(88) = 6209359102666666319259532675748082141815651560574103085346745658510\)
\(\displaystyle a(89) = 38688031777188053344784526998256465679235137469226777275382378785697\)
\(\displaystyle a(90) = 241094772052200348097193858665473336581714740933883415237221957293472\)
\(\displaystyle a(91) = 1502721369249027001666640070605295129037735373321849797591488301571914\)
\(\displaystyle a(92) = 9368000713541428325041689051101695739021881456921514931381465791092763\)
\(\displaystyle a(93) = 58410574708030735732669860060172342065047123687592827486691602018142325\)
\(\displaystyle a(94) = 364259205328304537435432974284438024684882096161121602487901941994217986\)
\(\displaystyle a(95) = 2271969603077175407633288146693244517789100468860213218834966183312055939\)
\(\displaystyle a(96) = 14173134314309242042259846114626632801746733586740057859517932235420449196\)
\(\displaystyle a(97) = 88429918029957105012086530873628165214721783404451627418740149059088757390\)
\(\displaystyle a(98) = 551824589094432509492180159347721582199464891433604987185950214145047624046\)
\(\displaystyle a(99) = 3444054359008494881074771688379450609250603161617302431277483565430705935156\)
\(\displaystyle a(100) = 21498330098290079610038974948229798600561725438730667251290480469919122446604\)
\(\displaystyle a(101) = 134215889760596261106607017888161589670495926668724425274290718403850338666242\)
\(\displaystyle a(102) = 838043104142113656972988862960951863401782372797798758447013655626113217222242\)
\(\displaystyle a(103) = 5233482374077604661126064223533725227041297004938724531805461499511674867957537\)
\(\displaystyle a(104) = 32687068263191708155211227015040328599013142055963675077614329174963730455187130\)
\(\displaystyle a(105) = 204183578779892385889054248356981502016548438598760674054867268797725938863353359\)
\(\displaystyle a(106) = 1275628358286499614896241777397614938252832177547604187501534796048367564354824268\)
\(\displaystyle a(107) = 7970488474434648741385537665332338541752304597509799149136631318231425014891092656\)
\(\displaystyle a(108) = 49808339841944211483706912187075949142043235650348844959507500417541007705497879018\)
\(\displaystyle a(109) = 311296699980332188304569638699771071508240043364694406383113010756277235357433184782\)
\(\displaystyle a(110) = 1945813818298337029304769061961957675172377787603527876918981899034074301656854708795\)
\(\displaystyle a(111) = 12164139367653030754018135266440124660423066411008970610227389352475780400190533769676\)
\(\displaystyle a(112) = 76052566896912799293010315914224800321115520142019934247464525026140142231412011478050\)
\(\displaystyle a(113) = 475551794216469034920412563650006377088568300267028875628370632927424153939026931841728\)
\(\displaystyle a(114) = 2973940861457520983170780284347256492911655711452151296162397960921251555556195565686110\)
\(\displaystyle a(115) = 18600152639154074174538667298663563822422900491841281116016661903833268188140208542870217\)
\(\displaystyle a(116) = 116345478098290349898003506726091427351111547360703926302744423709691434645897838020819603\)
\(\displaystyle a(117) = 727830908834714305142168645481517671990571573758572926356918161192628260511284331553199232\)
\(\displaystyle a(118) = 4553639585144656667529479032780988282404860607621590273786431057016327722660159966179084050\)
\(\displaystyle a(119) = 28492672921487477806518948064500601045886087928332339161466614404001023275922859186279972946\)
\(\displaystyle a(120) = 178300819256692804620306167729736668295101637914304951219465609523930836394772521836213433428\)
\(\displaystyle a(121) = 1115882169318568779458874152099509358218024673571097019753626377505141534535452362581183219263\)
\(\displaystyle a(122) = 6984373495480995159700539359113307105595108946400843971240366962387360338889386063109957615919\)
\(\displaystyle a(123) = 43719981958776353404974408621858449890696594486320447760230321945700641931666747118509176534289\)
\(\displaystyle a(124) = 273700249647669439830131562411071580175888102540577110313345853708395896068624066953235211912698\)
\(\displaystyle a(125) = 1713611748059156575753768880190509646738656962720778810137186213781012134489640414025153174307764\)
\(\displaystyle a(126) = 10729784987728179076405153738979182497399642798770609766847070964819464556531705837079145926142592\)
\(\displaystyle a(127) = 67190876680270907940277442650937669914964974153110487178113623273956333214049602355040792355575527\)
\(\displaystyle a(128) = 420794117580719694786347581732337325209135321415859966490936307381775598641352963963325646284037272\)
\(\displaystyle a(129) = 2635532981844153398400383140079007878143943687113781672688530323346122281512113994094042533532634982\)
\(\displaystyle a(130) = 16508441960363432338505713920912136429222841490890568725127708742346840501877765152655929175254776316\)
\(\displaystyle a(131) = 103414625215677684709852211326355978982095795621094589680181060829581101118352246325518472599801855814\)
\(\displaystyle a(132) = 647881384543794945981106417428085793538232044111955513176022940129065460754730706659562279474293227588\)
\(\displaystyle a(133) = 4059253171381054070812790798291552265973645273373416980288653972484338698745521733949146618377359366822\)
\(\displaystyle a(134) = 25435092410556166826833312171235777367259624533037821592094152584382047183193488304623336513292125228346\)
\(\displaystyle a(135) = 159388323965895291469892030239374131764557700955810902865521263383794364063103206378185298090302918632798\)
\(\displaystyle a(136) = 998884240646520637555036752249681805933800356113444252447632256232767255976336415299784982131461215334496\)
\(\displaystyle a(137) = 6260496462181551119997754991783404737558481922629883235721837503260088580971362436447768871961295009469060\)
\(\displaystyle a(138) = 39240708196147897032608085798333829042540870725601012217711992022997478477949872778563985775374459279429636\)
\(\displaystyle a(139) = 245979464918828460409473582859928744432684709083495799209185425308264205779926326041049524503499925521781635\)
\(\displaystyle a(140) = 1542035374901649531339385575156949245633752734398416436138171305245285646367699130007677961220949351422843707\)
\(\displaystyle a(141) = 9667692198717785335994467509844326131019831894306610731573753640578621672637332756539373906747346415203826764\)
\(\displaystyle a(142) = 60615518180773500961368440717985817908714720093099977668199959601246722869991238009609676550358186993566244960\)
\(\displaystyle a(143) = 380081650877120659055347660322387908406483603248749244040734606163572796001561170405023037623405645928826976042\)
\(\displaystyle a(144) = 2383425679813567347628103933930271843054026537579419319409131684886883391227889473088135221927465342455132132612\)
\(\displaystyle a(145) = 14947119871234520385768894776870698989417369522023667025401753513922579188453371319855508614746017779984280095529\)
\(\displaystyle a(146) = 93744152258957226200420760682261068205909148501883440744810485485144620789132811890027753618795967195987404649269\)
\(\displaystyle a(147) = 587978169081721658669383520636663250182984903222371907833976116735607311110119257196212414136971284159980126722403\)
\(\displaystyle a(148) = 3688146416777514936502511983287958784789503398574726266165849625504049125715651400859107418352778877980735622952761\)
\(\displaystyle a(149) = 23135806392836449629739457913993553204082204124806004737682031771320815119384305902370336356937399969477261169497573\)
\(\displaystyle a(150) = 145141053163886442560996812331077873645664434567146670353537628219772692680155641637698694810725966778879588332494764\)
\(\displaystyle a(151) = 910593727000739149239040389627995036319666624067469854425322613399342175878770089315628937564112284366672624479673249\)
\(\displaystyle a(152) = 5713305081644002862012180484469467017609781881409938664570235100162756063087600108277278525278844355279279718968232993\)
\(\displaystyle a(153) = 35849093856994207969166844066197620649291497061065903198201751064454190075142784511927433066122107646713277164629578601\)
\(\displaystyle a(154) = 224955487902838334544404687726656667181223858821517731410513619877974663678979074888782481605556775075611443694793888917\)
\(\displaystyle a(155) = 1411699588488803021642362818361272573664984895601458847637498019895248870888046219864962291296354449558773059294101091681\)
\(\displaystyle a(156) = 8859616429411482151226850379517831213612669515850712502055459537053661676900467231456295563053546828159888125259331286932\)
\(\displaystyle a(157) = 55605038337960374875850942703505112462194163316710113306009587586938464418702884935032924855787368273192547549580547617162\)
\(\displaystyle a(158) = 349011410235013535467711090531294631987133402813745832985072331945023646781893943377340418624900788775370306163536653038025\)
\(\displaystyle a(159) = 2190740982879051437487651217673298900770327380398886149459959180242442406961270855724827589362604623003612294545551737038270\)
\(\displaystyle a(160) = 13752068981302825530426393911994686303525517067140641741356034003906510101858205911172006530798300699456414453108479916558517\)
\(\displaystyle a(161) = 86331708481112906230703797934882446916627130991910965886026713385401548945301611529375610413226479368659640708973101587542152\)
\(\displaystyle a(162) = 541997896430982530294181807023840556552996481096393198779678901921610767027022710505011681877864279952061564772901479928561410\)
\(\displaystyle a{\left(n + 163 \right)} = \frac{491520 n \left(n + 1\right) \left(n + 2\right) \left(2 n + 3\right) a{\left(n \right)}}{49 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{16384 \left(n + 1\right) \left(n + 2\right) \left(4421 n^{2} + 23699 n + 32460\right) a{\left(n + 1 \right)}}{245 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{1024 \left(n + 2\right) \left(334498 n^{3} + 4059849 n^{2} + 15469151 n + 19103460\right) a{\left(n + 2 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(2853 n^{2} + 921331 n + 74379258\right) a{\left(n + 162 \right)}}{28 \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(4553179 n^{3} + 2192957969 n^{2} + 352063611492 n + 18840275448360\right) a{\left(n + 161 \right)}}{1960 \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{512 \left(19063883 n^{4} + 269075895 n^{3} + 1444676548 n^{2} + 3484338264 n + 3171422988\right) a{\left(n + 3 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(117305785 n^{4} + 75074316312 n^{3} + 18017471492770 n^{2} + 1921821360535293 n + 76871027824481760\right) a{\left(n + 160 \right)}}{3920 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{256 \left(194879791 n^{4} + 3316401765 n^{3} + 21655599473 n^{2} + 64385652891 n + 73393460784\right) a{\left(n + 4 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{128 \left(264804436 n^{4} + 2088971145 n^{3} - 23684804680 n^{2} - 273758222625 n - 680779579332\right) a{\left(n + 5 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{64 \left(2056976758 n^{4} - 141462546315 n^{3} - 3338015542921 n^{2} - 23206435648248 n - 52295149759608\right) a{\left(n + 6 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(3269999825 n^{4} + 2091729312039 n^{3} + 501741504994271 n^{2} + 53488167219939355 n + 2138220398144739630\right) a{\left(n + 159 \right)}}{15680 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(4103642874 n^{4} + 3031427425291 n^{3} + 822371503178286 n^{2} + 97583823475772087 n + 4288061867357386642\right) a{\left(n + 158 \right)}}{31360 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{32 \left(23943254501 n^{4} + 1200738373195 n^{3} + 18449922966610 n^{2} + 114590880948096 n + 252498201119844\right) a{\left(n + 7 \right)}}{245 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(440572828768 n^{4} + 272718954061244 n^{3} + 63289093351817739 n^{2} + 6525906154791937149 n + 252267332785024550018\right) a{\left(n + 157 \right)}}{31360 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{8 \left(1591718092556 n^{4} + 177966352520823 n^{3} + 6686382470570926 n^{2} + 88586242316016747 n + 379115451935455560\right) a{\left(n + 10 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{16 \left(2007492377633 n^{4} + 86084280147897 n^{3} + 1347878961721903 n^{2} + 9184459149605043 n + 23063086272123636\right) a{\left(n + 8 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(5246130277609 n^{4} + 3258960341467806 n^{3} + 759126356620625795 n^{2} + 78583216040403590372 n + 3050278991090901180416\right) a{\left(n + 156 \right)}}{31360 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{8 \left(41319111757484 n^{4} + 1857880817351123 n^{3} + 30493349708488144 n^{2} + 218085566900949793 n + 576125174689755096\right) a{\left(n + 9 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(63960413906702 n^{4} + 39837042279079289 n^{3} + 9303443257229289025 n^{2} + 965534816695885881344 n + 37572847605690908224652\right) a{\left(n + 155 \right)}}{62720 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(539979466469777 n^{4} + 341610901625704056 n^{3} + 80970689929242330592 n^{2} + 8522627694866873737497 n + 336126262982788876331214\right) a{\left(n + 154 \right)}}{188160 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{4 \left(821340024949401 n^{4} + 42190286135909868 n^{3} + 808519526255617467 n^{2} + 6853399365186815428 n + 21686322068947266492\right) a{\left(n + 11 \right)}}{245 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(996301147815752 n^{4} + 543147024469421421 n^{3} + 109494203397280797256 n^{2} + 9634975064855207853285 n + 310369820347320082828338\right) a{\left(n + 153 \right)}}{376320 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{2 \left(14880077106124791 n^{4} + 796050009782420936 n^{3} + 15823845620408285217 n^{2} + 138735385405819162444 n + 453220542058435474524\right) a{\left(n + 12 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(15495734958960760 n^{4} + 8681220414420137762 n^{3} + 1810444768236850162325 n^{2} + 166334670059459100906289 n + 5669590314269240250298782\right) a{\left(n + 152 \right)}}{376320 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{2 \left(57688327702771877 n^{4} + 3475376276260243653 n^{3} + 78432921329431595077 n^{2} + 785099308416555966201 n + 2938828504772736197556\right) a{\left(n + 13 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{2 \left(180309237489707557 n^{4} + 10336945101759700567 n^{3} + 215224882554853145792 n^{2} + 1911070078584673451138 n + 6000079135862874348558\right) a{\left(n + 15 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{2 \left(416936384529669222 n^{4} + 25902410098281674374 n^{3} + 602008621019465085519 n^{2} + 6204815931300512148299 n + 23932826981320962013272\right) a{\left(n + 14 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(793467703501813006 n^{4} + 465903068450394133676 n^{3} + 102503025551505657964661 n^{2} + 10014228384962912135460493 n + 366546001162223187090719502\right) a{\left(n + 151 \right)}}{376320 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(10586401444904759353 n^{4} + 743405803482915320571 n^{3} + 19553854383031623893090 n^{2} + 228303494840971520496480 n + 998264165848388781044178\right) a{\left(n + 16 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(21111000297446955922 n^{4} + 12447219202867657118084 n^{3} + 2751191635160960065684205 n^{2} + 270168701476736047141141279 n + 9945414348506676491848506738\right) a{\left(n + 150 \right)}}{752640 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(60037040652049832424 n^{4} + 4364000068906021058317 n^{3} + 118828613147897636284680 n^{2} + 1436694808826739943470755 n + 6508332327339437055140952\right) a{\left(n + 17 \right)}}{1470 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(84145593041565223621 n^{4} + 49603897080867655774913 n^{3} + 10963546431379968538104101 n^{2} + 1076765770272537211322223202 n + 39649517194503496137658148994\right) a{\left(n + 149 \right)}}{376320 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(179699921880662731977 n^{4} + 14109614540606046778298 n^{3} + 414614434725570724918437 n^{2} + 5403622040129924215405588 n + 26352953779473329730638496\right) a{\left(n + 18 \right)}}{2940 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(774961698332805147236 n^{4} + 62104148328595284084675 n^{3} + 1864256314567402582789819 n^{2} + 24844966512524592918041622 n + 124036397741281261806195828\right) a{\left(n + 19 \right)}}{1470 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(862731701455222455754 n^{4} + 508525141628456662764411 n^{3} + 112385810922003005724846365 n^{2} + 11037181573007962727951767074 n + 406410896571361709362798489500\right) a{\left(n + 148 \right)}}{752640 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(3441389351689874419823 n^{4} + 283209591945394027119614 n^{3} + 8733365847764581021845805 n^{2} + 119622106855395097629037666 n + 614157906418636416699316884\right) a{\left(n + 20 \right)}}{5880 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(3924337269271014594584 n^{4} + 2343779129739995424186423 n^{3} + 524537873215021617754979815 n^{2} + 52136924020272485765972568822 n + 1941992450425444560674536372572\right) a{\left(n + 147 \right)}}{1505280 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(8100972886893976478511 n^{4} + 696900412849589048668078 n^{3} + 22420214923153979826914025 n^{2} + 319649513918073826756924826 n + 1703826604887429237936311004\right) a{\left(n + 21 \right)}}{2940 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(14986363237071235161497 n^{4} - 38169488078859806875694647 n^{3} - 3052782668928936665406403205 n^{2} - 80226826527332408872286513525 n - 699918016549487517855125047800\right) a{\left(n + 25 \right)}}{23520 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(24926940877767082757760 n^{4} + 14057837518232582128674677 n^{3} + 2971049200349934228985133301 n^{2} + 278880192887881522256447879962 n + 9809424517447212328534339112952\right) a{\left(n + 146 \right)}}{1505280 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(26469987313997906205263 n^{4} + 2670990577994684530159164 n^{3} + 100146603965278564227566725 n^{2} + 1654673027189750163953265876 n + 10169592880527371802877060560\right) a{\left(n + 23 \right)}}{11760 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(49900281418596093775082 n^{4} + 4355273429504715843102759 n^{3} + 141867365302540809609619576 n^{2} + 2043047279165605207299973683 n + 10968824410885709359173353844\right) a{\left(n + 22 \right)}}{5880 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(362563065823060081687174 n^{4} + 206623032864707853188893158 n^{3} + 44153666077374210552571153445 n^{2} + 4193092968926435556609945321405 n + 149312560871596210616529708323526\right) a{\left(n + 145 \right)}}{1505280 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(449864807616007568002656 n^{4} + 38509625978280741212636323 n^{3} + 1195337262878093805469490106 n^{2} + 15686441374463268209948195513 n + 71062349868501693001654350930\right) a{\left(n + 24 \right)}}{11760 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(1196178686262677014316167 n^{4} + 120144774540771628804174970 n^{3} + 4482763972407171707509029379 n^{2} + 73496128369439540156811589136 n + 445570232141690108035455258028\right) a{\left(n + 26 \right)}}{7840 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(2522792446137562695467907 n^{4} + 1432710888725112239152261721 n^{3} + 305102843277973046377199772516 n^{2} + 28875625897580149071672832102192 n + 1024774767125403352755929733948258\right) a{\left(n + 144 \right)}}{1505280 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(9637181965636870019308378 n^{4} + 1522930041967163976764138431 n^{3} + 82791060741295659341590780235 n^{2} + 1900026616181893666685265943766 n + 15800302014076194573341820775002\right) a{\left(n + 27 \right)}}{23520 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(24434132875594696541394110 n^{4} + 13788878280491206510052148119 n^{3} + 2917889113251965484793706422393 n^{2} + 274411972371044117195946627835282 n + 9677115674021776337873638856748372\right) a{\left(n + 143 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(27478364655736657609672218 n^{4} + 7400059433112177256559763703 n^{3} + 521274498381327589424465348544 n^{2} + 14262054565057516724119070788367 n + 136258557991481585175177738811668\right) a{\left(n + 29 \right)}}{94080 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(84371243305008843648799247 n^{4} + 47203746875427974020670719979 n^{3} + 9902500570278820626468681476815 n^{2} + 923178457074023608864360870661317 n + 32270998846852563948966735731652798\right) a{\left(n + 142 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(168785844308779603139350839 n^{4} + 92978570744199584640145693181 n^{3} + 19199495688282179311689008468886 n^{2} + 1761315561635233098256502555471656 n + 60566493238083765567109023903128976\right) a{\left(n + 141 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(188846788665398187374984201 n^{4} + 110321870186040950411497499814 n^{3} + 24121217080721562499820172154480 n^{2} + 2339788650618619971787767302545329 n + 84970390563698689476766105366441416\right) a{\left(n + 140 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(243501299306857746581947239 n^{4} + 31959655879612164693415858772 n^{3} + 1552192673796877789444946327913 n^{2} + 33142325052842690217591124244596 n + 262973111617955131711553493097056\right) a{\left(n + 28 \right)}}{94080 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(2458754144294125254599568170 n^{4} + 341015381645351619676269576255 n^{3} + 17547407471619633386641693912819 n^{2} + 397739752669198096697118313392498 n + 3355352316392974901384444846426340\right) a{\left(n + 30 \right)}}{94080 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(3289435048990456731027200445 n^{4} + 462003049918589467001347902068 n^{3} + 24144592206984938918582104032787 n^{2} + 557054043336148592687152337510432 n + 4791369712290858886546330042684972\right) a{\left(n + 31 \right)}}{62720 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(3499981106700328953152494818 n^{4} + 1944627300553146149495269853869 n^{3} + 405174905953047396352512666411930 n^{2} + 37520630339984573184390400786275149 n + 1302964700221974591158131698113568510\right) a{\left(n + 139 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(16784872581091387181446611451 n^{4} + 2351684632312418358885975352877 n^{3} + 123231467989700951077364790087914 n^{2} + 2863160320455101332215574271060026 n + 24892093306336572936353986205324340\right) a{\left(n + 32 \right)}}{188160 