Av(12453, 12534, 12543, 13452, 13542, 21453, 21534, 21543)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 112, 564, 2966, 16064, 88953, 501271, 2865259, 16572146, 96808194, 570342525, ...
Implicit Equation for the Generating Function
\(\displaystyle 2 x^{2} \left(x^{3}-15 x^{2}+23 x -10\right) \left(x -1\right)^{2} F \left(x \right)^{6}+x \left(x -1\right) \left(x^{5}+43 x^{4}-147 x^{3}+155 x^{2}-47 x -6\right) F \left(x \right)^{5}-x \left(x -1\right) \left(x^{5}+21 x^{4}-84 x^{3}+104 x^{2}-23 x -20\right) F \left(x \right)^{4}+\left(x -1\right) \left(7 x^{5}+x^{4}-26 x^{3}+39 x^{2}-30 x +1\right) F \left(x \right)^{3}+\left(-2 x^{6}-12 x^{5}+72 x^{4}-121 x^{3}+89 x^{2}-30 x +3\right) F \left(x \right)^{2}+\left(x -1\right) \left(5 x^{4}-20 x^{3}+33 x^{2}-14 x +3\right) F \! \left(x \right)-x^{5}+3 x^{4}-7 x^{3}+9 x^{2}-4 x +1 = 0\)
Recurrence
\(\displaystyle a{\left(0 \right)} = 1\)
\(\displaystyle a{\left(1 \right)} = 1\)
\(\displaystyle a{\left(2 \right)} = 2\)
\(\displaystyle a{\left(3 \right)} = 6\)
\(\displaystyle a{\left(4 \right)} = 24\)
\(\displaystyle a{\left(5 \right)} = 112\)
\(\displaystyle a{\left(6 \right)} = 564\)
\(\displaystyle a{\left(7 \right)} = 2966\)
\(\displaystyle a{\left(8 \right)} = 16064\)
\(\displaystyle a{\left(9 \right)} = 88953\)
\(\displaystyle a{\left(10 \right)} = 501271\)
\(\displaystyle a{\left(11 \right)} = 2865259\)
\(\displaystyle a{\left(12 \right)} = 16572146\)
\(\displaystyle a{\left(13 \right)} = 96808194\)
\(\displaystyle a{\left(14 \right)} = 570342525\)
\(\displaystyle a{\left(15 \right)} = 3384930335\)
\(\displaystyle a{\left(16 \right)} = 20218528788\)
\(\displaystyle a{\left(17 \right)} = 121451581249\)
\(\displaystyle a{\left(18 \right)} = 733220612479\)
\(\displaystyle a{\left(19 \right)} = 4446437515379\)
\(\displaystyle a{\left(20 \right)} = 27073168981837\)
\(\displaystyle a{\left(21 \right)} = 165442503689901\)
\(\displaystyle a{\left(22 \right)} = 1014357616003908\)
\(\displaystyle a{\left(23 \right)} = 6237996123527893\)
\(\displaystyle a{\left(24 \right)} = 38467946829232199\)
\(\displaystyle a{\left(25 \right)} = 237824193986746435\)
\(\displaystyle a{\left(26 \right)} = 1473773207993449231\)
\(\displaystyle a{\left(27 \right)} = 9152651609627961796\)
\(\displaystyle a{\left(28 \right)} = 56955688768220870132\)
\(\displaystyle a{\left(29 \right)} = 355091680605951351767\)
\(\displaystyle a{\left(30 \right)} = 2217698589977330333523\)
\(\displaystyle a{\left(31 \right)} = 13873112728557615082343\)
\(\displaystyle a{\left(32 \right)} = 86918068781091878825440\)
\(\displaystyle a{\left(33 \right)} = 545343883585318825329115\)
\(\displaystyle a{\left(34 \right)} = 3426242638459271496086192\)
\(\displaystyle a{\left(35 \right)} = 21553575456715898810007219\)
\(\displaystyle a{\left(36 \right)} = 135751035472153119971575395\)
\(\displaystyle a{\left(37 \right)} = 855975224152437185974331759\)
\(\displaystyle a{\left(38 \right)} = 5403153522643834799668111257\)
\(\displaystyle a{\left(39 \right)} = 34141088643945332110979691680\)
\(\displaystyle a{\left(40 \right)} = 215937992972501066314536210616\)
\(\displaystyle a{\left(41 \right)} = 1367041588602489198185622133813\)
\(\displaystyle a{\left(42 \right)} = 8661960149701601392406136410204\)
\(\displaystyle a{\left(43 \right)} = 54930630621412208866499647924170\)
\(\displaystyle a{\left(44 \right)} = 348626439626592217599949141343052\)
\(\displaystyle a{\left(45 \right)} = 2214307262807366435237662696087189\)
\(\displaystyle a{\left(46 \right)} = 14074493919980352301430852655929157\)
\(\displaystyle a{\left(47 \right)} = 89522349261981471446511696723126105\)
\(\displaystyle a{\left(48 \right)} = 569798397874338437479695194243322811\)
\(\displaystyle a{\left(49 \right)} = 3629026336070400705835279441114567769\)
\(\displaystyle a{\left(50 \right)} = 23127407344571725883511939171032608348\)
\(\displaystyle a{\left(51 \right)} = 147475937593103881938872988055926682415\)
\(\displaystyle a{\left(52 \right)} = 940941952086625881575928887154119777422\)
\(\displaystyle a{\left(53 \right)} = 6006791758715250771737639234498627054272\)
\(\displaystyle a{\left(54 \right)} = 38366444059165575626852231383372755312848\)
\(\displaystyle a{\left(55 \right)} = 245177936546515376876137159390319378790020\)
\(\displaystyle a{\left(56 \right)} = 1567559991969006310797588352176289594700912\)
\(\displaystyle a{\left(57 \right)} = 10027032139115053634398351887441372836533421\)