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(36194444905286514200333150479 n^{4} + 19834447725065691308268767538866 n^{3} + 4075913918129128525413249855698831 n^{2} + 372256891502738643833614110023126848 n + 12749321213342790847598491761291367956\right) a{\left(n + 138 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(99582349361283380924994437777 n^{4} + 43062557895873600109756762381330 n^{3} + 6566697756417131523303661260617395 n^{2} + 398612175972757191368381772754542158 n + 7008267866751598827004594220452204680\right) a{\left(n + 135 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(120637867919574490930976610153 n^{4} + 65228978122904426555862937261768 n^{3} + 13224583103207195995533771601521723 n^{2} + 1191497771060032436782756818014148992 n + 40251973923654100652339645407696185192\right) a{\left(n + 137 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(127533899128678214620981874150 n^{4} + 67593403018891827562652697967351 n^{3} + 13427026192765020605850354789342511 n^{2} + 1184752528983287809875012438523114346 n + 39178693281766545430658544136969441446\right) a{\left(n + 136 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(204682458629627104902525963693 n^{4} + 29822955082229510881545107292173 n^{3} + 1622787831918996540679174495329819 n^{2} + 39100213047531107852805509413575331 n + 352101487768203464083230477333739464\right) a{\left(n + 33 \right)}}{376320 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(382987491298430718496534214169 n^{4} + 59979000689489344995977045375008 n^{3} + 3483703107635383371481227277202313 n^{2} + 89102835191950211578527808309790450 n + 847945930802065681744569785647631928\right) a{\left(n + 34 \right)}}{752640 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(957550173259381669191545767585 n^{4} + 524096686428206524141029203891996 n^{3} + 107499101647198795461804545410979768 n^{2} + 9793553015672400376007159183989215511 n + 334382035126098673309993007147330495532\right) a{\left(n + 134 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(1720092301991124217767683560633 n^{4} + 252113774618247748070587460633824 n^{3} + 13856417601057226488900482815976603 n^{2} + 338466864093906211059804381331991732 n + 3100404409256912479256566938247344024\right) a{\left(n + 35 \right)}}{752640 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(2201443538230225672904225922493 n^{4} + 469502036342079110434515094524158 n^{3} + 34478024234525952443663188422165131 n^{2} + 1069238803660963077988146187875138322 n + 12017128558234872247927806346058814600\right) a{\left(n + 37 \right)}}{1505280 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(3662937662001927053274974308461 n^{4} + 567563226235418534031951269097678 n^{3} + 32921502211195099391895722247175647 n^{2} + 847329947309904855375957754164790958 n + 8165512933896929650476595963402518104\right) a{\left(n + 36 \right)}}{501760 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(10178105051572833897235007547209 n^{4} + 5423945988009697390834754885018844 n^{3} + 1083780990823739793350319779182116067 n^{2} + 96234501509099649179729423872633394784 n + 3204026461681998416694543499851263315892\right) a{\left(n + 133 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(26479823480844635374965698626413 n^{4} + 4128144304701864453058749488256239 n^{3} + 241382305972307858804027057039172255 n^{2} + 6274391009674955386995196493290331005 n + 61176445368444721053433458652833548328\right) a{\left(n + 38 \right)}}{752640 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(32085662088161188427789792479357 n^{4} + 16782579232101123340271958977468656 n^{3} + 3291326705134885032937205543744669063 n^{2} + 286834312038385228063835846732058818864 n + 9372376675147222060827577038898912614360\right) a{\left(n + 132 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(33972598802779995322593211918045 n^{4} + 17355910117729303627598036743424613 n^{3} + 3322968638069193312389197229171097812 n^{2} + 282575885928420351612585720925191310200 n + 9004714375621460614033660553680780518006\right) a{\left(n + 131 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(34733652720443546108957210657710 n^{4} + 16522813740295398423099389806713745 n^{3} + 2923789209391291373083144790895719180 n^{2} + 227713360632920003574891409209454020467 n + 6571044048278767533674810203582027960938\right) a{\left(n + 130 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(55240585839774551870969189667989 n^{4} + 9085092342612569301194890452436083 n^{3} + 560066816115879860167806892213514194 n^{2} + 15338242228160478799759596118262249172 n + 157452563297768216294017287565480898736\right) a{\left(n + 39 \right)}}{752640 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(80749399269558572509860379471625 n^{4} + 45547758135890257346256330290603453 n^{3} + 9554871940122729168634454855119956907 n^{2} + 884663596620407885551057519509037093153 n + 30534489419493117191835271216046499258294\right) a{\left(n + 129 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(91602685691064125039328447455847 n^{4} + 12648060578260404149611650054682298 n^{3} + 631427120158375342769346294909259797 n^{2} + 13253589674601574587635769260623138522 n + 94836071087372020854622292288767258032\right) a{\left(n + 40 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(406792413181160982571984903639877 n^{4} + 67284467799941311793879536659478339 n^{3} + 4156560467651090661444569545453940578 n^{2} + 113610122570367934680853013096085634730 n + 1158606196237760482504007375805991773672\right) a{\left(n + 43 \right)}}{752640 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(897274847824323988992670942399865 n^{4} + 155907499601339656471405456437954898 n^{3} + 10160967143861226438147410075108494075 n^{2} + 294384571858188795222723520138820212502 n + 3199033883153248838045526103038959924064\right) a{\left(n + 42 \right)}}{1505280 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(1181084473276874143928981215602857 n^{4} + 196173502726159406038821678556154634 n^{3} + 12219871249542899201893668069812870095 n^{2} + 338349738020317918782845933781793460454 n + 3513753234391756829420178020223511221456\right) a{\left(n + 41 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(2251289438795139665960995174515565 n^{4} + 1179765498602275188074713726582137070 n^{3} + 231578734810699049720968063961863379615 n^{2} + 20181628509585108769575698473571308131494 n + 658884048550621772229594705213912261462336\right) a{\left(n + 128 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(7322731352087514579364847458605417 n^{4} + 3736276872587789311827846354011707306 n^{3} + 714461925137614620076425659220206632995 n^{2} + 60685449569142180333090655095583611536546 n + 1931852176290029577467635264360060743424944\right) a{\left(n + 127 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(8314488783240467217091909956404923 n^{4} + 4140621254807423078870803770171560326 n^{3} + 772667361285168835620746342818734883991 n^{2} + 64031520824295311703143675941956624902084 n + 1988258570211632977127001785875072402652832\right) a{\left(n + 126 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(8617802330763428534639029280112907 n^{4} + 4137900411773449188013354280609331054 n^{3} + 743213573504546181108265206213468057709 n^{2} + 59166748284713957222928374243198216960450 n + 1761012007946050646899820337893200997881464\right) a{\left(n + 125 \right)}}{4014080 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(9998651027914343929691325860349373 n^{4} + 1812562232240486453791715323449176680 n^{3} + 123081971840495147734338610617783571067 n^{2} + 3710353443443877758038882482756535437536 n + 41894004919427137402602033961225260470368\right) a{\left(n + 46 \right)}}{2007040 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(10169097724028855418514279857270509 n^{4} + 1797280177693021209944568732692541280 n^{3} + 119112482976840899181032957862852634435 n^{2} + 3508413977731015272189315709131499493720 n + 38753268287684411860120420954481587834128\right) a{\left(n + 44 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(12283350171764122679527392095036441 n^{4} + 2245453071078615810512669297839422052 n^{3} + 153980643769648047745926542372895365575 n^{2} + 4694655383375153935305276727313138538824 n + 53696189534040627012793662602789735597400\right) a{\left(n + 45 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(14175311649508704195802708223143727 n^{4} + 5495325523712574339153091072034466394 n^{3} + 734708178713116977110559944426134503829 n^{2} + 36834601816227422017291081194701392512650 n + 396786986758351619923216122182940214861464\right) a{\left(n + 124 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(24126135379689391510775214608567825 n^{4} + 13014218068936058473508743964562590626 n^{3} + 2611462388087123564842661425221650751519 n^{2} + 231318939070955503929657813555743401875342 n + 7638996232715326673601664236416803106179816\right) a{\left(n + 123 \right)}}{4014080 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(47771023084084878912047886078529567 n^{4} + 9161241878597473333928495315916595460 n^{3} + 658829419884346119213877382244143035515 n^{2} + 21058628554347839358690419248807419471894 n + 252442905424612567893653545486091126635808\right) a{\left(n + 48 \right)}}{2007040 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(106547434702333132283901107524745010 n^{4} + 52403944120651863607385359058810799488 n^{3} + 9654580446980219897435235427076829948531 n^{2} + 789678423558653639942817886499184588566578 n + 24195774786656987426145756731321634679032651\right) a{\left(n + 121 \right)}}{1505280 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(138819570311808339120986137285646447 n^{4} + 26049581110517573401298187536946922050 n^{3} + 1832799505016910358474175780075163671395 n^{2} + 57305248598674539919826340548364999397560 n + 671844062394838902805725233458076654813184\right) a{\left(n + 47 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(164583007495451727158098905654597093 n^{4} + 83241772649788307035268540828311154366 n^{3} + 15758999272962391730875306230220586803353 n^{2} + 1323691144539029680226057306132970495883732 n + 41627145004491710323484589365457804732664800\right) a{\left(n + 122 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(193340237826556123438882491163562387 n^{4} + 37773507855446651480924081106649563622 n^{3} + 2766892399408756135831601500795210053991 n^{2} + 90058348096573765634081350310445881389352 n + 1099000860063429856287791416032116216410368\right) a{\left(n + 49 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(349930687656814711303513163745153148 n^{4} + 70233512008322393220094701556675237316 n^{3} + 5282685429274249258158253951233307255883 n^{2} + 176487397103763187782827709212735702925211 n + 2209789171898222716207253122338479777064804\right) a{\left(n + 51 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(380059361925163596536764631394773753 n^{4} + 75536391415936494925829654945876185156 n^{3} + 5628606522866192036500033516684021126189 n^{2} + 186373352495667778298945194459225061500280 n + 2313832951151099293927444884638067449900604\right) a{\left(n + 50 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(557103707994129698282373563772384277 n^{4} + 225886605219546521461029518498620083588 n^{3} + 33072536356333618851263238993462593765099 n^{2} + 2030594011147568985046205903086150702132464 n + 42237099834311280017193190846916378331444432\right) a{\left(n + 118 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(662494103195245833640601635578615071 n^{4} + 555589940909909427968060256396791639311 n^{3} + 137252694990778243837865302128123567173296 n^{2} + 13557217978012553571017014855386794516752934 n + 473026084677849296447809042579368927987601536\right) a{\left(n + 113 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(964294544782279008103783816390888455 n^{4} + 201875735816993554495556527504677590366 n^{3} + 15851298159694238686054493942669005661259 n^{2} + 553263653300916663120633504732702272441020 n + 7242604889232083367230673381421305310401204\right) a{\left(n + 52 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(1378028614093193068327006529522093130 n^{4} + 288455190619112798201984133620606435647 n^{3} + 22605952299713103255061637604750319336287 n^{2} + 786055823988167858316158221487859487478156 n + 10231932557358478820769176160520898840927508\right) a{\left(n + 54 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(1587293539518936775722687787596408423 n^{4} + 762456300107727798273865149466001007122 n^{3} + 137169827438637703022840702717031015779457 n^{2} + 10953833491605501707286743760258689268560182 n + 327597850617125882822102698910697025578362808\right) a{\left(n + 120 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(2049533036561993001559705380831832297 n^{4} + 953473339061667424381444292910368698214 n^{3} + 165876053305278072112864979662947863223971 n^{2} + 12786971349709695332407796247422150128730974 n + 368432184254131190278963606686945828385572744\right) a{\left(n + 119 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(2583461748855549929338988198578166801 n^{4} + 1377087642392396478123232783638782918554 n^{3} + 272295977290245597346746682808320859504707 n^{2} + 23715265121295322833049168151793311107688546 n + 768675804394429993424264745297896393073859656\right) a{\left(n + 117 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(3371357518312508380440015678303950831 n^{4} + 708229000120665343615825993311718144642 n^{3} + 55780502253170189625440495351029100856289 n^{2} + 1952212131763650405111573999270046606671218 n + 25617229709737495534585252165132310339876748\right) a{\left(n + 53 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(4054784544723182682328452061724944131 n^{4} + 907358048478968867727501479092834551662 n^{3} + 76155907371857517982150093027900293478515 n^{2} + 2841259317525194703738813407729599801092796 n + 39755555517817130241887601174091434062821044\right) a{\left(n + 55 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(6415136692289794835600176615640487937 n^{4} + 3298849154867764160915870904525010114092 n^{3} + 628438788534643025556111809963342563401983 n^{2} + 52682869834010183680720244120479230005340216 n + 1642554479955773442482431325279800247176310604\right) a{\left(n + 114 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(7237228858040569530955142741940646491 n^{4} + 4520408316635759122454082386724962353030 n^{3} + 968501682324139238575238217445046870342565 n^{2} + 87488261826438460043589607921902413403826610 n + 2861850425516097001614842370770893872732629568\right) a{\left(n + 112 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(7339144565283112894327527497104929641 n^{4} + 3628719149240487826880040437063921660102 n^{3} + 670373243338616768752280749603716256529131 n^{2} + 54862796121652605844693543423428859500189178 n + 1678741873486559020239744181430578760858674656\right) a{\left(n + 115 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(9044860663367184807926850910226366653 n^{4} + 4508227482127116139408597520475048417370 n^{3} + 840163669806964792318257553049664667661843 n^{2} + 69401399922834975823813316643282404726313758 n + 2144495327477609176904859462597299507095502160\right) a{\left(n + 116 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(12204505586727666962521373378044676203 n^{4} + 2842255363904555067509449683712628222280 n^{3} + 246501338018158201179544477930594744982127 n^{2} + 9424361460345017646141742206486304698160318 n + 133812079238341695742352086991288343414749720\right) a{\left(n + 63 \right)}}{2007040 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(15774946550624033825686328395638854985 n^{4} + 3756899578788296720040890234383519818260 n^{3} + 335484249539780236445186621829987107767761 n^{2} + 13312566588950016417659382920911039332815638 n + 198058880383267004562427432383740285680743432\right) a{\left(n + 58 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(16706340993399142923972059599601712345 n^{4} + 3625165404181455166687372278791434380062 n^{3} + 294014194881638273524562937349627634337867 n^{2} + 10559728769246895014428087614096968430491758 n + 141655999700300606341698447168186996828121632\right) a{\left(n + 57 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(24732648110818281293465521733285087851 n^{4} + 5487381906744872562867988789810907178494 n^{3} + 456497796326115712435828332954101558144813 n^{2} + 16876601373084748399340816468604265724915410 n + 233951855681301743165181271399607548439621832\right) a{\left(n + 56 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(37694958677601976449797105074715085971 n^{4} + 8411713394129819415676875369728029801850 n^{3} + 699399602065711608807139457519854734345865 n^{2} + 25653054460115919627231912700419791244882466 n + 349749953146302782685943024303015457256699840\right) a{\left(n + 60 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(39480799314273834121086024848542582553 n^{4} + 9263433277604866867449804603492536647564 n^{3} + 815119571316863630034623007202299198983725 n^{2} + 31880453438285670859733111579522631646679894 n + 467627558240883799870151234335537175300593992\right) a{\left(n + 59 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(85313545685369734945613412235003947971 n^{4} + 39182668272416249245010583807934127081726 n^{3} + 6729220341044765745400597393729607696531641 n^{2} + 512268629129994638748148350251057871154673062 n + 14587320422195670430521935068787880742887784584\right) a{\left(n + 111 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(117921902429381326952060359251315420453 n^{4} + 30636343572219098888964899387392159297510 n^{3} + 2985263020377385864687011139475093696136549 n^{2} + 129311001210764036794322210045982750415924592 n + 2101013326116213014668492800724765562202199140\right) a{\left(n + 66 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(118705432280617767777714331184891947135 n^{4} + 29814109836280168550180670923841711389366 n^{3} + 2807016772196670261709921692850888801909265 n^{2} + 117412333367710239975021648848616049754575714 n + 1840901577717207938512875850798068418799830680\right) a{\left(n + 61 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(119834622833919061379911057629392515499 n^{4} + 29788150974405201419707853021904641789056 n^{3} + 2777337850379141431170684802909678539932875 n^{2} + 115112258303338413850040913841608987673298618 n + 1789507804286324720265223468776697595705925684\right) a{\left(n + 62 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(150165029786655224046584535827581600177 n^{4} + 66387794499837425788326545990835538475508 n^{3} + 10997121237887474823379362447736374737757515 n^{2} + 808958818227398451502715682822487140059365272 n + 22296789929189168850860080993244001698985125100\right) a{\left(n + 110 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(195170948187001890908188552000303307467 n^{4} + 82904526318296651435935445912826755653014 n^{3} + 13198223851880854507934832466616948609703047 n^{2} + 933258153326130701872180334186756535362989266 n + 24730828728826992731141371904416891903940081142\right) a{\left(n + 108 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(203596812340155229513968316585061885373 n^{4} + 53410493564426682824276094240095156484106 n^{3} + 5252605893067204001649577315730120300399841 n^{2} + 229505788437634088041702609523239255431887720 n + 3759146689397073205581326326966805419624037172\right) a{\left(n + 64 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(286084079217973210076681739121234376373 n^{4} + 79836681639368159972474489468634551865992 n^{3} + 8336317988548948151310100126688887251009947 n^{2} + 385924475111406455394437479074270489614831312 n + 6681788541230069812390513167738179204959439344\right) a{\left(n + 73 \right)}}{2007040 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(302359697376156411637089715894437789357 n^{4} + 117923651384911746624112675884868448130874 n^{3} + 17079196711046982084498995355437785906705743 n^{2} + 1086255271525188155909285740450935019167610754 n + 25517934495292458832402859563053586333440371712\right) a{\left(n + 107 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(399219366378444512467723405843142077565 n^{4} + 174787003240425744742328850379187031294450 n^{3} + 28664783039029940010539421323225585854382067 n^{2} + 2087112550975574083130164530529877733958263414 n + 56930022985483366521398583801878676618703254856\right) a{\left(n + 106 \right)}}{4014080 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(442682044397644601092912324306297241011 n^{4} + 188512597852302498625037177783500648991624 n^{3} + 30056263876549395924930358823549974547483121 n^{2} + 2126733746469721944754712881750019791154746548 n + 56355217650040669566248930981086465652655423588\right) a{\left(n + 102 \right)}}{2007040 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(542102654261915077339854295039891965170 n^{4} + 149220621960740458092547232222346848072849 n^{3} + 15403333204977481182659233354892437159860436 n^{2} + 706675921311785204229473736342301089538670863 n + 12157784936853288371170347414452621489294430768\right) a{\left(n + 68 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(618727596614827904089089272316927689189 n^{4} + 268290538494428322655174600419350134971778 n^{3} + 43604054194053515309719082121725053464219199 n^{2} + 3148072430297137466479967420242962017629638434 n + 85185691773521353455976965618643985478014244816\right) a{\left(n + 109 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(691828720279723825472833875050018347913 n^{4} + 151310079461603688475059945460886509695662 n^{3} + 9844880080523782037807476826406498334369069 n^{2} + 87147362199915095735176116460190317503600472 n - 6901951976036625531197843826419617579244204268\right) a{\left(n + 80 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(735935716771103535082111203308805792591 n^{4} + 193252658145314104842217886163604861400278 n^{3} + 19032631181659805350181947213777393134402573 n^{2} + 833181449105119851572993497033418480607468734 n + 13679025140231475500209110056431417912192975584\right) a{\left(n + 65 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(756237162133840992887481346612629664931 n^{4} + 306733221849794786409596009070865523572095 n^{3} + 46638392899170721120534388044001997300947179 n^{2} + 3150561629004885009170329804850169331260563079 n + 79781657108055262291369723489931204942851758750\right) a{\left(n + 103 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(920435640535933977993169877852787361787 n^{4} + 446369770237779910319592889902821974539722 n^{3} + 75376091400159568042040992286040521483420713 n^{2} + 5402446636562379998573624062464775901471940754 n + 140685288403720208083606567486308999868839508080\right) a{\left(n + 91 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(1130241100600671941452130601709694376697 n^{4} + 307669635855913905658947337609004858354542 n^{3} + 31402909559591265302808105899292829841750051 n^{2} + 1424317107666527186525511055509045661441111358 n + 24221588792039312696409332272332735808691383128\right) a{\left(n + 67 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(1169563088866323254915585481504391861171 n^{4} + 328415600396584999489054847007634138332578 n^{3} + 34582552903138803935351995471058212499222597 n^{2} + 1618473736295086373610912265673709480606653590 n + 28404007746975256928079744571020354014540492880\right) a{\left(n + 69 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(1567763092782410571275713690600299359589 n^{4} + 653667855193046020251063217798462735024038 n^{3} + 102195751788225077152751036471575168531243747 n^{2} + 7100587720250285138351733896322162243694940050 n + 184993205902590387542217948734017773872967875688\right) a{\left(n + 104 \right)}}{4014080 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(2169115438442810257877898734236443314915 n^{4} + 608699318620125125900406609225182311015450 n^{3} + 64054288041073070972548424586848896063596685 n^{2} + 2995723797216904732021726443993618064949361110 n + 52538038306248211284474106998108791773091603496\right) a{\left(n + 70 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(2704853569864594908554210521557061618541 n^{4} + 774914652778393514767619475602484339182742 n^{3} + 83252934562619105569477963315272345715470433 n^{2} + 3975248753583666455777357939835049810098588720 n + 71180204334604600820646705458338469719601252964\right) a{\left(n + 71 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(3215464931415114000940968827669832784262 n^{4} + 977191742386430443432179356389185077469665 n^{3} + 111352054833089956714951441082776204033836364 n^{2} + 5638779192126020492092751179113840549701229109 n + 107066557279903739741438119084228001787536519100\right) a{\left(n + 75 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(3372383505665189275932336988229750703013 n^{4} + 1432385132008172023274182110436357331472354 n^{3} + 228097014743333293814722377736022230388227115 n^{2} + 16140044594679140249007271880323109263099007190 n + 428184616331541614258509536048278250401228912376\right) a{\left(n + 105 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(3387232278281895496725083792370360059278 n^{4} + 1365672642442257515895758737603753404688925 n^{3} + 206500261298061603278252352640618940800822784 n^{2} + 13878860522008622534565198463357700093540121409 n + 349832870642480854205930662879412805348314340804\right) a{\left(n + 100 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(3791667926202119056600018350620190703239 n^{4} + 1372610184959450425446904057983177379821482 n^{3} + 185889775660195208774035028138327757204526248 n^{2} + 11163953969041326321000498935492009559530427637 n + 250908355761859831905393574052325936227523352320\right) a{\left(n + 87 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(4043888054391868490708150854726145800823 n^{4} + 1522040649989010697536228581934030312433734 n^{3} + 215046755161234801446764351631261972002900905 n^{2} + 13518556066223614402641881926408782342447165462 n + 319048413547207996239694607672305488372988381908\right) a{\left(n + 95 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(4657750545064272491696687441372583845307 n^{4} + 1366185131293990644588919689820861623407770 n^{3} + 150240681123860848274705909826353094696979521 n^{2} + 7341688719974336080948384851474450402568053146 n + 134508022825445284901769343884259087761321998544\right) a{\left(n + 72 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(4671146889326482255473574103842463446207 n^{4} + 1496760623884175014580748530616366411698434 n^{3} + 179362823025966351282827495623998928401523721 n^{2} + 9529219641144231367223462388680005220545804694 n + 189423342016679563582473275894633728788224408016\right) a{\left(n + 76 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(4783131600497100148955112608730441519761 n^{4} + 1546493773212884715056682890432985295086670 n^{3} + 187539202856610759879010581592152516709339175 n^{2} + 10109603128047191225971955411402899867111148418 n + 204405183841022336869423239900342978115892321820\right) a{\left(n + 81 \right)}}{2007040 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(7317369123059289218429453153433644346013 n^{4} + 2565710313192785624616835867612358097962656 n^{3} + 337537014923870821389438452168513737941823514 n^{2} + 19746610481979203625935839206219151095999515945 n + 433455583287898405632901475701101743107606238340\right) a{\left(n + 88 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(7333790620150269881789002710978494503235 n^{4} + 2397287719889484446925671633616751895695896 n^{3} + 293884727013009961900205922105359731092914665 n^{2} + 16014447469556933467989961870311514555949600736 n + 327316561988679252996998024696149296696259340004\right) a{\left(n + 84 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(7544147875285576247763451993131004147743 n^{4} + 2974557645493754012251097302306522110755558 n^{3} + 439936184135546150632232594767783705724432985 n^{2} + 28927034042506738846302588694748691086637754210 n + 713484456758622145704598702074787905165763992816\right) a{\left(n + 99 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(7729178613486318546525769822160195330383 n^{4} + 3111942711811835345241964571173607590931966 n^{3} + 469503221733358735317104987519554397661226553 n^{2} + 31459809400484694679796488560491173520923145146 n + 789972940409978719265087606873320957140492901632\right) a{\left(n + 98 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(8827507539905844032442880268340206138389 n^{4} + 3167379735700031938571130419026298585288254 n^{3} + 426206194790506997702599478294252851606488101 n^{2} + 25490842404240152205147303744125436280431257172 n + 571752549451253185695496340573256594563448842868\right) a{\left(n + 89 \right)}}{2007040 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(10067406863192265071385979657283053182043 n^{4} + 4129008893192396290438559950498085734745134 n^{3} + 634979708529896365451142732954675452110965317 n^{2} + 43395783700798179595196777045453453517497767562 n + 1112049745146508152086812966863072593455892011128\right) a{\left(n + 101 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(10071858755311938624139800601760106481321 n^{4} + 2986723574391277282706886370786890782279254 n^{3} + 332152477915957622716642625733912895136712023 n^{2} + 16418106483751942902350898639562603912542259970 n + 304344373358558459267324255636211727420384144056\right) a{\left(n + 74 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(10291720398066651781956211745051152792447 n^{4} + 3321752668571884589879888125962032805701342 n^{3} + 401843109856672170659092719968684508932174219 n^{2} + 21594800518461965081912252761346775694628989816 n + 434976572566199574997966310468883468000263146584\right) a{\left(n + 79 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(11538588033947821719248993014002758157009 n^{4} + 3943767268050954558791651247042282445689698 n^{3} + 504897154846439504670865577709750420489557709 n^{2} + 28697198967883098843409455568319699940886747888 n + 611023697101018754917046934029198770623407880360\right) a{\left(n + 83 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(11544744488213134885501850371617089708773 n^{4} + 3511445574784220712671851114792184038002530 n^{3} + 400515497249179522527240950370212479757426711 n^{2} + 20303715070599937027802188443556495320145889194 n + 385987544153170072978915991142057738767219997480\right) a{\left(n + 77 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(11643489428265811685005665255312580264803 n^{4} + 4576152634902118920520907977851397715174210 n^{3} + 674442446243982683361594063303698089978466835 n^{2} + 44177720923608440806816159067035738029016763248 n + 1085151093495330933107576327751668835595535377764\right) a{\left(n + 97 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(12067985207320050738169858923310201369091 n^{4} + 3789360684795406264718559458085685979392514 n^{3} + 446206902942559440697117647813864463434800023 n^{2} + 23352443817800690151584915520216468478735921492 n + 458319289966805425524256124035447890233677849092\right) a{\left(n + 78 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(21371840848396244258817723051271715982815 n^{4} + 8172578957177437298863983767016210069431198 n^{3} + 1171400086747907118716702394718261272107190433 n^{2} + 74588562273541465894106867409318026384321315434 n + 1780242296577304276674480632452935142172003911560\right) a{\left(n + 94 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(25743651188972166796983470388033275972235 n^{4} + 9963087834088629518671718832092298827513458 n^{3} + 1446286879621495602337502117205146605177623825 n^{2} + 93333690872355647881630869241593885668667381962 n + 2259228829506405155485900842556345058251228457544\right) a{\left(n + 96 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(33843175051213759597280594013918081582713 n^{4} + 12507971998729788559072525007642538924103530 n^{3} + 1734213331368517182013575951005789394094865419 n^{2} + 106907158068628989009213384354178789168618227834 n + 2472383378193192140474923103996337980908550802552\right) a{\left(n + 92 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(39594307659408543485336661136738548566083 n^{4} + 14463646674931081592110771878996020868934318 n^{3} + 1980574834894602131418532333413037894223401097 n^{2} + 120493345302760893107927659046600207946721803374 n + 2747960198690412952195026571970338355847790377360\right) a{\left(n + 90 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(40232888925117609516322830600145696320713 n^{4} + 13344403563259223530371085336099766799743254 n^{3} + 1659562905572819760832503966580932323518290391 n^{2} + 91717515177214533378047183804643186489583558586 n + 1900595577919037821414362116334910270442668610040\right) a{\left(n + 82 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(41543688551038190475884128284455002051741 n^{4} + 15611324178036170671906162329440626001908474 n^{3} + 2199967523485636805380390413553370838111571079 n^{2} + 137791247428143244755820200710498403687643836914 n + 3236460461345462390749554120824757333668881350384\right) a{\left(n + 93 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(46823808542643435439668731211253064322097 n^{4} + 15990462789015101522838636782962525915461434 n^{3} + 2048063904047218977666173409657623138277673247 n^{2} + 116600954996713359332353322744558066040614477446 n + 2489730017112966105240068617567518892378219264512\right) a{\left(n + 85 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(48152443294403047227555230824137793312829 n^{4} + 16792135219240521960976568110168178284631366 n^{3} + 2195362070196752432699181018648713117161512871 n^{2} + 127528683955120844078116093365294352780890684310 n + 2777328817597934336880211642782919339405816031832\right) a{\left(n + 86 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)}, \quad n \geq 163\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a(3) = 6\)
\(\displaystyle a(4) = 24\)
\(\displaystyle a(5) = 111\)
\(\displaystyle a(6) = 548\)
\(\displaystyle a(7) = 2807\)
\(\displaystyle a(8) = 14761\)
\(\displaystyle a(9) = 79232\)
\(\displaystyle a(10) = 432366\)
\(\displaystyle a(11) = 2391522\)
\(\displaystyle a(12) = 13378062\)
\(\displaystyle a(13) = 75554024\)
\(\displaystyle a(14) = 430207699\)
\(\displaystyle a(15) = 2467079421\)
\(\displaystyle a(16) = 14236023346\)
\(\displaystyle a(17) = 82599698327\)
\(\displaystyle a(18) = 481602249973\)
\(\displaystyle a(19) = 2820306961288\)
\(\displaystyle a(20) = 16581081610569\)
\(\displaystyle a(21) = 97830810120332\)
\(\displaystyle a(22) = 579087945439528\)
\(\displaystyle a(23) = 3437933586792191\)
\(\displaystyle a(24) = 20465753270888852\)
\(\displaystyle a(25) = 122135318754932187\)
\(\displaystyle a(26) = 730558343133142083\)
\(\displaystyle a(27) = 4379198940379141215\)
\(\displaystyle a(28) = 26302348416625550662\)
\(\displaystyle a(29) = 158268769395500456961\)
\(\displaystyle a(30) = 953989186867668032869\)
\(\displaystyle a(31) = 5759582953521638768410\)
\(\displaystyle a(32) = 34825256401305424314451\)
\(\displaystyle a(33) = 210869423609420023079757\)
\(\displaystyle a(34) = 1278535244983793473587492\)
\(\displaystyle a(35) = 7761729517826473707395109\)
\(\displaystyle a(36) = 47175951229532608643875487\)
\(\displaystyle a(37) = 287059089109834638253922733\)
\(\displaystyle a(38) = 1748576859730272938460819848\)
\(\displaystyle a(39) = 10661964330049896205245153403\)
\(\displaystyle a(40) = 65073903845661204380210668501\)
\(\displaystyle a(41) = 397533105800196473989858371243\)
\(\displaystyle a(42) = 2430623344258395555548642632872\)
\(\displaystyle a(43) = 14873815303835219228488664589852\)
\(\displaystyle a(44) = 91090081714298968582200182767602\)
\(\displaystyle a(45) = 558275421437231818282360101058565\)
\(\displaystyle a(46) = 3424051992550686261475326116946555\)
\(\displaystyle a(47) = 21015186442303275967695491682400375\)
\(\displaystyle a(48) = 129066835343447736247536005832680519\)
\(\displaystyle a(49) = 793181951360002765060939149918007953\)
\(\displaystyle a(50) = 4877493160093947679657087227024394099\)
\(\displaystyle a(51) = 30010676463487122746104667007469186396\)
\(\displaystyle a(52) = 184756768557342793506577821918744928455\)
\(\displaystyle a(53) = 1138049440479075352999187801985787432756\)
\(\displaystyle a(54) = 7013735058600475010562313102269656970813\)
\(\displaystyle a(55) = 43247078165478321817538605066789245863518\)
\(\displaystyle a(56) = 266793687119387754301868577784122222852899\)
\(\displaystyle a(57) = 1646638544048579247989539076196906505344644\)
\(\displaystyle a(58) = 10167587659220687862455626430175950276284453\)
\(\displaystyle a(59) = 62809859433056899657879330757808247368077108\)
\(\displaystyle a(60) = 388169695035755939443831601614683566853267712\)
\(\displaystyle a(61) = 2399900922461798889558700096121137321577524155\)
\(\displaystyle a(62) = 14843528285546837440732860827804265484322917808\)
\(\displaystyle a(63) = 91843337816001228384072655638331584215185243305\)
\(\displaystyle a(64) = 568485836042911132858244914160750500932872050351\)
\(\displaystyle a(65) = 3520044448508630038266891429617138591966005792826\)
\(\displaystyle a(66) = 21803610450600087163364802094176060185580191188191\)
\(\displaystyle a(67) = 135100177614395261473821533996241627544020780720427\)
\(\displaystyle a(68) = 837387233870311485600290196531706415150106672221630\)
\(\displaystyle a(69) = 5192010001585018382060637273044016928774300580740947\)
\(\displaystyle a(70) = 32201752704846213150285931664794689436370704073110721\)
\(\displaystyle a(71) = 199781150522192844472384815098705606449243153137979232\)
\(\displaystyle a(72) = 1239814983095556317404320690032590441207217488403654222\)
\(\displaystyle a(73) = 7696320303210121899893300902374286017518586546020717780\)
\(\displaystyle a(74) = 47789217835569275813279187804383591204746756905232328831\)
\(\displaystyle a(75) = 296820596399384931296237571144727163900970391226468066243\)
\(\displaystyle a(76) = 1844048672638369852806329028157130819156885836631098794727\)
\(\displaystyle a(77) = 11459403072187185800343163942439073618771454164340048536833\)
\(\displaystyle a(78) = 71229521718296992994899434828851123668929499641592611328257\)
\(\displaystyle a(79) = 442857224490336871654277881475204244150049748298616140862273\)
\(\displaystyle a(80) = 2754041443777266120090447469011696801349028725713131769675658\)
\(\displaystyle a(81) = 17130802076078925421631376678432699179450359504527498848531112\)
\(\displaystyle a(82) = 106581778187271135483836910276717687528492768919658374993496834\)
\(\displaystyle a(83) = 663260146180504450799248809013025382497741069623538521509822985\)
\(\displaystyle a(84) = 4128366468289836329110884791746562823896047684182093842092365434\)
\(\displaystyle a(85) = 25701814421526503777343662559685720047850396317552250916109210487\)
\(\displaystyle a(86) = 160043634875128557609219655733813855002094007089919756272180137521\)
\(\displaystyle a(87) = 996781716725554202129877805060807809501075684477005689157756335555\)
\(\displaystyle a(88) = 6209359102666666319259532675748082141815651560574103085346745658510\)
\(\displaystyle a(89) = 38688031777188053344784526998256465679235137469226777275382378785697\)
\(\displaystyle a(90) = 241094772052200348097193858665473336581714740933883415237221957293472\)
\(\displaystyle a(91) = 1502721369249027001666640070605295129037735373321849797591488301571914\)
\(\displaystyle a(92) = 9368000713541428325041689051101695739021881456921514931381465791092763\)
\(\displaystyle a(93) = 58410574708030735732669860060172342065047123687592827486691602018142325\)
\(\displaystyle a(94) = 364259205328304537435432974284438024684882096161121602487901941994217986\)
\(\displaystyle a(95) = 2271969603077175407633288146693244517789100468860213218834966183312055939\)
\(\displaystyle a(96) = 14173134314309242042259846114626632801746733586740057859517932235420449196\)
\(\displaystyle a(97) = 88429918029957105012086530873628165214721783404451627418740149059088757390\)
\(\displaystyle a(98) = 551824589094432509492180159347721582199464891433604987185950214145047624046\)
\(\displaystyle a(99) = 3444054359008494881074771688379450609250603161617302431277483565430705935156\)
\(\displaystyle a(100) = 21498330098290079610038974948229798600561725438730667251290480469919122446604\)
\(\displaystyle a(101) = 134215889760596261106607017888161589670495926668724425274290718403850338666242\)
\(\displaystyle a(102) = 838043104142113656972988862960951863401782372797798758447013655626113217222242\)
\(\displaystyle a(103) = 5233482374077604661126064223533725227041297004938724531805461499511674867957537\)
\(\displaystyle a(104) = 32687068263191708155211227015040328599013142055963675077614329174963730455187130\)
\(\displaystyle a(105) = 204183578779892385889054248356981502016548438598760674054867268797725938863353359\)
\(\displaystyle a(106) = 1275628358286499614896241777397614938252832177547604187501534796048367564354824268\)
\(\displaystyle a(107) = 7970488474434648741385537665332338541752304597509799149136631318231425014891092656\)
\(\displaystyle a(108) = 49808339841944211483706912187075949142043235650348844959507500417541007705497879018\)
\(\displaystyle a(109) = 311296699980332188304569638699771071508240043364694406383113010756277235357433184782\)
\(\displaystyle a(110) = 1945813818298337029304769061961957675172377787603527876918981899034074301656854708795\)
\(\displaystyle a(111) = 12164139367653030754018135266440124660423066411008970610227389352475780400190533769676\)
\(\displaystyle a(112) = 76052566896912799293010315914224800321115520142019934247464525026140142231412011478050\)
\(\displaystyle a(113) = 475551794216469034920412563650006377088568300267028875628370632927424153939026931841728\)
\(\displaystyle a(114) = 2973940861457520983170780284347256492911655711452151296162397960921251555556195565686110\)
\(\displaystyle a(115) = 18600152639154074174538667298663563822422900491841281116016661903833268188140208542870217\)
\(\displaystyle a(116) = 116345478098290349898003506726091427351111547360703926302744423709691434645897838020819603\)
\(\displaystyle a(117) = 727830908834714305142168645481517671990571573758572926356918161192628260511284331553199232\)
\(\displaystyle a(118) = 4553639585144656667529479032780988282404860607621590273786431057016327722660159966179084050\)
\(\displaystyle a(119) = 28492672921487477806518948064500601045886087928332339161466614404001023275922859186279972946\)
\(\displaystyle a(120) = 178300819256692804620306167729736668295101637914304951219465609523930836394772521836213433428\)
\(\displaystyle a(121) = 1115882169318568779458874152099509358218024673571097019753626377505141534535452362581183219263\)
\(\displaystyle a(122) = 6984373495480995159700539359113307105595108946400843971240366962387360338889386063109957615919\)
\(\displaystyle a(123) = 43719981958776353404974408621858449890696594486320447760230321945700641931666747118509176534289\)
\(\displaystyle a(124) = 273700249647669439830131562411071580175888102540577110313345853708395896068624066953235211912698\)
\(\displaystyle a(125) = 1713611748059156575753768880190509646738656962720778810137186213781012134489640414025153174307764\)
\(\displaystyle a(126) = 10729784987728179076405153738979182497399642798770609766847070964819464556531705837079145926142592\)
\(\displaystyle a(127) = 67190876680270907940277442650937669914964974153110487178113623273956333214049602355040792355575527\)
\(\displaystyle a(128) = 420794117580719694786347581732337325209135321415859966490936307381775598641352963963325646284037272\)
\(\displaystyle a(129) = 2635532981844153398400383140079007878143943687113781672688530323346122281512113994094042533532634982\)
\(\displaystyle a(130) = 16508441960363432338505713920912136429222841490890568725127708742346840501877765152655929175254776316\)
\(\displaystyle a(131) = 103414625215677684709852211326355978982095795621094589680181060829581101118352246325518472599801855814\)
\(\displaystyle a(132) = 647881384543794945981106417428085793538232044111955513176022940129065460754730706659562279474293227588\)
\(\displaystyle a(133) = 4059253171381054070812790798291552265973645273373416980288653972484338698745521733949146618377359366822\)
\(\displaystyle a(134) = 25435092410556166826833312171235777367259624533037821592094152584382047183193488304623336513292125228346\)
\(\displaystyle a(135) = 159388323965895291469892030239374131764557700955810902865521263383794364063103206378185298090302918632798\)
\(\displaystyle a(136) = 998884240646520637555036752249681805933800356113444252447632256232767255976336415299784982131461215334496\)
\(\displaystyle a(137) = 6260496462181551119997754991783404737558481922629883235721837503260088580971362436447768871961295009469060\)
\(\displaystyle a(138) = 39240708196147897032608085798333829042540870725601012217711992022997478477949872778563985775374459279429636\)