\(\displaystyle a{\left(58 \right)} = 64168071373932842848239191496119442345648454\)
\(\displaystyle a{\left(59 \right)} = 410825283368447835626802808729951468155169565\)
\(\displaystyle a{\left(60 \right)} = 2631361590564207320797558149808582186956213735\)
\(\displaystyle a{\left(61 \right)} = 16860987182493995925188243512297172743070487997\)
\(\displaystyle a{\left(62 \right)} = 108083343176089458547945188162888066008970975900\)
\(\displaystyle a{\left(63 \right)} = 693110258255224311459662172188865951479978033684\)
\(\displaystyle a{\left(64 \right)} = 4446398779402181668423773005911734781873878115771\)
\(\displaystyle a{\left(65 \right)} = 28534614184697593592208632230738984094445082656923\)
\(\displaystyle a{\left(66 \right)} = 183184331331242219047746480324402636888048608228368\)
\(\displaystyle a{\left(67 \right)} = 1176393982503786368379938717459981301551583955173604\)
\(\displaystyle a{\left(68 \right)} = 7557202290099598189075145417155024970196616816111011\)
\(\displaystyle a{\left(69 \right)} = 48563379772403050618700990375738297100873284011505117\)
\(\displaystyle a{\left(70 \right)} = 312170862194694262639664893270087894837658583789456535\)
\(\displaystyle a{\left(71 \right)} = 2007278335954389652659502860618544469292669221873152637\)
\(\displaystyle a{\left(72 \right)} = 12910734026005793034431634772376621357493443369832276417\)
\(\displaystyle a{\left(73 \right)} = 83065150404804185371457952597576249154355208190823771867\)
\(\displaystyle a{\left(74 \right)} = 534574189207704865586205063528813365945509355346713427590\)
\(\displaystyle a{\left(75 \right)} = 3441240966202115377230683495252977008481474191699607556580\)
\(\displaystyle a{\left(76 \right)} = 22158330650413331379694439709977584302553519923583710463495\)
\(\displaystyle a{\left(77 \right)} = 142715406356379559332173775087361121710934565651403110129958\)
\(\displaystyle a{\left(78 \right)} = 919419410379639213931532256100799605080348350873428086545475\)
\(\displaystyle a{\left(79 \right)} = 5924650034843305095354572848831649597164017908891430884542267\)
\(\displaystyle a{\left(80 \right)} = 38186978608338771440533286363689663820484524463671897943186486\)
\(\displaystyle a{\left(81 \right)} = 246189140974189588197262651485593880737329733106698709865057187\)
\(\displaystyle a{\left(82 \right)} = 1587526625721949575524960667831007831071392268005269947650746909\)
\(\displaystyle a{\left(83 \right)} = 10239277028826365688065216490324918477478156551612995999583949756\)
\(\displaystyle a{\left(84 \right)} = 66055871129567057033473060955377605664079232720135491944266615055\)
\(\displaystyle a{\left(85 \right)} = 426231161863095396096106104770681396639542292122290061876771780740\)
\(\displaystyle a{\left(86 \right)} = 2750859935181292562499974949783090039826374037521257983444552851429\)
\(\displaystyle a{\left(87 \right)} = 17757392848512534099691919213971046811349419888124727973319435050453\)
\(\displaystyle a{\left(88 \right)} = 114650348763164799643534667430624127569276657993802958006459830663738\)
\(\displaystyle a{\left(89 \right)} = 740380694642671477765320266769470733608909408397507029227867259722846\)
\(\displaystyle a{\left(90 \right)} = 4782075848943554463454621265897403237574371561583861104829295452348031\)
\(\displaystyle a{\left(91 \right)} = 30892830677214707344236157611714841183555407311596538618102392007612266\)
\(\displaystyle a{\left(92 \right)} = 199607602209512514099037366770768002971436796252051542622873293141264141\)
\(\displaystyle a{\left(93 \right)} = 1289950061342399009520901889825095637434047161667348748382944626392937578\)
\(\displaystyle a{\left(94 \right)} = 8337647569966748760264128653837688879325039355383371866637817508240197096\)
\(\displaystyle a{\left(95 \right)} = 53899831558554003813740595003233086652900546771086095257045750186140044367\)
\(\displaystyle a{\left(96 \right)} = 348500167873006678941444637616685955331705645162684694107290439557718350974\)
\(\displaystyle a{\left(97 \right)} = 2253662110410882282304376414826989432405232460455009225782747257109680135640\)
\(\displaystyle a{\left(98 \right)} = 14576169392758162200650319737477099736434762752861330112513374207198402169555\)
\(\displaystyle a{\left(99 \right)} = 94289950926221229866318268215849057177294805172844913206371491930190696337687\)
\(\displaystyle a{\left(100 \right)} = 610033186429790552002443410743235842099025103878177456852524569110560606911770\)