\(\displaystyle a(139) = 245979464918828460409473582859928744432684709083495799209185425308264205779926326041049524503499925521781635\)
\(\displaystyle a(140) = 1542035374901649531339385575156949245633752734398416436138171305245285646367699130007677961220949351422843707\)
\(\displaystyle a(141) = 9667692198717785335994467509844326131019831894306610731573753640578621672637332756539373906747346415203826764\)
\(\displaystyle a(142) = 60615518180773500961368440717985817908714720093099977668199959601246722869991238009609676550358186993566244960\)
\(\displaystyle a(143) = 380081650877120659055347660322387908406483603248749244040734606163572796001561170405023037623405645928826976042\)
\(\displaystyle a(144) = 2383425679813567347628103933930271843054026537579419319409131684886883391227889473088135221927465342455132132612\)
\(\displaystyle a(145) = 14947119871234520385768894776870698989417369522023667025401753513922579188453371319855508614746017779984280095529\)
\(\displaystyle a(146) = 93744152258957226200420760682261068205909148501883440744810485485144620789132811890027753618795967195987404649269\)
\(\displaystyle a(147) = 587978169081721658669383520636663250182984903222371907833976116735607311110119257196212414136971284159980126722403\)
\(\displaystyle a(148) = 3688146416777514936502511983287958784789503398574726266165849625504049125715651400859107418352778877980735622952761\)
\(\displaystyle a(149) = 23135806392836449629739457913993553204082204124806004737682031771320815119384305902370336356937399969477261169497573\)
\(\displaystyle a(150) = 145141053163886442560996812331077873645664434567146670353537628219772692680155641637698694810725966778879588332494764\)
\(\displaystyle a(151) = 910593727000739149239040389627995036319666624067469854425322613399342175878770089315628937564112284366672624479673249\)
\(\displaystyle a(152) = 5713305081644002862012180484469467017609781881409938664570235100162756063087600108277278525278844355279279718968232993\)
\(\displaystyle a(153) = 35849093856994207969166844066197620649291497061065903198201751064454190075142784511927433066122107646713277164629578601\)
\(\displaystyle a(154) = 224955487902838334544404687726656667181223858821517731410513619877974663678979074888782481605556775075611443694793888917\)
\(\displaystyle a(155) = 1411699588488803021642362818361272573664984895601458847637498019895248870888046219864962291296354449558773059294101091681\)
\(\displaystyle a(156) = 8859616429411482151226850379517831213612669515850712502055459537053661676900467231456295563053546828159888125259331286932\)
\(\displaystyle a(157) = 55605038337960374875850942703505112462194163316710113306009587586938464418702884935032924855787368273192547549580547617162\)
\(\displaystyle a(158) = 349011410235013535467711090531294631987133402813745832985072331945023646781893943377340418624900788775370306163536653038025\)
\(\displaystyle a(159) = 2190740982879051437487651217673298900770327380398886149459959180242442406961270855724827589362604623003612294545551737038270\)
\(\displaystyle a(160) = 13752068981302825530426393911994686303525517067140641741356034003906510101858205911172006530798300699456414453108479916558517\)
\(\displaystyle a(161) = 86331708481112906230703797934882446916627130991910965886026713385401548945301611529375610413226479368659640708973101587542152\)
\(\displaystyle a(162) = 541997896430982530294181807023840556552996481096393198779678901921610767027022710505011681877864279952061564772901479928561410\)
\(\displaystyle a{\left(n + 163 \right)} = \frac{491520 n \left(n + 1\right) \left(n + 2\right) \left(2 n + 3\right) a{\left(n \right)}}{49 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{16384 \left(n + 1\right) \left(n + 2\right) \left(4421 n^{2} + 23699 n + 32460\right) a{\left(n + 1 \right)}}{245 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{1024 \left(n + 2\right) \left(334498 n^{3} + 4059849 n^{2} + 15469151 n + 19103460\right) a{\left(n + 2 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(2853 n^{2} + 921331 n + 74379258\right) a{\left(n + 162 \right)}}{28 \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(4553179 n^{3} + 2192957969 n^{2} + 352063611492 n + 18840275448360\right) a{\left(n + 161 \right)}}{1960 \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{512 \left(19063883 n^{4} + 269075895 n^{3} + 1444676548 n^{2} + 3484338264 n + 3171422988\right) a{\left(n + 3 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(117305785 n^{4} + 75074316312 n^{3} + 18017471492770 n^{2} + 1921821360535293 n + 76871027824481760\right) a{\left(n + 160 \right)}}{3920 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{256 \left(194879791 n^{4} + 3316401765 n^{3} + 21655599473 n^{2} + 64385652891 n + 73393460784\right) a{\left(n + 4 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{128 \left(264804436 n^{4} + 2088971145 n^{3} - 23684804680 n^{2} - 273758222625 n - 680779579332\right) a{\left(n + 5 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{64 \left(2056976758 n^{4} - 141462546315 n^{3} - 3338015542921 n^{2} - 23206435648248 n - 52295149759608\right) a{\left(n + 6 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(3269999825 n^{4} + 2091729312039 n^{3} + 501741504994271 n^{2} + 53488167219939355 n + 2138220398144739630\right) a{\left(n + 159 \right)}}{15680 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(4103642874 n^{4} + 3031427425291 n^{3} + 822371503178286 n^{2} + 97583823475772087 n + 4288061867357386642\right) a{\left(n + 158 \right)}}{31360 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{32 \left(23943254501 n^{4} + 1200738373195 n^{3} + 18449922966610 n^{2} + 114590880948096 n + 252498201119844\right) a{\left(n + 7 \right)}}{245 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(440572828768 n^{4} + 272718954061244 n^{3} + 63289093351817739 n^{2} + 6525906154791937149 n + 252267332785024550018\right) a{\left(n + 157 \right)}}{31360 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{8 \left(1591718092556 n^{4} + 177966352520823 n^{3} + 6686382470570926 n^{2} + 88586242316016747 n + 379115451935455560\right) a{\left(n + 10 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{16 \left(2007492377633 n^{4} + 86084280147897 n^{3} + 1347878961721903 n^{2} + 9184459149605043 n + 23063086272123636\right) a{\left(n + 8 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(5246130277609 n^{4} + 3258960341467806 n^{3} + 759126356620625795 n^{2} + 78583216040403590372 n + 3050278991090901180416\right) a{\left(n + 156 \right)}}{31360 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{8 \left(41319111757484 n^{4} + 1857880817351123 n^{3} + 30493349708488144 n^{2} + 218085566900949793 n + 576125174689755096\right) a{\left(n + 9 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(63960413906702 n^{4} + 39837042279079289 n^{3} + 9303443257229289025 n^{2} + 965534816695885881344 n + 37572847605690908224652\right) a{\left(n + 155 \right)}}{62720 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(539979466469777 n^{4} + 341610901625704056 n^{3} + 80970689929242330592 n^{2} + 8522627694866873737497 n + 336126262982788876331214\right) a{\left(n + 154 \right)}}{188160 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{4 \left(821340024949401 n^{4} + 42190286135909868 n^{3} + 808519526255617467 n^{2} + 6853399365186815428 n + 21686322068947266492\right) a{\left(n + 11 \right)}}{245 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(996301147815752 n^{4} + 543147024469421421 n^{3} + 109494203397280797256 n^{2} + 9634975064855207853285 n + 310369820347320082828338\right) a{\left(n + 153 \right)}}{376320 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{2 \left(14880077106124791 n^{4} + 796050009782420936 n^{3} + 15823845620408285217 n^{2} + 138735385405819162444 n + 453220542058435474524\right) a{\left(n + 12 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(15495734958960760 n^{4} + 8681220414420137762 n^{3} + 1810444768236850162325 n^{2} + 166334670059459100906289 n + 5669590314269240250298782\right) a{\left(n + 152 \right)}}{376320 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{2 \left(57688327702771877 n^{4} + 3475376276260243653 n^{3} + 78432921329431595077 n^{2} + 785099308416555966201 n + 2938828504772736197556\right) a{\left(n + 13 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{2 \left(180309237489707557 n^{4} + 10336945101759700567 n^{3} + 215224882554853145792 n^{2} + 1911070078584673451138 n + 6000079135862874348558\right) a{\left(n + 15 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{2 \left(416936384529669222 n^{4} + 25902410098281674374 n^{3} + 602008621019465085519 n^{2} + 6204815931300512148299 n + 23932826981320962013272\right) a{\left(n + 14 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(793467703501813006 n^{4} + 465903068450394133676 n^{3} + 102503025551505657964661 n^{2} + 10014228384962912135460493 n + 366546001162223187090719502\right) a{\left(n + 151 \right)}}{376320 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(10586401444904759353 n^{4} + 743405803482915320571 n^{3} + 19553854383031623893090 n^{2} + 228303494840971520496480 n + 998264165848388781044178\right) a{\left(n + 16 \right)}}{735 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(21111000297446955922 n^{4} + 12447219202867657118084 n^{3} + 2751191635160960065684205 n^{2} + 270168701476736047141141279 n + 9945414348506676491848506738\right) a{\left(n + 150 \right)}}{752640 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(60037040652049832424 n^{4} + 4364000068906021058317 n^{3} + 118828613147897636284680 n^{2} + 1436694808826739943470755 n + 6508332327339437055140952\right) a{\left(n + 17 \right)}}{1470 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(84145593041565223621 n^{4} + 49603897080867655774913 n^{3} + 10963546431379968538104101 n^{2} + 1076765770272537211322223202 n + 39649517194503496137658148994\right) a{\left(n + 149 \right)}}{376320 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(179699921880662731977 n^{4} + 14109614540606046778298 n^{3} + 414614434725570724918437 n^{2} + 5403622040129924215405588 n + 26352953779473329730638496\right) a{\left(n + 18 \right)}}{2940 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(774961698332805147236 n^{4} + 62104148328595284084675 n^{3} + 1864256314567402582789819 n^{2} + 24844966512524592918041622 n + 124036397741281261806195828\right) a{\left(n + 19 \right)}}{1470 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(862731701455222455754 n^{4} + 508525141628456662764411 n^{3} + 112385810922003005724846365 n^{2} + 11037181573007962727951767074 n + 406410896571361709362798489500\right) a{\left(n + 148 \right)}}{752640 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(3441389351689874419823 n^{4} + 283209591945394027119614 n^{3} + 8733365847764581021845805 n^{2} + 119622106855395097629037666 n + 614157906418636416699316884\right) a{\left(n + 20 \right)}}{5880 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(3924337269271014594584 n^{4} + 2343779129739995424186423 n^{3} + 524537873215021617754979815 n^{2} + 52136924020272485765972568822 n + 1941992450425444560674536372572\right) a{\left(n + 147 \right)}}{1505280 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(8100972886893976478511 n^{4} + 696900412849589048668078 n^{3} + 22420214923153979826914025 n^{2} + 319649513918073826756924826 n + 1703826604887429237936311004\right) a{\left(n + 21 \right)}}{2940 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(14986363237071235161497 n^{4} - 38169488078859806875694647 n^{3} - 3052782668928936665406403205 n^{2} - 80226826527332408872286513525 n - 699918016549487517855125047800\right) a{\left(n + 25 \right)}}{23520 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(24926940877767082757760 n^{4} + 14057837518232582128674677 n^{3} + 2971049200349934228985133301 n^{2} + 278880192887881522256447879962 n + 9809424517447212328534339112952\right) a{\left(n + 146 \right)}}{1505280 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(26469987313997906205263 n^{4} + 2670990577994684530159164 n^{3} + 100146603965278564227566725 n^{2} + 1654673027189750163953265876 n + 10169592880527371802877060560\right) a{\left(n + 23 \right)}}{11760 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(49900281418596093775082 n^{4} + 4355273429504715843102759 n^{3} + 141867365302540809609619576 n^{2} + 2043047279165605207299973683 n + 10968824410885709359173353844\right) a{\left(n + 22 \right)}}{5880 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(362563065823060081687174 n^{4} + 206623032864707853188893158 n^{3} + 44153666077374210552571153445 n^{2} + 4193092968926435556609945321405 n + 149312560871596210616529708323526\right) a{\left(n + 145 \right)}}{1505280 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(449864807616007568002656 n^{4} + 38509625978280741212636323 n^{3} + 1195337262878093805469490106 n^{2} + 15686441374463268209948195513 n + 71062349868501693001654350930\right) a{\left(n + 24 \right)}}{11760 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(1196178686262677014316167 n^{4} + 120144774540771628804174970 n^{3} + 4482763972407171707509029379 n^{2} + 73496128369439540156811589136 n + 445570232141690108035455258028\right) a{\left(n + 26 \right)}}{7840 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(2522792446137562695467907 n^{4} + 1432710888725112239152261721 n^{3} + 305102843277973046377199772516 n^{2} + 28875625897580149071672832102192 n + 1024774767125403352755929733948258\right) a{\left(n + 144 \right)}}{1505280 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(9637181965636870019308378 n^{4} + 1522930041967163976764138431 n^{3} + 82791060741295659341590780235 n^{2} + 1900026616181893666685265943766 n + 15800302014076194573341820775002\right) a{\left(n + 27 \right)}}{23520 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(24434132875594696541394110 n^{4} + 13788878280491206510052148119 n^{3} + 2917889113251965484793706422393 n^{2} + 274411972371044117195946627835282 n + 9677115674021776337873638856748372\right) a{\left(n + 143 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(27478364655736657609672218 n^{4} + 7400059433112177256559763703 n^{3} + 521274498381327589424465348544 n^{2} + 14262054565057516724119070788367 n + 136258557991481585175177738811668\right) a{\left(n + 29 \right)}}{94080 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(84371243305008843648799247 n^{4} + 47203746875427974020670719979 n^{3} + 9902500570278820626468681476815 n^{2} + 923178457074023608864360870661317 n + 32270998846852563948966735731652798\right) a{\left(n + 142 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(168785844308779603139350839 n^{4} + 92978570744199584640145693181 n^{3} + 19199495688282179311689008468886 n^{2} + 1761315561635233098256502555471656 n + 60566493238083765567109023903128976\right) a{\left(n + 141 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(188846788665398187374984201 n^{4} + 110321870186040950411497499814 n^{3} + 24121217080721562499820172154480 n^{2} + 2339788650618619971787767302545329 n + 84970390563698689476766105366441416\right) a{\left(n + 140 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(243501299306857746581947239 n^{4} + 31959655879612164693415858772 n^{3} + 1552192673796877789444946327913 n^{2} + 33142325052842690217591124244596 n + 262973111617955131711553493097056\right) a{\left(n + 28 \right)}}{94080 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(2458754144294125254599568170 n^{4} + 341015381645351619676269576255 n^{3} + 17547407471619633386641693912819 n^{2} + 397739752669198096697118313392498 n + 3355352316392974901384444846426340\right) a{\left(n + 30 \right)}}{94080 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(3289435048990456731027200445 n^{4} + 462003049918589467001347902068 n^{3} + 24144592206984938918582104032787 n^{2} + 557054043336148592687152337510432 n + 4791369712290858886546330042684972\right) a{\left(n + 31 \right)}}{62720 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(3499981106700328953152494818 n^{4} + 1944627300553146149495269853869 n^{3} + 405174905953047396352512666411930 n^{2} + 37520630339984573184390400786275149 n + 1302964700221974591158131698113568510\right) a{\left(n + 139 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(16784872581091387181446611451 n^{4} + 2351684632312418358885975352877 n^{3} + 123231467989700951077364790087914 n^{2} + 2863160320455101332215574271060026 n + 24892093306336572936353986205324340\right) a{\left(n + 32 \right)}}{188160 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(36194444905286514200333150479 n^{4} + 19834447725065691308268767538866 n^{3} + 4075913918129128525413249855698831 n^{2} + 372256891502738643833614110023126848 n + 12749321213342790847598491761291367956\right) a{\left(n + 138 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(99582349361283380924994437777 n^{4} + 43062557895873600109756762381330 n^{3} + 6566697756417131523303661260617395 n^{2} + 398612175972757191368381772754542158 n + 7008267866751598827004594220452204680\right) a{\left(n + 135 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(120637867919574490930976610153 n^{4} + 65228978122904426555862937261768 n^{3} + 13224583103207195995533771601521723 n^{2} + 1191497771060032436782756818014148992 n + 40251973923654100652339645407696185192\right) a{\left(n + 137 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(127533899128678214620981874150 n^{4} + 67593403018891827562652697967351 n^{3} + 13427026192765020605850354789342511 n^{2} + 1184752528983287809875012438523114346 n + 39178693281766545430658544136969441446\right) a{\left(n + 136 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(204682458629627104902525963693 n^{4} + 29822955082229510881545107292173 n^{3} + 1622787831918996540679174495329819 n^{2} + 39100213047531107852805509413575331 n + 352101487768203464083230477333739464\right) a{\left(n + 33 \right)}}{376320 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(382987491298430718496534214169 n^{4} + 59979000689489344995977045375008 n^{3} + 3483703107635383371481227277202313 n^{2} + 89102835191950211578527808309790450 n + 847945930802065681744569785647631928\right) a{\left(n + 34 \right)}}{752640 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(957550173259381669191545767585 n^{4} + 524096686428206524141029203891996 n^{3} + 107499101647198795461804545410979768 n^{2} + 9793553015672400376007159183989215511 n + 334382035126098673309993007147330495532\right) a{\left(n + 134 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(1720092301991124217767683560633 n^{4} + 252113774618247748070587460633824 n^{3} + 13856417601057226488900482815976603 n^{2} + 338466864093906211059804381331991732 n + 3100404409256912479256566938247344024\right) a{\left(n + 35 \right)}}{752640 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(2201443538230225672904225922493 n^{4} + 469502036342079110434515094524158 n^{3} + 34478024234525952443663188422165131 n^{2} + 1069238803660963077988146187875138322 n + 12017128558234872247927806346058814600\right) a{\left(n + 37 \right)}}{1505280 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(3662937662001927053274974308461 n^{4} + 567563226235418534031951269097678 n^{3} + 32921502211195099391895722247175647 n^{2} + 847329947309904855375957754164790958 n + 8165512933896929650476595963402518104\right) a{\left(n + 36 \right)}}{501760 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(10178105051572833897235007547209 n^{4} + 5423945988009697390834754885018844 n^{3} + 1083780990823739793350319779182116067 n^{2} + 96234501509099649179729423872633394784 n + 3204026461681998416694543499851263315892\right) a{\left(n + 133 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(26479823480844635374965698626413 n^{4} + 4128144304701864453058749488256239 n^{3} + 241382305972307858804027057039172255 n^{2} + 6274391009674955386995196493290331005 n + 61176445368444721053433458652833548328\right) a{\left(n + 38 \right)}}{752640 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(32085662088161188427789792479357 n^{4} + 16782579232101123340271958977468656 n^{3} + 3291326705134885032937205543744669063 n^{2} + 286834312038385228063835846732058818864 n + 9372376675147222060827577038898912614360\right) a{\left(n + 132 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(33972598802779995322593211918045 n^{4} + 17355910117729303627598036743424613 n^{3} + 3322968638069193312389197229171097812 n^{2} + 282575885928420351612585720925191310200 n + 9004714375621460614033660553680780518006\right) a{\left(n + 131 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(34733652720443546108957210657710 n^{4} + 16522813740295398423099389806713745 n^{3} + 2923789209391291373083144790895719180 n^{2} + 227713360632920003574891409209454020467 n + 6571044048278767533674810203582027960938\right) a{\left(n + 130 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(55240585839774551870969189667989 n^{4} + 9085092342612569301194890452436083 n^{3} + 560066816115879860167806892213514194 n^{2} + 15338242228160478799759596118262249172 n + 157452563297768216294017287565480898736\right) a{\left(n + 39 \right)}}{752640 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(80749399269558572509860379471625 n^{4} + 45547758135890257346256330290603453 n^{3} + 9554871940122729168634454855119956907 n^{2} + 884663596620407885551057519509037093153 n + 30534489419493117191835271216046499258294\right) a{\left(n + 129 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(91602685691064125039328447455847 n^{4} + 12648060578260404149611650054682298 n^{3} + 631427120158375342769346294909259797 n^{2} + 13253589674601574587635769260623138522 n + 94836071087372020854622292288767258032\right) a{\left(n + 40 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(406792413181160982571984903639877 n^{4} + 67284467799941311793879536659478339 n^{3} + 4156560467651090661444569545453940578 n^{2} + 113610122570367934680853013096085634730 n + 1158606196237760482504007375805991773672\right) a{\left(n + 43 \right)}}{752640 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(897274847824323988992670942399865 n^{4} + 155907499601339656471405456437954898 n^{3} + 10160967143861226438147410075108494075 n^{2} + 294384571858188795222723520138820212502 n + 3199033883153248838045526103038959924064\right) a{\left(n + 42 \right)}}{1505280 