\(\displaystyle a{\left(101 \right)} = 3947355604769906810728853230652016340087952393392023056308794603096738110265740\)
\(\displaystyle a{\left(102 \right)} = 25545976594485901209966940666948702009742578796025285877315231869438823767697352\)
\(\displaystyle a{\left(103 \right)} = 165348781860394778570168129540919462026284844940864922087417716307854242024194001\)
\(\displaystyle a{\left(104 \right)} = 1070386253348218604583957366725260447548549108687410172392258917328658957141369119\)
\(\displaystyle a{\left(105 \right)} = 6930106596264332289282204593089319624578120113686955770813432716917806534126394691\)
\(\displaystyle a{\left(106 \right)} = 44874336862247388161162438096852500499110456919009779487238652411051826063731234332\)
\(\displaystyle a{\left(107 \right)} = 290612178470779191729320829449522647747207018662977277930073129790785844872742706397\)
\(\displaystyle a{\left(108 \right)} = 1882288306630420460665711755188715929009733437718244361356603366992726667210638144148\)
\(\displaystyle a{\left(109 \right)} = 12193096384416650397521717758059540467472412275146545286625792550053814621524670204491\)
\(\displaystyle a{\left(110 \right)} = 78994414843789465190316826649644143096491454913003679068443575930185120202794741876581\)
\(\displaystyle a{\left(111 \right)} = 511837732675532387305722209252988245114902236459156649833617031702282518203622391138259\)
\(\displaystyle a{\left(112 \right)} = 3316811472378312223735550525529012338130782989080032591198925486860917264638266361151032\)
\(\displaystyle a{\left(113 \right)} = 21496161598770234941689445660474502053446706026925753482433091305452951577723569805391011\)
\(\displaystyle a{\left(114 \right)} = 139332293350846843020411772112538441513435985285288871401623422873228167141364067329988970\)
\(\displaystyle a{\left(115 \right)} = 903217835203817120359016809597763043539751514492035804360635798955874256141888145230677939\)
\(\displaystyle a{\left(116 \right)} = 5855745792980182568145176696609420106026577011653662033386939833689780389057468030649759699\)
\(\displaystyle a{\left(117 \right)} = 37968206047987876838781402776679219264993976030598562540355271292903932495011165076377281934\)
\(\displaystyle a{\left(118 \right)} = 246209765940019509227711135087975762072726716610072836491332173233944284321385482431352873492\)
\(\displaystyle a{\left(119 \right)} = 1596750316446236320901755138385536465780489721444333762446933158781520941394237855999029704967\)
\(\displaystyle a{\left(120 \right)} = 10356535727923214943141344846129270310899223465260993156177607552460873884951330577578225127804\)
\(\displaystyle a{\left(121 \right)} = 67179537290277255122296474885874578556026059968195747713673037889750054037816896506921564043533\)
\(\displaystyle a{\left(122 \right)} = 435816605276927735806105372546798329901557577044227207486286716877673347673701211618879092775801\)
\(\displaystyle a{\left(123 \right)} = 2827574671115508581076762405054664554906392347506050995070697033014702543849175270076260799173960\)
\(\displaystyle a{\left(124 \right)} = 18347091732574631318203522685175246470287449854315328530692196194076618268013042660514936746387932\)
\(\displaystyle a{\left(125 \right)} = 119059083778058928436146124221830269802090519064711797979201786208260190542242009112765156956529900\)
\(\displaystyle a{\left(126 \right)} = 772679381978730981325004786709285933473717057149094996302426458249383300044300810692575800921205671\)
\(\displaystyle a{\left(127 \right)} = 5015069328685694310693423149326015064731887802402809359506046275906926364940624352014301551525706782\)
\(\displaystyle a{\left(128 \right)} = 32553279664885108795981093702587213385101350005650186290489091389268470947911763240238034291802808798\)
\(\displaystyle a{\left(129 \right)} = 211325606522648894839026230372722996180704829051640808776086693591045937856528305304208756125125822727\)
\(\displaystyle a{\left(130 \right)} = 1371982134428155865633823774745708890865604224861893288891456781300360266988572032277570691804870034098\)
\(\displaystyle a{\left(131 \right)} = 8908060331597338769215795722858896726125066650109982511298860388517686960218760714685571013398151046214\)
\(\displaystyle a{\left(132 \right)} = 57843641094954509086951754369024311419093015168433371654007404182634417706398078240955627998766590692453\)
\(\displaystyle a{\left(133 \right)} = 375634355859536260046341507141595455036935884486912042068906939098238602733284727726390057813474379962273\)
\(\displaystyle a{\left(134 \right)} = 2439560789321419161056724698338026008002010282524030398584675496443214071960539628562039156134583129533193\)
\(\displaystyle a{\left(135 \right)} = 15845067478334780728309837867084360190925397738634046264379663869833406211440542740533187917707426346870146\)
\(\displaystyle a{\left(136 \right)} = 102922925106233069821577414942277832875448495228025444026988898326386714724977382454691368057704829263645433\)
\(\displaystyle a{\left(137 \right)} = 668598205685456537647021436980012934567916193708329135203849733670690997175551003764423213266482354504414939\)
\(\displaystyle a{\left(138 \right)} = 4343630189308691543953684317556129030080203950822266436419593284013766039523762875778715834297967917884902793\)
\(\displaystyle a{\left(139 \right)} = 28221138573664637450309625751808746137612342966949885786870654529108270403775304547848213049063962313358498002\)
\(\displaystyle a{\left(140 \right)} = 183370633193016206553869229963785584681731086359994221793398738944165338404233058007910835529360676004531891630\)
\(\displaystyle a{\left(141 \right)} = 1191566065100694576997877626063554798680688354229624234902635589466609188849620978279813665660437436513764281103\)
\(\displaystyle a{\left(142 \right)} = 7743531862775451760886060746495546805513221354258935084552678138477683541665249128445707710516069861165108575378\)
\(\displaystyle a{\left(143 \right)} = 50325977360288355368642868300827425582004183279758075083976561616583587412834445624369848210853106035484504096145\)
\(\displaystyle a{\left(144 \right)} = 327097378561487985150716608977657710944882898298489983093803376947547496969343369507466545539439111530189278996957\)
\(\displaystyle a{\left(145 \right)} = 2126146514239526577172822205296322724625843501771689236071740109146300922669478287714461363896564035971176311703146\)
\(\displaystyle a{\left(146 \right)} = 13821022192942178460356342055681398046882782270367393753739663784026094917377354926005346933657321200935627462216238\)
\(\displaystyle a{\left(147 \right)} = 89849894203885749822242574861766356054559322853094168411655499646254874799251826974538610678098912046353654690005701\)
\(\displaystyle a{\left(148 \right)} = 584150824787501249939776765744069785105886895041685492884612479916852573621313738772535866209250289778784881365990631\)
\(\displaystyle a{\left(149 \right)} = 3798061855100307476511042687893776170828468983601133373217817946762650487115205234579224809558330644560072583161580424\)
\(\displaystyle a{\left(150 \right)} = 24696095285035598906196859560644217905218638707622176062049001116307022166512102428935345228486330279785063858149714588\)
\(\displaystyle a{\left(151 \right)} = 160591806307793205366534651372063341731405983283792520641810018075745029026362777740094204327230932404986451890178739545\)
\(\displaystyle a{\left(152 \right)} = 1044352056240046533219545529961156823299284371965422402048952090392705830158302267553878019668299957983557088388240068658\)
\(\displaystyle a{\left(153 \right)} = 6792013637434333427970493817347539384857359172469108870818946310047344851974876639486410395779323022357394492855955156474\)
\(\displaystyle a{\left(154 \right)} = 44175135174438777573235843050561706511189637040258208007689786675430304754237193261956494297067869916685804206057562241015\)
\(\displaystyle a{\left(155 \right)} = 287332387642375937325109964431141929042850637884822251512587414611402997638108612160646026793032718794171414323763274727098\)
\(\displaystyle a{\left(n + 156 \right)} = \frac{6493 n \left(n + 1\right) \left(2 n + 1\right) \left(4 n + 3\right) \left(4 n + 5\right) a{\left(n \right)}}{34012224000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(n + 1\right) \left(5195200687 n^{4} + 44571579516 n^{3} + 139301085128 n^{2} + 188883174216 n + 94022114256\right) a{\left(n + 1 \right)}}{272097792000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(1075876 n^{4} + 664549048 n^{3} + 153928436063 n^{2} + 15846154638428 n + 611724579069537\right) a{\left(n + 155 \right)}}{2160 \left(n + 154\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(26201333138 n^{5} + 20169024402173 n^{4} + 6210172003588332 n^{3} + 956069829660371248 n^{2} + 73594073746516776049 n + 2265965561186092055160\right) a{\left(n + 154 \right)}}{972000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(11234234062571 n^{5} + 160860645706543 n^{4} + 920183714068867 n^{3} + 2618156691061643 n^{2} + 3693295239808056 n + 