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(1181084473276874143928981215602857 n^{4} + 196173502726159406038821678556154634 n^{3} + 12219871249542899201893668069812870095 n^{2} + 338349738020317918782845933781793460454 n + 3513753234391756829420178020223511221456\right) a{\left(n + 41 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(2251289438795139665960995174515565 n^{4} + 1179765498602275188074713726582137070 n^{3} + 231578734810699049720968063961863379615 n^{2} + 20181628509585108769575698473571308131494 n + 658884048550621772229594705213912261462336\right) a{\left(n + 128 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(7322731352087514579364847458605417 n^{4} + 3736276872587789311827846354011707306 n^{3} + 714461925137614620076425659220206632995 n^{2} + 60685449569142180333090655095583611536546 n + 1931852176290029577467635264360060743424944\right) a{\left(n + 127 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(8314488783240467217091909956404923 n^{4} + 4140621254807423078870803770171560326 n^{3} + 772667361285168835620746342818734883991 n^{2} + 64031520824295311703143675941956624902084 n + 1988258570211632977127001785875072402652832\right) a{\left(n + 126 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(8617802330763428534639029280112907 n^{4} + 4137900411773449188013354280609331054 n^{3} + 743213573504546181108265206213468057709 n^{2} + 59166748284713957222928374243198216960450 n + 1761012007946050646899820337893200997881464\right) a{\left(n + 125 \right)}}{4014080 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(9998651027914343929691325860349373 n^{4} + 1812562232240486453791715323449176680 n^{3} + 123081971840495147734338610617783571067 n^{2} + 3710353443443877758038882482756535437536 n + 41894004919427137402602033961225260470368\right) a{\left(n + 46 \right)}}{2007040 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(10169097724028855418514279857270509 n^{4} + 1797280177693021209944568732692541280 n^{3} + 119112482976840899181032957862852634435 n^{2} + 3508413977731015272189315709131499493720 n + 38753268287684411860120420954481587834128\right) a{\left(n + 44 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(12283350171764122679527392095036441 n^{4} + 2245453071078615810512669297839422052 n^{3} + 153980643769648047745926542372895365575 n^{2} + 4694655383375153935305276727313138538824 n + 53696189534040627012793662602789735597400\right) a{\left(n + 45 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(14175311649508704195802708223143727 n^{4} + 5495325523712574339153091072034466394 n^{3} + 734708178713116977110559944426134503829 n^{2} + 36834601816227422017291081194701392512650 n + 396786986758351619923216122182940214861464\right) a{\left(n + 124 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(24126135379689391510775214608567825 n^{4} + 13014218068936058473508743964562590626 n^{3} + 2611462388087123564842661425221650751519 n^{2} + 231318939070955503929657813555743401875342 n + 7638996232715326673601664236416803106179816\right) a{\left(n + 123 \right)}}{4014080 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(47771023084084878912047886078529567 n^{4} + 9161241878597473333928495315916595460 n^{3} + 658829419884346119213877382244143035515 n^{2} + 21058628554347839358690419248807419471894 n + 252442905424612567893653545486091126635808\right) a{\left(n + 48 \right)}}{2007040 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(106547434702333132283901107524745010 n^{4} + 52403944120651863607385359058810799488 n^{3} + 9654580446980219897435235427076829948531 n^{2} + 789678423558653639942817886499184588566578 n + 24195774786656987426145756731321634679032651\right) a{\left(n + 121 \right)}}{1505280 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(138819570311808339120986137285646447 n^{4} + 26049581110517573401298187536946922050 n^{3} + 1832799505016910358474175780075163671395 n^{2} + 57305248598674539919826340548364999397560 n + 671844062394838902805725233458076654813184\right) a{\left(n + 47 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(164583007495451727158098905654597093 n^{4} + 83241772649788307035268540828311154366 n^{3} + 15758999272962391730875306230220586803353 n^{2} + 1323691144539029680226057306132970495883732 n + 41627145004491710323484589365457804732664800\right) a{\left(n + 122 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(193340237826556123438882491163562387 n^{4} + 37773507855446651480924081106649563622 n^{3} + 2766892399408756135831601500795210053991 n^{2} + 90058348096573765634081350310445881389352 n + 1099000860063429856287791416032116216410368\right) a{\left(n + 49 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(349930687656814711303513163745153148 n^{4} + 70233512008322393220094701556675237316 n^{3} + 5282685429274249258158253951233307255883 n^{2} + 176487397103763187782827709212735702925211 n + 2209789171898222716207253122338479777064804\right) a{\left(n + 51 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(380059361925163596536764631394773753 n^{4} + 75536391415936494925829654945876185156 n^{3} + 5628606522866192036500033516684021126189 n^{2} + 186373352495667778298945194459225061500280 n + 2313832951151099293927444884638067449900604\right) a{\left(n + 50 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(557103707994129698282373563772384277 n^{4} + 225886605219546521461029518498620083588 n^{3} + 33072536356333618851263238993462593765099 n^{2} + 2030594011147568985046205903086150702132464 n + 42237099834311280017193190846916378331444432\right) a{\left(n + 118 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(662494103195245833640601635578615071 n^{4} + 555589940909909427968060256396791639311 n^{3} + 137252694990778243837865302128123567173296 n^{2} + 13557217978012553571017014855386794516752934 n + 473026084677849296447809042579368927987601536\right) a{\left(n + 113 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(964294544782279008103783816390888455 n^{4} + 201875735816993554495556527504677590366 n^{3} + 15851298159694238686054493942669005661259 n^{2} + 553263653300916663120633504732702272441020 n + 7242604889232083367230673381421305310401204\right) a{\left(n + 52 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(1378028614093193068327006529522093130 n^{4} + 288455190619112798201984133620606435647 n^{3} + 22605952299713103255061637604750319336287 n^{2} + 786055823988167858316158221487859487478156 n + 10231932557358478820769176160520898840927508\right) a{\left(n + 54 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(1587293539518936775722687787596408423 n^{4} + 762456300107727798273865149466001007122 n^{3} + 137169827438637703022840702717031015779457 n^{2} + 10953833491605501707286743760258689268560182 n + 327597850617125882822102698910697025578362808\right) a{\left(n + 120 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(2049533036561993001559705380831832297 n^{4} + 953473339061667424381444292910368698214 n^{3} + 165876053305278072112864979662947863223971 n^{2} + 12786971349709695332407796247422150128730974 n + 368432184254131190278963606686945828385572744\right) a{\left(n + 119 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(2583461748855549929338988198578166801 n^{4} + 1377087642392396478123232783638782918554 n^{3} + 272295977290245597346746682808320859504707 n^{2} + 23715265121295322833049168151793311107688546 n + 768675804394429993424264745297896393073859656\right) a{\left(n + 117 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(3371357518312508380440015678303950831 n^{4} + 708229000120665343615825993311718144642 n^{3} + 55780502253170189625440495351029100856289 n^{2} + 1952212131763650405111573999270046606671218 n + 25617229709737495534585252165132310339876748\right) a{\left(n + 53 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(4054784544723182682328452061724944131 n^{4} + 907358048478968867727501479092834551662 n^{3} + 76155907371857517982150093027900293478515 n^{2} + 2841259317525194703738813407729599801092796 n + 39755555517817130241887601174091434062821044\right) a{\left(n + 55 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(6415136692289794835600176615640487937 n^{4} + 3298849154867764160915870904525010114092 n^{3} + 628438788534643025556111809963342563401983 n^{2} + 52682869834010183680720244120479230005340216 n + 1642554479955773442482431325279800247176310604\right) a{\left(n + 114 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(7237228858040569530955142741940646491 n^{4} + 4520408316635759122454082386724962353030 n^{3} + 968501682324139238575238217445046870342565 n^{2} + 87488261826438460043589607921902413403826610 n + 2861850425516097001614842370770893872732629568\right) a{\left(n + 112 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(7339144565283112894327527497104929641 n^{4} + 3628719149240487826880040437063921660102 n^{3} + 670373243338616768752280749603716256529131 n^{2} + 54862796121652605844693543423428859500189178 n + 1678741873486559020239744181430578760858674656\right) a{\left(n + 115 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(9044860663367184807926850910226366653 n^{4} + 4508227482127116139408597520475048417370 n^{3} + 840163669806964792318257553049664667661843 n^{2} + 69401399922834975823813316643282404726313758 n + 2144495327477609176904859462597299507095502160\right) a{\left(n + 116 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(12204505586727666962521373378044676203 n^{4} + 2842255363904555067509449683712628222280 n^{3} + 246501338018158201179544477930594744982127 n^{2} + 9424361460345017646141742206486304698160318 n + 133812079238341695742352086991288343414749720\right) a{\left(n + 63 \right)}}{2007040 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(15774946550624033825686328395638854985 n^{4} + 3756899578788296720040890234383519818260 n^{3} + 335484249539780236445186621829987107767761 n^{2} + 13312566588950016417659382920911039332815638 n + 198058880383267004562427432383740285680743432\right) a{\left(n + 58 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(16706340993399142923972059599601712345 n^{4} + 3625165404181455166687372278791434380062 n^{3} + 294014194881638273524562937349627634337867 n^{2} + 10559728769246895014428087614096968430491758 n + 141655999700300606341698447168186996828121632\right) a{\left(n + 57 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(24732648110818281293465521733285087851 n^{4} + 5487381906744872562867988789810907178494 n^{3} + 456497796326115712435828332954101558144813 n^{2} + 16876601373084748399340816468604265724915410 n + 233951855681301743165181271399607548439621832\right) a{\left(n + 56 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(37694958677601976449797105074715085971 n^{4} + 8411713394129819415676875369728029801850 n^{3} + 699399602065711608807139457519854734345865 n^{2} + 25653054460115919627231912700419791244882466 n + 349749953146302782685943024303015457256699840\right) a{\left(n + 60 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(39480799314273834121086024848542582553 n^{4} + 9263433277604866867449804603492536647564 n^{3} + 815119571316863630034623007202299198983725 n^{2} + 31880453438285670859733111579522631646679894 n + 467627558240883799870151234335537175300593992\right) a{\left(n + 59 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(85313545685369734945613412235003947971 n^{4} + 39182668272416249245010583807934127081726 n^{3} + 6729220341044765745400597393729607696531641 n^{2} + 512268629129994638748148350251057871154673062 n + 14587320422195670430521935068787880742887784584\right) a{\left(n + 111 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(117921902429381326952060359251315420453 n^{4} + 30636343572219098888964899387392159297510 n^{3} + 2985263020377385864687011139475093696136549 n^{2} + 129311001210764036794322210045982750415924592 n + 2101013326116213014668492800724765562202199140\right) a{\left(n + 66 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(118705432280617767777714331184891947135 n^{4} + 29814109836280168550180670923841711389366 n^{3} + 2807016772196670261709921692850888801909265 n^{2} + 117412333367710239975021648848616049754575714 n + 1840901577717207938512875850798068418799830680\right) a{\left(n + 61 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(119834622833919061379911057629392515499 n^{4} + 29788150974405201419707853021904641789056 n^{3} + 2777337850379141431170684802909678539932875 n^{2} + 115112258303338413850040913841608987673298618 n + 1789507804286324720265223468776697595705925684\right) a{\left(n + 62 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(150165029786655224046584535827581600177 n^{4} + 66387794499837425788326545990835538475508 n^{3} + 10997121237887474823379362447736374737757515 n^{2} + 808958818227398451502715682822487140059365272 n + 22296789929189168850860080993244001698985125100\right) a{\left(n + 110 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(195170948187001890908188552000303307467 n^{4} + 82904526318296651435935445912826755653014 n^{3} + 13198223851880854507934832466616948609703047 n^{2} + 933258153326130701872180334186756535362989266 n + 24730828728826992731141371904416891903940081142\right) a{\left(n + 108 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(203596812340155229513968316585061885373 n^{4} + 53410493564426682824276094240095156484106 n^{3} + 5252605893067204001649577315730120300399841 n^{2} + 229505788437634088041702609523239255431887720 n + 3759146689397073205581326326966805419624037172\right) a{\left(n + 64 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(286084079217973210076681739121234376373 n^{4} + 79836681639368159972474489468634551865992 n^{3} + 8336317988548948151310100126688887251009947 n^{2} + 385924475111406455394437479074270489614831312 n + 6681788541230069812390513167738179204959439344\right) a{\left(n + 73 \right)}}{2007040 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(302359697376156411637089715894437789357 n^{4} + 117923651384911746624112675884868448130874 n^{3} + 17079196711046982084498995355437785906705743 n^{2} + 1086255271525188155909285740450935019167610754 n + 25517934495292458832402859563053586333440371712\right) a{\left(n + 107 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(399219366378444512467723405843142077565 n^{4} + 174787003240425744742328850379187031294450 n^{3} + 28664783039029940010539421323225585854382067 n^{2} + 2087112550975574083130164530529877733958263414 n + 56930022985483366521398583801878676618703254856\right) a{\left(n + 106 \right)}}{4014080 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(442682044397644601092912324306297241011 n^{4} + 188512597852302498625037177783500648991624 n^{3} + 30056263876549395924930358823549974547483121 n^{2} + 2126733746469721944754712881750019791154746548 n + 56355217650040669566248930981086465652655423588\right) a{\left(n + 102 \right)}}{2007040 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(542102654261915077339854295039891965170 n^{4} + 149220621960740458092547232222346848072849 n^{3} + 15403333204977481182659233354892437159860436 n^{2} + 706675921311785204229473736342301089538670863 n + 12157784936853288371170347414452621489294430768\right) a{\left(n + 68 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(618727596614827904089089272316927689189 n^{4} + 268290538494428322655174600419350134971778 n^{3} + 43604054194053515309719082121725053464219199 n^{2} + 3148072430297137466479967420242962017629638434 n + 85185691773521353455976965618643985478014244816\right) a{\left(n + 109 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(691828720279723825472833875050018347913 n^{4} + 151310079461603688475059945460886509695662 n^{3} + 9844880080523782037807476826406498334369069 n^{2} + 87147362199915095735176116460190317503600472 n - 6901951976036625531197843826419617579244204268\right) a{\left(n + 80 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(735935716771103535082111203308805792591 n^{4} + 193252658145314104842217886163604861400278 n^{3} + 19032631181659805350181947213777393134402573 n^{2} + 833181449105119851572993497033418480607468734 n + 13679025140231475500209110056431417912192975584\right) a{\left(n + 65 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(756237162133840992887481346612629664931 n^{4} + 306733221849794786409596009070865523572095 n^{3} + 46638392899170721120534388044001997300947179 n^{2} + 3150561629004885009170329804850169331260563079 n + 79781657108055262291369723489931204942851758750\right) a{\left(n + 103 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(920435640535933977993169877852787361787 n^{4} + 446369770237779910319592889902821974539722 n^{3} + 75376091400159568042040992286040521483420713 n^{2} + 5402446636562379998573624062464775901471940754 n + 140685288403720208083606567486308999868839508080\right) a{\left(n + 91 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(1130241100600671941452130601709694376697 n^{4} + 307669635855913905658947337609004858354542 n^{3} + 31402909559591265302808105899292829841750051 n^{2} + 1424317107666527186525511055509045661441111358 n + 24221588792039312696409332272332735808691383128\right) a{\left(n + 67 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(1169563088866323254915585481504391861171 n^{4} + 328415600396584999489054847007634138332578 n^{3} + 34582552903138803935351995471058212499222597 n^{2} + 1618473736295086373610912265673709480606653590 n + 28404007746975256928079744571020354014540492880\right) a{\left(n + 69 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(1567763092782410571275713690600299359589 n^{4} + 653667855193046020251063217798462735024038 n^{3} + 102195751788225077152751036471575168531243747 n^{2} + 7100587720250285138351733896322162243694940050 n + 184993205902590387542217948734017773872967875688\right) a{\left(n + 104 \right)}}{4014080 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(2169115438442810257877898734236443314915 n^{4} + 608699318620125125900406609225182311015450 n^{3} + 64054288041073070972548424586848896063596685 n^{2} + 2995723797216904732021726443993618064949361110 n + 52538038306248211284474106998108791773091603496\right) a{\left(n + 70 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(2704853569864594908554210521557061618541 n^{4} + 774914652778393514767619475602484339182742 n^{3} + 83252934562619105569477963315272345715470433 n^{2} + 3975248753583666455777357939835049810098588720 n + 71180204334604600820646705458338469719601252964\right) a{\left(n + 71 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(3215464931415114000940968827669832784262 n^{4} + 977191742386430443432179356389185077469665 n^{3} + 111352054833089956714951441082776204033836364 n^{2} + 5638779192126020492092751179113840549701229109 n + 107066557279903739741438119084228001787536519100\right) a{\left(n + 75 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(3372383505665189275932336988229750703013 n^{4} + 1432385132008172023274182110436357331472354 n^{3} + 228097014743333293814722377736022230388227115 n^{2} + 16140044594679140249007271880323109263099007190 n + 428184616331541614258509536048278250401228912376\right) a{\left(n + 105 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(3387232278281895496725083792370360059278 n^{4} + 1365672642442257515895758737603753404688925 n^{3} + 206500261298061603278252352640618940800822784 n^{2} + 13878860522008622534565198463357700093540121409 n + 349832870642480854205930662879412805348314340804\right) a{\left(n + 100 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(3791667926202119056600018350620190703239 n^{4} + 1372610184959450425446904057983177379821482 n^{3} + 185889775660195208774035028138327757204526248 n^{2} + 11163953969041326321000498935492009559530427637 n + 250908355761859831905393574052325936227523352320\right) a{\left(n + 87 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(4043888054391868490708150854726145800823 n^{4} + 1522040649989010697536228581934030312433734 n^{3} + 215046755161234801446764351631261972002900905 n^{2} + 13518556066223614402641881926408782342447165462 n + 319048413547207996239694607672305488372988381908\right) a{\left(n + 95 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(4657750545064272491696687441372583845307 n^{4} + 1366185131293990644588919689820861623407770 n^{3} + 150240681123860848274705909826353094696979521 n^{2} + 7341688719974336080948384851474450402568053146 n + 134508022825445284901769343884259087761321998544\right) a{\left(n + 72 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(4671146889326482255473574103842463446207 n^{4} + 1496760623884175014580748530616366411698434 n^{3} + 179362823025966351282827495623998928401523721 n^{2} + 9529219641144231367223462388680005220545804694 n + 189423342016679563582473275894633728788224408016\right) a{\left(n + 76 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(4783131600497100148955112608730441519761 n^{4} + 1546493773212884715056682890432985295086670 n^{3} + 187539202856610759879010581592152516709339175 n^{2} + 10109603128047191225971955411402899867111148418 n + 204405183841022336869423239900342978115892321820\right) a{\left(n + 81 \right)}}{2007040 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(7317369123059289218429453153433644346013 n^{4} + 2565710313192785624616835867612358097962656 n^{3} + 337537014923870821389438452168513737941823514 n^{2} + 19746610481979203625935839206219151095999515945 n + 433455583287898405632901475701101743107606238340\right) a{\left(n + 88 \right)}}{3010560 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(7333790620150269881789002710978494503235 n^{4} + 2397287719889484446925671633616751895695896 n^{3} + 293884727013009961900205922105359731092914665 n^{2} + 16014447469556933467989961870311514555949600736 n + 327316561988679252996998024696149296696259340004\right) a{\left(n + 84 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(7544147875285576247763451993131004147743 n^{4} + 2974557645493754012251097302306522110755558 n^{3} + 439936184135546150632232594767783705724432985 n^{2} + 28927034042506738846302588694748691086637754210 n + 713484456758622145704598702074787905165763992816\right) a{\left(n + 99 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(7729178613486318546525769822160195330383 n^{4} + 3111942711811835345241964571173607590931966 n^{3} + 469503221733358735317104987519554397661226553 n^{2} + 31459809400484694679796488560491173520923145146 