2061154709806860\right) a{\left(n + 2 \right)}}{2720977920000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(60232312235370 n^{5} + 46242831067429566 n^{4} + 14200796700633130895 n^{3} + 2180441501021388267415 n^{2} + 167393891905118841165710 n + 5140296884636861662130604\right) a{\left(n + 153 \right)}}{87480000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(1342433093390840 n^{5} + 27289375530917277 n^{4} + 220035462946387972 n^{3} + 880571628343037175 n^{2} + 1749167465375220276 n + 1379086953201455580\right) a{\left(n + 3 \right)}}{2720977920000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(5169338343199736 n^{5} + 3729501133897205081 n^{4} + 1073134977462979374279 n^{3} + 153888675700836811300966 n^{2} + 10993363612314505490779978 n + 312826566562168717270605480\right) a{\left(n + 152 \right)}}{1312200000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(283564441379314774 n^{5} + 7064920326193946845 n^{4} + 69552081446573044400 n^{3} + 339491080280906727185 n^{2} + 823559773848263214096 n + 795460240346254795080\right) a{\left(n + 4 \right)}}{13604889600000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(498131282384199007 n^{5} + 48483363146137165160 n^{4} + 908989286599274042045 n^{3} + 7043652801491804747800 n^{2} + 24964292113620968918568 n + 33608074125845325425940\right) a{\left(n + 5 \right)}}{13604889600000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(90455989442771881926 n^{5} + 67754562664111460803875 n^{4} + 20298546548638747805457398 n^{3} + 3040366929005116790094819267 n^{2} + 227678058316142683708627043362 n + 6819301796337197800934662251072\right) a{\left(n + 151 \right)}}{78732000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(268041429557713430921 n^{5} + 13806285337634490855755 n^{4} + 247507335188677685008705 n^{3} + 2066952826019369386972525 n^{2} + 8269360559811822825179814 n + 12858808309714931748590520\right) a{\left(n + 6 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(2822299641903454875082 n^{5} + 68446280631400948973675 n^{4} + 466293950940313154374040 n^{3} - 965709745303412262543695 n^{2} - 22163782046915045589465942 n - 64791007575196792245512040\right) a{\left(n + 7 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(67813667565275261727553 n^{5} + 50596318549585712418970039 n^{4} + 15099507918759471704003917585 n^{3} + 2252987142431606407948851948905 n^{2} + 168076312803876262603685111094562 n + 5015289556709492255543939918023656\right) a{\left(n + 150 \right)}}{1180980000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(181287066877277272980884 n^{5} + 8134479317224585209232871 n^{4} + 145676945682552324556012558 n^{3} + 1301492665255014952618668229 n^{2} + 5800552366459348072435589634 n + 10317029882382253590224474160\right) a{\left(n + 8 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(10812902434082333145458683 n^{5} + 554028314713678597907950700 n^{4} + 11260034905683710418494304725 n^{3} + 113703881866729899329882934280 n^{2} + 571333500156287158801365808092 n + 1144056897188472923496376408440\right) a{\left(n + 9 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(13415864281762881215203634 n^{5} + 9954092853088502937092401673 n^{4} + 2954145838358185999207349139360 n^{3} + 438348290293766600417458837698415 n^{2} + 32520990111688891317942291542388286 n + 965061876622513515229921287420860952\right) a{\left(n + 149 \right)}}{7085880000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(171781004338000638989354999 n^{5} + 126685318638150950172194334396 n^{4} + 37370346898097829255899594199736 n^{3} + 5511726019564431803386180051376412 n^{2} + 406450545325601317084783946729025135 n + 11988844588438048491912410377400552742\right) a{\left(n + 148 \right)}}{3542940000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(261272643609976787824804129 n^{5} + 13127014044920918821118391135 n^{4} + 265033326931514117615405834705 n^{3} + 2687697931431762537719212848705 n^{2} + 13688378268056104508869152066846 n + 28004481976858277322321396538920\right) a{\left(n + 10 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(1281678086030666855159502296 n^{5} + 71749159951679791161835674765 n^{4} + 1609960242633305742971636168350 n^{3} + 18103985274752823797971493161407 n^{2} + 102040664469447171356447626261134 n + 230657890662005945789430892114848\right) a{\left(n + 11 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(5334067893279972468657495646 