n + 789972940409978719265087606873320957140492901632\right) a{\left(n + 98 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(8827507539905844032442880268340206138389 n^{4} + 3167379735700031938571130419026298585288254 n^{3} + 426206194790506997702599478294252851606488101 n^{2} + 25490842404240152205147303744125436280431257172 n + 571752549451253185695496340573256594563448842868\right) a{\left(n + 89 \right)}}{2007040 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(10067406863192265071385979657283053182043 n^{4} + 4129008893192396290438559950498085734745134 n^{3} + 634979708529896365451142732954675452110965317 n^{2} + 43395783700798179595196777045453453517497767562 n + 1112049745146508152086812966863072593455892011128\right) a{\left(n + 101 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(10071858755311938624139800601760106481321 n^{4} + 2986723574391277282706886370786890782279254 n^{3} + 332152477915957622716642625733912895136712023 n^{2} + 16418106483751942902350898639562603912542259970 n + 304344373358558459267324255636211727420384144056\right) a{\left(n + 74 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(10291720398066651781956211745051152792447 n^{4} + 3321752668571884589879888125962032805701342 n^{3} + 401843109856672170659092719968684508932174219 n^{2} + 21594800518461965081912252761346775694628989816 n + 434976572566199574997966310468883468000263146584\right) a{\left(n + 79 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(11538588033947821719248993014002758157009 n^{4} + 3943767268050954558791651247042282445689698 n^{3} + 504897154846439504670865577709750420489557709 n^{2} + 28697198967883098843409455568319699940886747888 n + 611023697101018754917046934029198770623407880360\right) a{\left(n + 83 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(11544744488213134885501850371617089708773 n^{4} + 3511445574784220712671851114792184038002530 n^{3} + 400515497249179522527240950370212479757426711 n^{2} + 20303715070599937027802188443556495320145889194 n + 385987544153170072978915991142057738767219997480\right) a{\left(n + 77 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(11643489428265811685005665255312580264803 n^{4} + 4576152634902118920520907977851397715174210 n^{3} + 674442446243982683361594063303698089978466835 n^{2} + 44177720923608440806816159067035738029016763248 n + 1085151093495330933107576327751668835595535377764\right) a{\left(n + 97 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(12067985207320050738169858923310201369091 n^{4} + 3789360684795406264718559458085685979392514 n^{3} + 446206902942559440697117647813864463434800023 n^{2} + 23352443817800690151584915520216468478735921492 n + 458319289966805425524256124035447890233677849092\right) a{\left(n + 78 \right)}}{6021120 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(21371840848396244258817723051271715982815 n^{4} + 8172578957177437298863983767016210069431198 n^{3} + 1171400086747907118716702394718261272107190433 n^{2} + 74588562273541465894106867409318026384321315434 n + 1780242296577304276674480632452935142172003911560\right) a{\left(n + 94 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(25743651188972166796983470388033275972235 n^{4} + 9963087834088629518671718832092298827513458 n^{3} + 1446286879621495602337502117205146605177623825 n^{2} + 93333690872355647881630869241593885668667381962 n + 2259228829506405155485900842556345058251228457544\right) a{\left(n + 96 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(33843175051213759597280594013918081582713 n^{4} + 12507971998729788559072525007642538924103530 n^{3} + 1734213331368517182013575951005789394094865419 n^{2} + 106907158068628989009213384354178789168618227834 n + 2472383378193192140474923103996337980908550802552\right) a{\left(n + 92 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(39594307659408543485336661136738548566083 n^{4} + 14463646674931081592110771878996020868934318 n^{3} + 1980574834894602131418532333413037894223401097 n^{2} + 120493345302760893107927659046600207946721803374 n + 2747960198690412952195026571970338355847790377360\right) a{\left(n + 90 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(40232888925117609516322830600145696320713 n^{4} + 13344403563259223530371085336099766799743254 n^{3} + 1659562905572819760832503966580932323518290391 n^{2} + 91717515177214533378047183804643186489583558586 n + 1900595577919037821414362116334910270442668610040\right) a{\left(n + 82 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(41543688551038190475884128284455002051741 n^{4} + 15611324178036170671906162329440626001908474 n^{3} + 2199967523485636805380390413553370838111571079 n^{2} + 137791247428143244755820200710498403687643836914 n + 3236460461345462390749554120824757333668881350384\right) a{\left(n + 93 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} + \frac{\left(46823808542643435439668731211253064322097 n^{4} + 15990462789015101522838636782962525915461434 n^{3} + 2048063904047218977666173409657623138277673247 n^{2} + 116600954996713359332353322744558066040614477446 n + 2489730017112966105240068617567518892378219264512\right) a{\left(n + 85 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)} - \frac{\left(48152443294403047227555230824137793312829 n^{4} + 16792135219240521960976568110168178284631366 n^{3} + 2195362070196752432699181018648713117161512871 n^{2} + 127528683955120844078116093365294352780890684310 n + 2777328817597934336880211642782919339405816031832\right) a{\left(n + 86 \right)}}{12042240 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 327\right)}, \quad n \geq 163\)
This specification was found using the strategy pack "Point Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 354 rules.
Finding the specification took 3948 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 354 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{284}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{12}\! \left(x \right) &= -F_{282}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= \frac{F_{14}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{17}\! \left(x \right) &= \frac{F_{18}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{18}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{27}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= \frac{F_{29}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{29}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{0}\! \left(x \right) F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= \frac{F_{44}\! \left(x \right)}{F_{0} \left(x \right)^{2} F_{4}\! \left(x \right)}\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= -F_{75}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= \frac{F_{47}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= -F_{54}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= -F_{53}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= \frac{F_{51}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{2}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{36}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{59}\! \left(x \right) &= \frac{F_{60}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{0}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{6}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{37}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{59}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{77}\! \left(x \right) &= \frac{F_{78}\! \left(x \right)}{F_{4}\! \left(x \right) F_{74}\! \left(x \right)}\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{133}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{17}\! \left(x \right) F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{4}\! \left(x \right) F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{4}\! \left(x \right) F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{4}\! \left(x \right) F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{101}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{104}\! \left(x \right)+F_{108}\! \left(x \right)\\
F_{103}\! \left(x \right) &= 0\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{107}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{102}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{4}\! \left(x \right) F_{97}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{110}\! \left(x \right)+F_{131}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{116}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{114}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{115}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{93}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{117}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{118}\! \left(x \right)+F_{122}\! \left(x \right)+F_{123}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{121}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{113}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{117}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{109}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{126}\! \left(x \right)\\
F_{126}\! \left(x \right) &= 2 F_{103}\! \left(x \right)+F_{122}\! \left(x \right)+F_{127}\! \left(x \right)\\
F_{127}\! \left(x \right) &= F_{128}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{130}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{94}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{126}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{132}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{134}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{135}\! \left(x \right) &= -F_{136}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{137}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{138}\! \left(x \right)\\
F_{138}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{250}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{142}\! \left(x \right) F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{143}\! \left(x \right) &= F_{144}\! \left(x \right)\\
F_{144}\! \left(x \right) &= F_{145}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{147}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{142}\! \left(x \right)\\
F_{147}\! \left(x \right) &= -F_{150}\! \left(x \right)+F_{148}\! \left(x \right)\\
F_{148}\! \left(x \right) &= \frac{F_{149}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{149}\! \left(x \right) &= F_{137}\! \left(x \right)\\
F_{150}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{151}\! \left(x \right)\\
F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{153}\! \left(x \right)+F_{201}\! \left(x \right)\\
F_{153}\! \left(x \right) &= F_{154}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{155}\! \left(x \right)+F_{164}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{155}\! \left(x \right)+F_{159}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{162}\! \left(x \right)\\
F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)\\
F_{161}\! \left(x \right) &= x^{2}\\
F_{162}\! \left(x \right) &= F_{163}\! \left(x \right)\\
F_{163}\! \left(x \right) &= F_{156}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{165}\! \left(x \right)+F_{177}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{166}\! \left(x \right)+F_{176}\! \left(x \right)\\
F_{166}\! \left(x \right) &= F_{167}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{169}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{169}\! \left(x \right) &= F_{165}\! \left(x \right)+F_{170}\! \left(x \right)\\
F_{170}\! \left(x \right) &= 2 F_{103}\! \left(x \right)+F_{171}\! \left(x \right)+F_{175}\! \left(x \right)\\
F_{171}\! \left(x \right) &= F_{172}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{174}\! \left(x \right)\\
F_{173}\! \left(x \right) &= F_{160}\! \left(x \right)\\
F_{174}\! \left(x \right) &= F_{170}\! \left(x \right)\\
F_{175}\! \left(x \right) &= F_{165}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{176}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{177}\! \left(x \right) &= 2 F_{103}\! \left(x \right)+F_{178}\! \left(x \right)+F_{199}\! \left(x \right)\\
F_{178}\! \left(x \right) &= F_{179}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{179}\! \left(x \right) &= F_{180}\! \left(x \right)+F_{184}\! \left(x \right)\\
F_{180}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{181}\! \left(x \right)\\
F_{181}\! \left(x \right) &= 2 F_{103}\! \left(x \right)+F_{163}\! \left(x \right)+F_{182}\! \left(x \right)\\
F_{182}\! \left(x \right) &= F_{183}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{183}\! \left(x \right) &= F_{159}\! \left(x \right)\\
F_{184}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{185}\! \left(x \right)\\
F_{185}\! \left(x \right) &= 2 F_{103}\! \left(x \right)+F_{186}\! \left(x \right)+F_{190}\! \left(x \right)+F_{191}\! \left(x \right)\\
F_{186}\! \left(x \right) &= F_{187}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{187}\! \left(x \right) &= F_{188}\! \left(x \right)+F_{189}\! \left(x \right)\\
F_{188}\! \left(x \right) &= F_{181}\! \left(x \right)\\
F_{189}\! \left(x \right) &= F_{185}\! \left(x \right)\\
F_{190}\! \left(x \right) &= F_{177}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{191}\! \left(x \right) &= F_{192}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{192}\! \left(x \right) &= F_{193}\! \left(x \right)\\
F_{193}\! \left(x \right) &= F_{170}\! \left(x \right)+F_{194}\! \left(x \right)\\
F_{194}\! \left(x \right) &= 3 F_{103}\! \left(x \right)+F_{190}\! \left(x \right)+F_{195}\! \left(x \right)\\
F_{195}\! \left(x \right) &= F_{196}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{196}\! \left(x \right) &= F_{197}\! \left(x \right)+F_{198}\! \left(x \right)\\
F_{197}\! \left(x \right) &= F_{162}\! \left(x \right)\\
F_{198}\! \left(x \right) &= F_{194}\! \left(x \right)\\
F_{199}\! \left(x \right) &= F_{200}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{200}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{193}\! \left(x \right)\\
F_{201}\! \left(x \right) &= F_{202}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{202}\! \left(x \right) &= F_{203}\! \left(x \right)+F_{214}\! \left(x \right)\\
F_{203}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{204}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{205}\! \left(x \right)+F_{208}\! \left(x \right)\\
F_{205}\! \left(x \right) &= F_{206}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{207}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{176}\! \left(x \right)+F_{205}\! \left(x \right)\\
F_{208}\! \left(x \right) &= F_{209}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{209}\! \left(x \right) &= F_{203}\! \left(x \right)+F_{210}\! \left(x \right)\\
F_{210}\! \left(x \right) &= F_{211}\! \left(x \right)+F_{212}\! \left(x \right)\\
F_{211}\! \left(x \right) &= F_{176}\! \left(x \right)\\
F_{212}\! \left(x \right) &= F_{213}\! \left(x \right)\\
F_{213}\! \left(x \right) &= F_{204}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{214}\! \left(x \right) &= F_{215}\! \left(x \right)+F_{226}\! \left(x \right)\\
F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)\\
F_{216}\! \left(x \right) &= F_{217}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{217}\! \left(x \right) &= F_{218}\! \left(x \right)+F_{219}\! \left(x \right)\\
F_{218}\! \left(x \right) &= F_{211}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{219}\! \left(x \right) &= F_{215}\! \left(x \right)+F_{220}\! \left(x \right)\\
F_{220}\! \left(x \right) &= 2 F_{103}\! \left(x \right)+F_{221}\! \left(x \right)+F_{225}\! \left(x \right)\\
F_{221}\! \left(x \right) &= F_{222}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{222}\! \left(x \right) &= F_{223}\! \left(x \right)+F_{224}\! \left(x \right)\\
F_{223}\! \left(x \right) &= F_{211}\! \left(x \right)\\
F_{224}\! \left(x \right) &= F_{220}\! \left(x \right)\\
F_{225}\! \left(x \right) &= F_{215}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{226}\! \left(x \right) &= 2 F_{103}\! \left(x \right)+F_{227}\! \left(x \right)+F_{248}\! \left(x \right)\\
F_{227}\! \left(x \right) &= F_{228}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{228}\! \left(x \right) &= F_{229}\! \left(x \right)+F_{233}\! \left(x \right)\\
F_{229}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{230}\! \left(x \right)\\
F_{230}\! \left(x \right) &= 2 F_{103}\! \left(x \right)+F_{213}\! \left(x \right)+F_{231}\! \left(x \right)\\
F_{231}\! \left(x \right) &= F_{232}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{232}\! \left(x \right) &= F_{210}\! \left(x \right)\\
F_{233}\! \left(x \right) &= F_{226}\! \left(x \right)+F_{234}\! \left(x \right)\\
F_{234}\! \left(x \right) &= 2 F_{103}\! \left(x \right)+F_{235}\! \left(x \right)+F_{239}\! \left(x \right)+F_{240}\! \left(x \right)\\
F_{235}\! \left(x \right) &= F_{236}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{236}\! \left(x \right) &= F_{237}\! \left(x \right)+F_{238}\! \left(x \right)\\
F_{237}\! \left(x \right) &= F_{230}\! \left(x \right)\\
F_{238}\! \left(x \right) &= F_{234}\! \left(x \right)\\
F_{239}\! \left(x \right) &= F_{226}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{240}\! \left(x \right) &= F_{241}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{241}\! \left(x \right) &= F_{242}\! \left(x \right)\\
F_{242}\! \left(x \right) &= F_{220}\! \left(x \right)+F_{243}\! \left(x \right)\\
F_{243}\! \left(x \right) &= 3 F_{103}\! \left(x \right)+F_{239}\! \left(x \right)+F_{244}\! \left(x \right)\\
F_{244}\! \left(x \right) &= F_{245}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{245}\! \left(x \right) &= F_{246}\! \left(x \right)+F_{247}\! \left(x \right)\\
F_{246}\! \left(x \right) &= F_{212}\! \left(x \right)\\
F_{247}\! \left(x \right) &= F_{243}\! \left(x \right)\\
F_{248}\! \left(x \right) &= F_{249}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{249}\! \left(x \right) &= F_{214}\! \left(x \right)+F_{242}\! \left(x \right)\\
F_{250}\! \left(x \right) &= F_{251}\! \left(x \right)\\
F_{251}\! \left(x \right) &= F_{252}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{252}\! \left(x \right) &= F_{253}\! \left(x \right)+F_{265}\! \left(x \right)\\
F_{253}\! \left(x \right) &= F_{254}\! \left(x \right)\\
F_{254}\! \left(x \right) &= F_{142}\! \left(x \right) F_{255}\! \left(x \right) F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{255}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{256}\! \left(x \right)\\
F_{256}\! \left(x \right) &= -F_{259}\! \left(x \right)+F_{257}\! \left(x \right)\\
F_{257}\! \left(x \right) &= \frac{F_{258}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{258}\! \left(x \right) &= F_{137}\! \left(x \right)\\
F_{259}\! \left(x \right) &= F_{260}\! \left(x \right)\\
F_{260}\! \left(x \right) &= F_{261}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{261}\! \left(x \right) &= \frac{F_{262}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{262}\! \left(x \right) &= F_{263}\! \left(x \right)\\
F_{263}\! \left(x \right) &= F_{264}\! \left(x \right)\\
F_{264}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{265}\! \left(x \right) &= -F_{277}\! \left(x \right)+F_{266}\! \left(x \right)\\
F_{266}\! \left(x \right) &= \frac{F_{267}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{267}\! \left(x \right) &= F_{268}\! \left(x \right)\\
F_{268}\! \left(x \right) &= -F_{269}\! \left(x \right)+F_{147}\! \left(x \right)\\
F_{269}\! \left(x \right) &= -F_{270}\! \left(x \right)+F_{145}\! \left(x \right)\\
F_{270}\! \left(x \right) &= -F_{275}\! \left(x \right)+F_{271}\! \left(x \right)\\
F_{271}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{272}\! \left(x \right)\\
F_{272}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{273}\! \left(x \right)\\
F_{273}\! \left(x \right) &= F_{274}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{274}\! \left(x \right) &= F_{152}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{275}\! \left(x \right) &= F_{276}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{276}\! \left(x \right) &= F_{0}\! \left(x \right) F_{85}\! \left(x \right)\\
F_{277}\! \left(x \right) &= F_{253}\! \left(x \right)+F_{278}\! \left(x \right)\\
F_{278}\! \left(x \right) &= \frac{F_{279}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{279}\! \left(x \right) &= F_{280}\! \left(x \right)\\
F_{280}\! \left(x \right) &= -F_{281}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{281}\! \left(x \right) &= F_{2}\! \left(x \right) F_{85}\! \left(x \right)\\
F_{282}\! \left(x \right) &= F_{283}\! \left(x \right)\\
F_{283}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{284}\! \left(x \right) &= F_{285}\! \left(x \right)+F_{299}\! \left(x \right)\\
F_{285}\! \left(x \right) &= F_{0}\! \left(x \right) F_{286}\! \left(x \right)\\
F_{286}\! \left(x \right) &= F_{287}\! \left(x \right)\\
F_{287}\! \left(x \right) &= F_{288}\! \left(x \right) F_{289}\! \left(x \right) F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{288}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{289}\! \left(x \right) &= F_{290}\! \left(x \right)+F_{291}\! \left(x \right)\\
F_{290}\! \left(x \right) &= F_{74}\! \left(x \right) F_{85}\! \left(x \right)\\
F_{291}\! \left(x \right) &= F_{292}\! \left(x \right)\\
F_{292}\! \left(x \right) &= F_{293}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{293}\! \left(x \right) &= F_{294}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{294}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{295}\! \left(x \right)\\
F_{295}\! \left(x \right) &= F_{296}\! \left(x \right)\\
F_{296}\! \left(x \right) &= F_{297}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{297}\! \left(x \right) &= F_{298}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{298}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{295}\! \left(x \right)\\
F_{299}\! \left(x \right) &= F_{300}\! \left(x \right)\\
F_{300}\! \left(x \right) &= F_{288}\! \left(x \right) F_{301}\! \left(x \right) F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{301}\! \left(x \right) &= F_{302}\! \left(x \right)+F_{309}\! \left(x \right)\\
F_{302}\! \left(x \right) &= F_{303}\! \left(x \right)\\
F_{303}\! \left(x \right) &= F_{304}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{304}\! \left(x \right) &= F_{305}\! \left(x \right)+F_{308}\! \left(x \right)\\
F_{305}\! \left(x \right) &= F_{0}\! \left(x \right) F_{306}\! \left(x \right)\\
F_{306}\! \left(x \right) &= \frac{F_{307}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{307}\! \left(x \right) &= F_{142}\! \left(x \right)\\
F_{308}\! \left(x \right) &= F_{5}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{309}\! \left(x \right) &= -F_{139}\! \left(x \right)+F_{310}\! \left(x \right)\\
F_{310}\! \left(x \right) &= -F_{350}\! \left(x \right)+F_{311}\! \left(x \right)\\
F_{311}\! \left(x \right) &= \frac{F_{312}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{312}\! \left(x \right) &= F_{313}\! \left(x \right)\\
F_{313}\! \left(x \right) &= F_{314}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{314}\! \left(x \right) &= F_{315}\! \left(x \right)+F_{346}\! \left(x \right)\\
F_{315}\! \left(x \right) &= F_{316}\! \left(x \right)+F_{319}\! \left(x \right)\\
F_{316}\! \left(x \right) &= F_{138}\! \left(x \right) F_{317}\! \left(x \right)\\
F_{317}\! \left(x \right) &= \frac{F_{318}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{318}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{319}\! \left(x \right) &= F_{0}\! \left(x \right) F_{320}\! \left(x \right)\\
F_{320}\! \left(x \right) &= -F_{138}\! \left(x \right)+F_{321}\! \left(x \right)\\
F_{321}\! \left(x \right) &= F_{322}\! \left(x \right)+F_{323}\! \left(x \right)\\
F_{322}\! \left(x \right) &= F_{100}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{323}\! \left(x \right) &= F_{324}\! \left(x \right)\\
F_{324}\! \left(x \right) &= F_{325}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{325}\! \left(x \right) &= F_{326}\! \left(x \right)+F_{331}\! \left(x \right)\\
F_{326}\! \left(x \right) &= F_{327}\! \left(x \right)+F_{328}\! \left(x \right)\\
F_{327}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{263}\! \left(x \right)\\
F_{328}\! \left(x \right) &= F_{2}\! \left(x \right) F_{329}\! \left(x \right)\\
F_{329}\! \left(x \right) &= F_{330}\! \left(x \right)\\
F_{330}\! \left(x \right) &= F_{255}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{331}\! \left(x \right) &= F_{332}\! \left(x \right)\\
F_{332}\! \left(x \right) &= F_{333}\! \left(x \right)+F_{342}\! \left(x \right)\\
F_{333}\! \left(x \right) &= F_{334}\! \left(x \right)\\
F_{334}\! \left(x \right) &= F_{335}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{335}\! \left(x \right) &= \frac{F_{336}\! \left(x \right)}{F_{4}\! \left(x \right) F_{5}\! \left(x \right) F_{74}\! \left(x \right)}\\
F_{336}\! \left(x \right) &= F_{337}\! \left(x \right)\\
F_{337}\! \left(x \right) &= -F_{339}\! \left(x \right)+F_{338}\! \left(x \right)\\
F_{338}\! \left(x \right) &= F_{265}\! \left(x \right)\\
F_{339}\! \left(x \right) &= F_{340}\! \left(x \right)\\
F_{340}\! \left(x \right) &= F_{142}\! \left(x \right) F_{341}\! \left(x \right) F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{341}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{263}\! \left(x \right)\\
F_{342}\! \left(x \right) &= F_{2}\! \left(x \right) F_{343}\! \left(x \right)\\
F_{343}\! \left(x \right) &= F_{333}\! \left(x \right)+F_{344}\! \left(x \right)\\
F_{344}\! \left(x \right) &= F_{345}\! \left(x \right)\\
F_{345}\! \left(x \right) &= F_{341}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{346}\! \left(x \right) &= F_{347}\! \left(x \right)+F_{349}\! \left(x \right)\\
F_{347}\! \left(x \right) &= -F_{348}\! \left(x \right)+F_{271}\! \left(x \right)\\
F_{348}\! \left(x \right) &= F_{321}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{349}\! \left(x \right) &= F_{134}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{350}\! \left(x \right) &= F_{351}\! \left(x \right)+F_{353}\! \left(x \right)\\
F_{351}\! \left(x \right) &= F_{274}\! \left(x \right)+F_{352}\! \left(x \right)\\
F_{352}\! \left(x \right) &= -F_{142}\! \left(x \right)+F_{269}\! \left(x \right)\\
F_{353}\! \left(x \right) &= F_{0}\! \left(x \right) F_{72}\! \left(x \right) F_{86}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Point Placements Req Corrob" and has 313 rules.
Finding the specification took 7804 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 313 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{22}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{22}\! \left(x \right) F_{228}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{18}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= \frac{F_{21}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{21}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{22}\! \left(x \right) &= x\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{22}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{22}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{227}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{0}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{22}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{22}\! \left(x \right) F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= \frac{F_{37}\! \left(x \right)}{F_{0} \left(x \right)^{2} F_{22}\! \left(x \right)}\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= -F_{226}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= \frac{F_{40}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= -F_{208}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= -F_{45}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= \frac{F_{44}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{44}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{2}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{22}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{22}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{22}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{22}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{66}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{65}\! \left(x \right) &= 0\\
F_{66}\! \left(x \right) &= F_{22}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{64}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{22}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{72}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{22}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{65}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{22}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{80}\! \left(x \right)+F_{84}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{22}\! \left(x \right) F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{75}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{79}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{22}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{22}\! \left(x \right) F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= 2 F_{65}\! \left(x \right)+F_{84}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{22}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{88}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{22}\! \left(x \right) F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{22}\! \left(x \right) F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{22}\! \left(x \right) F_{99}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{103}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{102}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{105}\! \left(x \right) &= -F_{108}\! \left(x \right)+F_{106}\! \left(x \right)\\
F_{106}\! \left(x \right) &= \frac{F_{107}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{107}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{109}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{159}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{122}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{116}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{117}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{120}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)\\
F_{119}\! \left(x \right) &= x^{2}\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{114}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{135}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{134}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{125}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{127}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{127}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{128}\! \left(x \right)\\
F_{128}\! \left(x \right) &= 2 F_{65}\! \left(x \right)+F_{129}\! \left(x \right)+F_{133}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{130}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{132}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{118}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{128}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{123}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{103}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{135}\! \left(x \right) &= 2 F_{65}\! \left(x \right)+F_{136}\! \left(x \right)+F_{157}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{137}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{142}\! \left(x \right)\\
F_{138}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{139}\! \left(x \right)\\
F_{139}\! \left(x \right) &= 2 F_{65}\! \left(x \right)+F_{121}\! \left(x \right)+F_{140}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{141}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{117}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{143}\! \left(x \right)\\
F_{143}\! \left(x \right) &= 2 F_{65}\! \left(x \right)+F_{144}\! \left(x \right)+F_{148}\! \left(x \right)+F_{149}\! \left(x \right)\\
F_{144}\! \left(x \right) &= F_{145}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{147}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{139}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{143}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{135}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{150}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)\\
F_{151}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{152}\! \left(x \right)\\
F_{152}\! \left(x \right) &= 3 F_{65}\! \left(x \right)+F_{148}\! \left(x \right)+F_{153}\! \left(x \right)\\
F_{153}\! \left(x \right) &= F_{154}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{155}\! \left(x \right)+F_{156}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{120}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{152}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{151}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{160}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{172}\! \left(x \right)\\
F_{161}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{162}\! \left(x \right)\\
F_{162}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{166}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{163}\! \left(x \right) &= F_{164}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{165}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{163}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{166}\! \left(x \right) &= F_{167}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{168}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{170}\! \left(x \right)\\
F_{169}\! \left(x \right) &= F_{134}\! \left(x \right)\\
F_{170}\! \left(x \right) &= F_{171}\! \left(x \right)\\
F_{171}\! \left(x \right) &= F_{162}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{184}\! \left(x \right)\\
F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)\\
F_{174}\! \left(x \right) &= F_{175}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{175}\! \left(x \right) &= F_{176}\! \left(x \right)+F_{177}\! \left(x \right)\\
F_{176}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{169}\! \left(x \right)\\
F_{177}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{178}\! \left(x \right)\\
F_{178}\! \left(x \right) &= 2 F_{65}\! \left(x \right)+F_{179}\! \left(x \right)+F_{183}\! \left(x \right)\\
F_{179}\! \left(x \right) &= F_{180}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)+F_{182}\! \left(x \right)\\
F_{181}\! \left(x \right) &= F_{169}\! \left(x \right)\\
F_{182}\! \left(x \right) &= F_{178}\! \left(x \right)\\
F_{183}\! \left(x \right) &= F_{173}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{184}\! \left(x \right) &= 2 F_{65}\! \left(x \right)+F_{185}\! \left(x \right)+F_{206}\! \left(x \right)\\
F_{185}\! \left(x \right) &= F_{186}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{186}\! \left(x \right) &= F_{187}\! \left(x \right)+F_{191}\! \left(x \right)\\
F_{187}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{188}\! \left(x \right)\\
F_{188}\! \left(x \right) &= 2 F_{65}\! \left(x \right)+F_{171}\! \left(x \right)+F_{189}\! \left(x \right)\\
F_{189}\! \left(x \right) &= F_{190}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{190}\! \left(x \right) &= F_{168}\! \left(x \right)\\
F_{191}\! \left(x \right) &= F_{184}\! \left(x \right)+F_{192}\! \left(x \right)\\
F_{192}\! \left(x \right) &= 2 F_{65}\! \left(x \right)+F_{193}\! \left(x \right)+F_{197}\! \left(x \right)+F_{198}\! \left(x \right)\\
F_{193}\! \left(x \right) &= F_{194}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{194}\! \left(x \right) &= F_{195}\! \left(x \right)+F_{196}\! \left(x \right)\\
F_{195}\! \left(x \right) &= F_{188}\! \left(x \right)\\
F_{196}\! \left(x \right) &= F_{192}\! \left(x \right)\\
F_{197}\! \left(x \right) &= F_{184}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{198}\! \left(x \right) &= F_{199}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{199}\! \left(x \right) &= F_{200}\! \left(x \right)\\
F_{200}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{201}\! \left(x \right)\\
F_{201}\! \left(x \right) &= 3 F_{65}\! \left(x \right)+F_{197}\! \left(x \right)+F_{202}\! \left(x \right)\\
F_{202}\! \left(x \right) &= F_{203}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{203}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{205}\! \left(x \right)\\
F_{204}\! \left(x \right) &= F_{170}\! \left(x \right)\\
F_{205}\! \left(x \right) &= F_{201}\! \left(x \right)\\
F_{206}\! \left(x \right) &= F_{207}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{207}\! \left(x \right) &= F_{172}\! \left(x \right)+F_{200}\! \left(x \right)\\
F_{208}\! \left(x \right) &= F_{209}\! \left(x \right)\\
F_{209}\! \left(x \right) &= F_{210}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{210}\! \left(x \right) &= F_{211}\! \left(x \right)+F_{212}\! \left(x \right)\\
F_{211}\! \left(x \right) &= F_{29}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{212}\! \left(x \right) &= F_{213}\! \left(x \right) F_{223}\! \left(x \right)\\
F_{213}\! \left(x \right) &= \frac{F_{214}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{214}\! \left(x \right) &= F_{215}\! \left(x \right)\\
F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)+F_{217}\! \left(x \right)\\
F_{216}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{217}\! \left(x \right) &= F_{218}\! \left(x \right)\\
F_{218}\! \left(x \right) &= F_{219}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{219}\! \left(x \right) &= F_{220}\! \left(x \right)+F_{221}\! \left(x \right)\\
F_{220}\! \left(x \right) &= F_{22}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{221}\! \left(x \right) &= F_{222}\! \left(x \right)\\
F_{222}\! \left(x \right) &= F_{22}\! \left(x \right) F_{36}\! \left(x \right)\\
F_{223}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{225}\! \left(x \right)\\
F_{224}\! \left(x \right) &= F_{0}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{225}\! \left(x \right) &= F_{103}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{226}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{30}\! \left(x \right)\\
F_{227}\! \left(x \right) &= F_{213}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{228}\! \left(x \right) &= \frac{F_{229}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{229}\! \left(x \right) &= F_{230}\! \left(x \right)\\
F_{230}\! \left(x \right) &= F_{231}\! \left(x \right)+F_{236}\! \left(x \right)\\
F_{231}\! \left(x \right) &= F_{232}\! \left(x \right)\\
F_{232}\! \left(x \right) &= F_{22}\! \left(x \right) F_{233}\! \left(x \right)\\
F_{233}\! \left(x \right) &= F_{234}\! \left(x \right)+F_{235}\! \left(x \right)\\
F_{234}\! \left(x \right) &= F_{0}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{235}\! \left(x \right) &= F_{0}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{236}\! \left(x \right) &= F_{237}\! \left(x \right)\\
F_{237}\! \left(x \right) &= F_{22}\! \left(x \right) F_{238}\! \left(x \right)\\
F_{238}\! \left(x \right) &= F_{239}\! \left(x \right)+F_{310}\! \left(x \right)\\
F_{239}\! \left(x \right) &= F_{240}\! \left(x \right)+F_{244}\! \left(x \right)\\
F_{240}\! \left(x \right) &= F_{241}\! \left(x \right) F_{243}\! \left(x \right)\\
F_{241}\! \left(x \right) &= \frac{F_{242}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{242}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{243}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{244}\! \left(x \right) &= F_{0}\! \left(x \right) F_{245}\! \left(x \right)\\
F_{245}\! \left(x \right) &= -F_{47}\! \left(x \right)+F_{246}\! \left(x \right)\\
F_{246}\! \left(x \right) &= -F_{4}\! \left(x \right)+F_{247}\! \left(x \right)\\
F_{247}\! \left(x \right) &= F_{248}\! \left(x \right)+F_{251}\! \left(x \right)\\
F_{248}\! \left(x \right) &= F_{249}\! \left(x \right)+F_{250}\! \left(x \right)\\
F_{249}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{250}\! \left(x \right) &= F_{2}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{251}\! \left(x \right) &= F_{252}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{252}\! \left(x \right) &= F_{253}\! \left(x \right)\\
F_{253}\! \left(x \right) &= F_{22}\! \left(x \right) F_{254}\! \left(x \right)\\
F_{254}\! \left(x \right) &= F_{255}\! \left(x \right)+F_{267}\! \left(x \right)\\
F_{255}\! \left(x \right) &= F_{256}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{256}\! \left(x \right) &= F_{2}\! \left(x \right) F_{257}\! \left(x \right)\\
F_{257}\! \left(x \right) &= F_{258}\! \left(x \right)\\
F_{258}\! \left(x \right) &= F_{22}\! \left(x \right) F_{259}\! \left(x \right)\\
F_{259}\! \left(x \right) &= F_{260}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{260}\! \left(x \right) &= -F_{263}\! \left(x \right)+F_{261}\! \left(x \right)\\
F_{261}\! \left(x \right) &= \frac{F_{262}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{262}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{263}\! \left(x \right) &= F_{264}\! \left(x \right)\\
F_{264}\! \left(x \right) &= F_{22}\! \left(x \right) F_{265}\! \left(x \right)\\
F_{265}\! \left(x \right) &= \frac{F_{266}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{266}\! \left(x \right) &= F_{230}\! \left(x \right)\\
F_{267}\! \left(x \right) &= F_{268}\! \left(x \right)\\
F_{268}\! \left(x \right) &= F_{269}\! \left(x \right)+F_{273}\! \left(x \right)\\
F_{269}\! \left(x \right) &= F_{2}\! \left(x \right) F_{270}\! \left(x \right)\\
F_{270}\! \left(x \right) &= F_{271}\! \left(x \right)\\
F_{271}\! \left(x \right) &= F_{22}\! \left(x \right) F_{272}\! \left(x \right)\\
F_{272}\! \left(x \right) &= F_{230}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{273}\! \left(x \right) &= F_{0}\! \left(x \right) F_{274}\! \left(x \right)\\
F_{274}\! \left(x \right) &= F_{275}\! \left(x \right)\\
F_{275}\! \left(x \right) &= F_{22}\! \left(x \right) F_{276}\! \left(x \right)\\
F_{276}\! \left(x \right) &= \frac{F_{277}\! \left(x \right)}{F_{102}\! \left(x \right) F_{22}\! \left(x \right) F_{46}\! \left(x \right)}\\
F_{277}\! \left(x \right) &= F_{278}\! \left(x \right)\\
F_{278}\! \left(x \right) &= -F_{308}\! \left(x \right)+F_{279}\! \left(x \right)\\
F_{279}\! \left(x \right) &= F_{280}\! \left(x \right)\\
F_{280}\! \left(x \right) &= -F_{301}\! \left(x \right)+F_{281}\! \left(x \right)\\
F_{281}\! \left(x \right) &= \frac{F_{282}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{282}\! \left(x \right) &= F_{283}\! \left(x \right)\\
F_{283}\! \left(x \right) &= -F_{284}\! \left(x \right)+F_{105}\! \left(x \right)\\
F_{284}\! \left(x \right) &= -F_{285}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{285}\! \left(x \right) &= -F_{293}\! \left(x \right)+F_{286}\! \left(x \right)\\
F_{286}\! \left(x \right) &= F_{287}\! \left(x \right)+F_{291}\! \left(x \right)\\
F_{287}\! \left(x \right) &= F_{288}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{288}\! \left(x \right) &= F_{289}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{289}\! \left(x \right) &= -F_{5}\! \left(x \right)+F_{290}\! \left(x \right)\\
F_{290}\! \left(x \right) &= -F_{291}\! \left(x \right)+F_{106}\! \left(x \right)\\
F_{291}\! \left(x \right) &= F_{292}\! \left(x \right)\\
F_{292}\! \left(x \right) &= F_{102}\! \left(x \right) F_{22}\! \left(x \right) F_{228}\! \left(x \right)\\
F_{293}\! \left(x \right) &= F_{294}\! \left(x \right)+F_{295}\! \left(x \right)\\
F_{294}\! \left(x \right) &= F_{0}\! \left(x \right) F_{249}\! \left(x \right)\\
F_{295}\! \left(x \right) &= F_{296}\! \left(x \right)\\
F_{296}\! \left(x \right) &= F_{102}\! \left(x \right) F_{22}\! \left(x \right) F_{297}\! \left(x \right)\\
F_{297}\! \left(x \right) &= F_{291}\! \left(x \right)+F_{298}\! \left(x \right)\\
F_{298}\! \left(x \right) &= F_{299}\! \left(x \right)+F_{300}\! \left(x \right)\\
F_{299}\! \left(x \right) &= F_{249}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{300}\! \left(x \right) &= F_{102}\! \left(x \right) F_{288}\! \left(x \right)\\
F_{301}\! \left(x \right) &= F_{302}\! \left(x \right)+F_{306}\! \left(x \right)\\
F_{302}\! \left(x \right) &= \frac{F_{303}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{303}\! \left(x \right) &= F_{304}\! \left(x \right)\\
F_{304}\! \left(x \right) &= -F_{305}\! \left(x \right)+F_{290}\! \left(x \right)\\
F_{305}\! \left(x \right) &= F_{2}\! \left(x \right) F_{249}\! \left(x \right)\\
F_{306}\! \left(x \right) &= F_{307}\! \left(x \right)\\
F_{307}\! \left(x \right) &= F_{102}\! \left(x \right) F_{22}\! \left(x \right) F_{259}\! \left(x \right) F_{99}\! \left(x \right)\\
F_{308}\! \left(x \right) &= F_{309}\! \left(x \right)\\
F_{309}\! \left(x \right) &= F_{102}\! \left(x \right) F_{22}\! \left(x \right) F_{272}\! \left(x \right) F_{99}\! \left(x \right)\\
F_{310}\! \left(x \right) &= F_{311}\! \left(x \right)+F_{312}\! \left(x \right)\\
F_{311}\! \left(x \right) &= -F_{247}\! \left(x \right)+F_{286}\! \left(x \right)\\
F_{312}\! \left(x \right) &= F_{103}\! \left(x \right) F_{288}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Point Placements Req Corrob" and has 310 rules.
Finding the specification took 2855 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 310 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{20}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right) F_{228}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{17}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= \frac{F_{19}\! \left(x \right)}{F_{20}\! \left(x \right)}\\
F_{19}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{20}\! \left(x \right) &= x\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{20}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{20}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{227}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{0}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{20}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{20}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= \frac{F_{35}\! \left(x \right)}{F_{0} \left(x \right)^{2} F_{20}\! \left(x \right)}\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= -F_{226}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= \frac{F_{38}\! \left(x \right)}{F_{20}\! \left(x \right)}\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= -F_{207}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= -F_{44}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= \frac{F_{42}\! \left(x \right)}{F_{20}\! \left(x \right)}\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{2}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{20}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{20}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{20}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{20}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{65}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{64}\! \left(x \right) &= 0\\
F_{65}\! \left(x \right) &= F_{20}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{20}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{71}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{20}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{64}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{20}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{79}\! \left(x \right)+F_{83}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{20}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{78}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{20}\! \left(x \right) F_{70}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{20}\! \left(x \right) F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= 2 F_{64}\! \left(x \right)+F_{83}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{20}\! \left(x \right) F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{87}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{20}\! \left(x \right) F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{20}\! \left(x \right) F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{94}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{20}\! \left(x \right) F_{94}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{102}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{101}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{104}\! \left(x \right) &= -F_{107}\! \left(x \right)+F_{105}\! \left(x \right)\\
F_{105}\! \left(x \right) &= \frac{F_{106}\! \left(x \right)}{F_{20}\! \left(x \right)}\\
F_{106}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{158}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{121}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{115}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{116}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{119}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)\\
F_{118}\! \left(x \right) &= x^{2}\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{113}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{134}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{133}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{126}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{127}\! \left(x \right)\\
F_{127}\! \left(x \right) &= 2 F_{64}\! \left(x \right)+F_{128}\! \left(x \right)+F_{132}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{131}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{117}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{127}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{122}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{102}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{134}\! \left(x \right) &= 2 F_{64}\! \left(x \right)+F_{135}\! \left(x \right)+F_{156}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{136}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{141}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{138}\! \left(x \right)\\
F_{138}\! \left(x \right) &= 2 F_{64}\! \left(x \right)+F_{120}\! \left(x \right)+F_{139}\! \left(x \right)\\
F_{139}\! \left(x \right) &= F_{140}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{116}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{142}\! \left(x \right)\\
F_{142}\! \left(x \right) &= 2 F_{64}\! \left(x \right)+F_{143}\! \left(x \right)+F_{147}\! \left(x \right)+F_{148}\! \left(x \right)\\
F_{143}\! \left(x \right) &= F_{144}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{146}\! \left(x \right)\\
F_{145}\! \left(x \right) &= F_{138}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{142}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{134}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{149}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{150}\! \left(x \right)\\
F_{150}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{151}\! \left(x \right)\\
F_{151}\! \left(x \right) &= 3 F_{64}\! \left(x \right)+F_{147}\! \left(x \right)+F_{152}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{153}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{155}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{119}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{151}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{157}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{150}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{159}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{171}\! \left(x \right)\\
F_{160}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{161}\! \left(x \right)\\
F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{165}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{162}\! \left(x \right) &= F_{163}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{163}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{133}\! \left(x \right)+F_{162}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{166}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{166}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{167}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{169}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{133}\! \left(x \right)\\
F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)\\
F_{170}\! \left(x \right) &= F_{161}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)+F_{183}\! \left(x \right)\\
F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)\\
F_{173}\! \left(x \right) &= F_{174}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{174}\! \left(x \right) &= F_{175}\! \left(x \right)+F_{176}\! \left(x \right)\\
F_{175}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{168}\! \left(x \right)\\
F_{176}\! \left(x \right) &= F_{172}\! \left(x \right)+F_{177}\! \left(x \right)\\
F_{177}\! \left(x \right) &= 2 F_{64}\! \left(x \right)+F_{178}\! \left(x \right)+F_{182}\! \left(x \right)\\
F_{178}\! \left(x \right) &= F_{179}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{179}\! \left(x \right) &= F_{180}\! \left(x \right)+F_{181}\! \left(x \right)\\
F_{180}\! \left(x \right) &= F_{168}\! \left(x \right)\\
F_{181}\! \left(x \right) &= F_{177}\! \left(x \right)\\
F_{182}\! \left(x \right) &= F_{172}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{183}\! \left(x \right) &= 2 F_{64}\! \left(x \right)+F_{184}\! \left(x \right)+F_{205}\! \left(x \right)\\
F_{184}\! \left(x \right) &= F_{185}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{185}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{190}\! \left(x \right)\\
F_{186}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{187}\! \left(x \right)\\
F_{187}\! \left(x \right) &= 2 F_{64}\! \left(x \right)+F_{170}\! \left(x \right)+F_{188}\! \left(x \right)\\
F_{188}\! \left(x \right) &= F_{189}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{189}\! \left(x \right) &= F_{167}\! \left(x \right)\\
F_{190}\! \left(x \right) &= F_{183}\! \left(x \right)+F_{191}\! \left(x \right)\\
F_{191}\! \left(x \right) &= 2 F_{64}\! \left(x \right)+F_{192}\! \left(x \right)+F_{196}\! \left(x \right)+F_{197}\! \left(x \right)\\
F_{192}\! \left(x \right) &= F_{193}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)+F_{195}\! \left(x \right)\\
F_{194}\! \left(x \right) &= F_{187}\! \left(x \right)\\
F_{195}\! \left(x \right) &= F_{191}\! \left(x \right)\\
F_{196}\! \left(x \right) &= F_{183}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{197}\! \left(x \right) &= F_{198}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)\\
F_{199}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{200}\! \left(x \right)\\
F_{200}\! \left(x \right) &= 3 F_{64}\! \left(x \right)+F_{196}\! \left(x \right)+F_{201}\! \left(x \right)\\
F_{201}\! \left(x \right) &= F_{20}\! \left(x \right) F_{202}\! \left(x \right)\\
F_{202}\! \left(x \right) &= F_{203}\! \left(x \right)+F_{204}\! \left(x \right)\\
F_{203}\! \left(x \right) &= F_{169}\! \left(x \right)\\
F_{204}\! \left(x \right) &= F_{200}\! \left(x \right)\\
F_{205}\! \left(x \right) &= F_{20}\! \left(x \right) F_{206}\! \left(x \right)\\
F_{206}\! \left(x \right) &= F_{171}\! \left(x \right)+F_{199}\! \left(x \right)\\
F_{207}\! \left(x \right) &= F_{208}\! \left(x \right)\\
F_{208}\! \left(x \right) &= F_{20}\! \left(x \right) F_{209}\! \left(x \right)\\
F_{209}\! \left(x \right) &= F_{210}\! \left(x \right)+F_{212}\! \left(x \right)\\
F_{210}\! \left(x \right) &= F_{211}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{211}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{212}\! \left(x \right) &= F_{213}\! \left(x \right) F_{223}\! \left(x \right)\\
F_{213}\! \left(x \right) &= \frac{F_{214}\! \left(x \right)}{F_{20}\! \left(x \right)}\\
F_{214}\! \left(x \right) &= F_{215}\! \left(x \right)\\
F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)+F_{217}\! \left(x \right)\\
F_{216}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{217}\! \left(x \right) &= F_{218}\! \left(x \right)\\
F_{218}\! \left(x \right) &= F_{20}\! \left(x \right) F_{219}\! \left(x \right)\\
F_{219}\! \left(x \right) &= F_{220}\! \left(x \right)+F_{221}\! \left(x \right)\\
F_{220}\! \left(x \right) &= F_{20}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{221}\! \left(x \right) &= F_{222}\! \left(x \right)\\
F_{222}\! \left(x \right) &= F_{20}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{223}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{225}\! \left(x \right)\\
F_{224}\! \left(x \right) &= F_{0}\! \left(x \right) F_{211}\! \left(x \right)\\
F_{225}\! \left(x \right) &= F_{102}\! \left(x \right) F_{211}\! \left(x \right)\\
F_{226}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{28}\! \left(x \right)\\
F_{227}\! \left(x \right) &= F_{211}\! \left(x \right) F_{213}\! \left(x \right)\\
F_{228}\! \left(x \right) &= \frac{F_{229}\! \left(x \right)}{F_{20}\! \left(x \right)}\\
F_{229}\! \left(x \right) &= F_{230}\! \left(x \right)\\
F_{230}\! \left(x \right) &= F_{231}\! \left(x \right)+F_{236}\! \left(x \right)\\
F_{231}\! \left(x \right) &= F_{232}\! \left(x \right)\\
F_{232}\! \left(x \right) &= F_{20}\! \left(x \right) F_{233}\! \left(x \right)\\
F_{233}\! \left(x \right) &= F_{234}\! \left(x \right)+F_{235}\! \left(x \right)\\
F_{234}\! \left(x \right) &= F_{0}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{235}\! \left(x \right) &= F_{0}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{236}\! \left(x \right) &= F_{237}\! \left(x \right)\\
F_{237}\! \left(x \right) &= F_{20}\! \left(x \right) F_{238}\! \left(x \right)\\
F_{238}\! \left(x \right) &= F_{239}\! \left(x \right)+F_{306}\! \left(x \right)\\
F_{239}\! \left(x \right) &= F_{240}\! \left(x \right)+F_{243}\! \left(x \right)\\
F_{240}\! \left(x \right) &= F_{241}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{241}\! \left(x \right) &= \frac{F_{242}\! \left(x \right)}{F_{20}\! \left(x \right)}\\
F_{242}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{243}\! \left(x \right) &= F_{0}\! \left(x \right) F_{244}\! \left(x \right)\\
F_{244}\! \left(x \right) &= -F_{5}\! \left(x \right)+F_{245}\! \left(x \right)\\
F_{245}\! \left(x \right) &= F_{246}\! \left(x \right)+F_{247}\! \left(x \right)\\
F_{246}\! \left(x \right) &= F_{2}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{247}\! \left(x \right) &= F_{248}\! \left(x \right)\\
F_{248}\! \left(x \right) &= F_{20}\! \left(x \right) F_{249}\! \left(x \right)\\
F_{249}\! \left(x \right) &= F_{250}\! \left(x \right)+F_{262}\! \left(x \right)\\
F_{250}\! \left(x \right) &= F_{251}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{251}\! \left(x \right) &= F_{2}\! \left(x \right) F_{252}\! \left(x \right)\\
F_{252}\! \left(x \right) &= F_{253}\! \left(x \right)\\
F_{253}\! \left(x \right) &= F_{20}\! \left(x \right) F_{254}\! \left(x \right)\\
F_{254}\! \left(x \right) &= F_{255}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{255}\! \left(x \right) &= -F_{258}\! \left(x \right)+F_{256}\! \left(x \right)\\
F_{256}\! \left(x \right) &= \frac{F_{257}\! \left(x \right)}{F_{20}\! \left(x \right)}\\
F_{257}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{258}\! \left(x \right) &= F_{259}\! \left(x \right)\\
F_{259}\! \left(x \right) &= F_{20}\! \left(x \right) F_{260}\! \left(x \right)\\
F_{260}\! \left(x \right) &= \frac{F_{261}\! \left(x \right)}{F_{20}\! \left(x \right)}\\
F_{261}\! \left(x \right) &= F_{230}\! \left(x \right)\\
F_{262}\! \left(x \right) &= F_{263}\! \left(x \right)\\
F_{263}\! \left(x \right) &= F_{264}\! \left(x \right)+F_{268}\! \left(x \right)\\
F_{264}\! \left(x \right) &= F_{2}\! \left(x \right) F_{265}\! \left(x \right)\\
F_{265}\! \left(x \right) &= F_{266}\! \left(x \right)\\
F_{266}\! \left(x \right) &= F_{20}\! \left(x \right) F_{267}\! \left(x \right)\\
F_{267}\! \left(x \right) &= F_{230}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{268}\! \left(x \right) &= F_{0}\! \left(x \right) F_{269}\! \left(x \right)\\
F_{269}\! \left(x \right) &= F_{270}\! \left(x \right)\\
F_{270}\! \left(x \right) &= F_{20}\! \left(x \right) F_{271}\! \left(x \right)\\
F_{271}\! \left(x \right) &= \frac{F_{272}\! \left(x \right)}{F_{101}\! \left(x \right) F_{20}\! \left(x \right) F_{45}\! \left(x \right)}\\
F_{272}\! \left(x \right) &= F_{273}\! \left(x \right)\\
F_{273}\! \left(x \right) &= -F_{304}\! \left(x \right)+F_{274}\! \left(x \right)\\
F_{274}\! \left(x \right) &= F_{275}\! \left(x \right)\\
F_{275}\! \left(x \right) &= -F_{297}\! \left(x \right)+F_{276}\! \left(x \right)\\
F_{276}\! \left(x \right) &= \frac{F_{277}\! \left(x \right)}{F_{20}\! \left(x \right)}\\
F_{277}\! \left(x \right) &= F_{278}\! \left(x \right)\\
F_{278}\! \left(x \right) &= -F_{279}\! \left(x \right)+F_{104}\! \left(x \right)\\
F_{279}\! \left(x \right) &= -F_{280}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{280}\! \left(x \right) &= -F_{286}\! \left(x \right)+F_{281}\! \left(x \right)\\
F_{281}\! \left(x \right) &= F_{282}\! \left(x \right)+F_{284}\! \left(x \right)\\
F_{282}\! \left(x \right) &= F_{283}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{283}\! \left(x \right) &= -F_{284}\! \left(x \right)+F_{105}\! \left(x \right)\\
F_{284}\! \left(x \right) &= F_{285}\! \left(x \right)\\
F_{285}\! \left(x \right) &= F_{101}\! \left(x \right) F_{20}\! \left(x \right) F_{228}\! \left(x \right)\\
F_{286}\! \left(x \right) &= F_{287}\! \left(x \right)+F_{288}\! \left(x \right)\\
F_{287}\! \left(x \right) &= F_{0}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{288}\! \left(x \right) &= F_{289}\! \left(x \right)\\
F_{289}\! \left(x \right) &= F_{101}\! \left(x \right) F_{20}\! \left(x \right) F_{290}\! \left(x \right)\\
F_{290}\! \left(x \right) &= F_{284}\! \left(x \right)+F_{291}\! \left(x \right)\\
F_{291}\! \left(x \right) &= F_{292}\! \left(x \right)+F_{293}\! \left(x \right)\\
F_{292}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{293}\! \left(x \right) &= F_{101}\! \left(x \right) F_{294}\! \left(x \right)\\
F_{294}\! \left(x \right) &= F_{211}\! \left(x \right)+F_{295}\! \left(x \right)\\
F_{295}\! \left(x \right) &= -F_{296}\! \left(x \right)+F_{283}\! \left(x \right)\\
F_{296}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{297}\! \left(x \right) &= F_{298}\! \left(x \right)+F_{302}\! \left(x \right)\\
F_{298}\! \left(x \right) &= \frac{F_{299}\! \left(x \right)}{F_{20}\! \left(x \right)}\\
F_{299}\! \left(x \right) &= F_{300}\! \left(x \right)\\
F_{300}\! \left(x \right) &= -F_{301}\! \left(x \right)+F_{283}\! \left(x \right)\\
F_{301}\! \left(x \right) &= F_{2}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{302}\! \left(x \right) &= F_{303}\! \left(x \right)\\
F_{303}\! \left(x \right) &= F_{101}\! \left(x \right) F_{20}\! \left(x \right) F_{254}\! \left(x \right) F_{94}\! \left(x \right)\\
F_{304}\! \left(x \right) &= F_{305}\! \left(x \right)\\
F_{305}\! \left(x \right) &= F_{101}\! \left(x \right) F_{20}\! \left(x \right) F_{267}\! \left(x \right) F_{94}\! \left(x \right)\\
F_{306}\! \left(x \right) &= F_{307}\! \left(x \right)+F_{309}\! \left(x \right)\\
F_{307}\! \left(x \right) &= -F_{308}\! \left(x \right)+F_{281}\! \left(x \right)\\
F_{308}\! \left(x \right) &= F_{245}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{309}\! \left(x \right) &= F_{102}\! \left(x \right) F_{294}\! \left(x \right)\\
\end{align*}\)