n^{5} + 240017712021432164105800098465 n^{4} + 3390492732309173461189832309420 n^{3} + 7088303340404634014653314053955 n^{2} - 188615348454066442666929567812646 n - 1075113713316348056962253123672400\right) a{\left(n + 12 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(109193840297050838302947810982 n^{5} + 80023062577021345996339448829970 n^{4} + 23457591873764065770862017779634980 n^{3} + 3438055551451927177522609223561206805 n^{2} + 251943711449693215534590098262738626133 n + 7384911165097234519162816541702404532880\right) a{\left(n + 147 \right)}}{106288200000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(792358451566558191928436285376 n^{5} + 576953733276091272926689139702791 n^{4} + 168039970853049461719107084061552971 n^{3} + 24470706628521140540750490600685519508 n^{2} + 1781733314035005842230827663192486923058 n + 51890890988961585171915411934315604345688\right) a{\left(n + 146 \right)}}{42515280000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(1358374931171008962016883348166 n^{5} + 92402863843172900031714558348545 n^{4} + 2527463177109298423528875436340100 n^{3} + 34722975291997907780757236429106295 n^{2} + 239431436429236291241829850594330374 n + 662500765531548145894764481993028520\right) a{\left(n + 13 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(12578584216746962510661717033823 n^{5} + 9099274231394069357373177479407899 n^{4} + 2632903214741014137415563270213111521 n^{3} + 380913336486848983971581965819427240412 n^{2} + 27553741870755629091643294893027634138695 n + 797238170752662266466212492315573723675598\right) a{\left(n + 145 \right)}}{42515280000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(17460788110724759127004755301842 n^{5} + 1292968982528355896092716655454305 n^{4} + 38492194260866611918662051004695540 n^{3} + 575406531093340271782274942708221835 n^{2} + 4315848775683870198711611218153073838 n + 12984945470097621184222516566237492720\right) a{\left(n + 14 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(24732756703658698035491440590001 n^{5} + 1155629946062363525541857579775480 n^{4} + 10195300058152613695027396556718935 n^{3} - 268369111747540816752136959941293500 n^{2} - 5594307891190792921569301976448114756 n - 28845238771264469919979167453475482120\right) a{\left(n + 15 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(1774494568908972805514599904149318 n^{5} + 1275168361331991113339402074368420915 n^{4} + 366533948545494405200489029122980161355 n^{3} + 52677445129975614476805664679566595626950 n^{2} + 3785288704139720751236873825325434437055832 n + 108799548840506521964189995097142112912499040\right) a{\left(n + 144 \right)}}{425152800000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(3369049754196761338580340787330241 n^{5} + 267556689060336028258538663643688265 n^{4} + 8466508488851061686251495254488919205 n^{3} + 133408631748077604639630173772726767935 n^{2} + 1046452625234459070995491587350220933474 n + 3267553388162542029700739468171482524120\right) a{\left(n + 16 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(45009223562189949599575204955326562 n^{5} + 32127679533921498138491672062805274855 n^{4} + 9173004074673131599099727095000204250530 n^{3} + 1309508150367408477013901437886890165302465 n^{2} + 93469346712656670781797193955785925767726068 n + 2668606673710609793390224878646064255880371880\right) a{\left(n + 143 \right)}}{850305600000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(48131030724733514146772527606542863 n^{5} + 4172556446384578049464900963279938850 n^{4} + 144310766158800393780005047157512877125 n^{3} + 2489296385795194558985149813229037045650 n^{2} + 21417740716409272080632463726771486553152 n + 73536737325051381131670218867148905810520\right) a{\left(n + 17 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(92776790168444524912971846147161889 n^{5} + 2761333928188699852341621885806248774 n^{4} - 114405519682069704758384467619642757645 n^{3} - 6143796794679988385566844574387666453310 n^{2} - 94256209128020183410951477788983922353700 n - 487798874288186491195557778197212261575032\right) a{\left(n + 19 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(103566505606401516984004204380271157 n^{5} + 73426412119274004364476858765335305681 n^{4} + 20822850096110968047376034622951716868337 n^{3} + 2952520518928032002026799804211875149644557 n^{2} + 209319918065400181212482692093595256610741416 n + 5935851773897764146745708704967731063786514536\right) a{\left(n + 142 \right)}}{170061120000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(314212978339564158147891406167537823 n^{5} + 30342611297113466645507032335471911115 n^{4} + 1162547019424215784543122577870813193135 n^{3} + 22117639666335981623699511119186597778885 n^{2} + 209146174106939428367801912822808827861802 n + 786970092030163955813397542905307988503280\right) a{\left(n + 18 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(725923730795628431364967924869643814 n^{5} + 511153417577776889933252020886557644323 n^{4} + 143968294772475030487320048979734400310600 n^{3} + 20274389140588300863035267523733798354851121 n^{2} + 1427558834882540328551479518479723538392876302 n + 40206434146265762933041832983417433819488320336\right) a{\left(n + 141 \right)}}{113374080000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(3631483316700621559506940990146995826 n^{5} + 331236321428969771909010681626067209329 n^{4} + 12034551744711140839811070338478640380336 n^{3} + 217589698389445173605335408591390247152229 n^{2} + 1956495329098631035124950060165944128829108 n + 6993379331093688591935974683293341915595436\right) a{\left(n + 20 \right)}}{5441955840000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(52629076202330500034544499536324268744 n^{5} + 36803304450298522866237271179983611045885 n^{4} + 10294460538229747859254165554228228584545490 n^{3} + 1439746707103871459495499235744247795589317660 n^{2} + 100677938461960568389649330563647620076442815021 n + 2816036232665600488645143588660866286166363650210\right) a{\left(n + 140 \right)}}{850305600000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(96940959593984797577568814467943476101 n^{5} + 9698831842329884573208234112665075972227 n^{4} + 388394573605598584242483984931612952548225 n^{3} + 7782747534868525016998439637490402351240009 n^{2} + 78046817968531050787458013886110945987833222 n + 313391830480485633298282126548419894063928888\right) a{\left(n + 21 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(188057223453707783912021720971071672278 n^{5} + 130594941327305514997830311344041335805015 n^{4} + 36275947377174387629556444161526940092816610 n^{3} + 5038221509994215942464264441609625290198026312 n^{2} + 349866078609252516319788809923098826154433613791 n + 9718125166747519705650399743274417503699270927976\right) a{\left(n + 139 \right)}}{340122240000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(1385644372419090957324676547028246282982 n^{5} + 149213666919692104942067394505280415849195 n^{4} + 6440858395872535466666555438336079368984620 n^{3} + 139314880638011256284886719397673477578405825 n^{2} + 1510056643908146849159168156804283332148571898 n + 6562008607947931868526077156742922503316800120\right) a{\left(n + 22 \right)}}{18139852800000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(15592711730387576888481462680090832717972 n^{5} + 10752475337880713628715935576769610823429775 n^{4} + 2965866995199067823883734109868420769647499115 n^{3} + 409035791626673804570264351381264038462826333690 n^{2} + 28205732113092490032528250754414878485364995814248 n + 777982547936557842127803131457388426650509789426760\right) a{\left(n + 138 \right)}}{3401222400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(25018288556674251175351807732595236354786 n^{5} + 2931929106554453516856118542697191822463385 n^{4} + 137742988283541332489349585171492268069473620 n^{3} + 3242185299155657562767482492439301757441727995 n^{2} + 38227803268961466732994695635009646978182314134 n + 180594711976668537604252049172829202088352589280\right) a{\left(n + 23 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(80314135484473978330421296591085701944252 n^{5} + 11271686089904955194021568211812318946428215 n^{4} + 621627081535087150909220215080288065565992310 n^{3} + 16905155668383626879516869744442736800348147125 n^{2} + 227324184023257178260248701709607709947182411978 n + 1211620059160605990343114006786454217602943235440\right) a{\left(n + 24 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(120453279026596881517526716530582121081489 n^{5} + 82476775693853195149304908295302206417709140 n^{4} + 22589231171281101029821918772972350970536053620 n^{3} + 3093413437905607092459886771428369357419137260690 n^{2} + 211807449170409750158581387220274848233928604417591 n + 5800978090928938196168819781019722637774954244444610\right) a{\left(n + 137 \right)}}{3401222400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(452770470160167536151632892234310191979964 n^{5} + 35677135268957131012201834445376153763076385 n^{4} + 726484703072090165817730032116284918466702350 n^{3} - 8570569920003030138703638533622656689574681445 n^{2} - 445195333402731292307043532855769589896633991654 n - 3936750714947524742307607536418465172352522016440\right) a{\left(n + 25 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(1739554813458867482327712583719192634962892 n^{5} + 1182642949593232472096526812562513327885981185 n^{4} + 321607527226256503306541082642626401537881540215 n^{3} + 43728623521743014965013306774521739626516858364590 n^{2} + 2972846298500477152393237356939701544743984022536808 n + 80841831053683696496675972247287114958661070354494920\right) a{\left(n + 136 \right)}}{6802444800000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(2322962456236131384702941002501896488174888 n^{5} + 261799132292104343347378697801021037161076593 n^{4} + 11513422598976228353672977942935339265544754454 n^{3} + 244440246834972150420456479971060520353186643215 n^{2} + 2459481648430544359412854084652826514954416917154 n + 9028895958715365616408944628435557886859746783608\right) a{\left(n + 26 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(2355061826699585500207592908643059461651440 n^{5} + 1589633358285407962398823617773237943133766051 n^{4} + 429189351949877679334601134606572663732657559084 n^{3} + 57938632704246534133061765520437615472733057644046 n^{2} + 3910703420471009011136160583386308288145859059097905 n + 105584178840140528341261546409154839659858622834679180\right) a{\left(n + 135 \right)}}{1360488960000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(28172483425257207975269165446308562516870250 n^{5} + 3479644297259900956390967528917153134165439147 n^{4} + 170382694554722009787078627131199220147223300644 n^{3} + 4125915296883674156579752097306535690042106538645 n^{2} + 49271536320386688144265966311229435320294153993330 n + 231200456313455435452081575138538062931562109376872\right) a{\left(n + 27 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(74912769761249738345203563182139137960155079 n^{5} + 50200339111711840845503326862568827337731950830 n^{4} + 13455970900051263663550136140127524685442746806780 n^{3} + 1803395728227495772202606094961631618907145070407350 n^{2} + 120846658662132770480925793462049321390480505781581081 n + 3239185809539570993446796129866033805536934443866691440\right) a{\left(n + 134 \right)}}{6802444800000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(267540244928628559502632371652377826244544580 n^{5} + 35166682499521896928789960529901593832276926133 n^{4} + 1841007698119424943396579129590358979304329861526 n^{3} + 47948646701709190694003619310348192267091453163951 n^{2} + 620762385274742468108461015613737587494785712376282 n + 3192462069811356487154860312005576870896493042127800\right) a{\left(n + 28 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(897836201763210246536051028891577745464593382 n^{5} + 597284753346012619353165587752255110924667647615 n^{4} + 158936484570214647911092040320514943713983012442300 n^{3} + 21146264111259988133789865405045246148880840515179045 n^{2} + 1406732693754943273733529851040705088140088104353014578 n + 37432374808790315006203384304399764083128630614465869360\right) a{\left(n + 133 \right)}}{13604889600000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(1269535828526307541244748366154354264602129813 n^{5} + 838379308567686946316031395899248243552495940070 n^{4} + 221459469159417296540274638593286701759237175198730 n^{3} + 29249341255621593906023615604456479588974055489380345 n^{2} + 1931550470879806464933653682552243075307436217035712312 n + 51021610097639704420465605777825766815868561255885854870\right) a{\left(n + 132 \right)}}{3401222400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(10927113470470989340506640178040094578838422984 n^{5} + 1511453048189309607189350579633531039670809963405 n^{4} + 83429082575989602681572863272909058567756993004070 n^{3} + 2296473708850889754798229945057582720491361553247235 n^{2} + 31512459253230901246467374576094351821113325716952586 n + 172384441568100148924390638071888824476016025463625920\right) a{\left(n + 29 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(15858494711352204551898034935041346650778043911 n^{5} + 2293339687849515419369161351188750611550562544102 n^{4} + 132472423662222365827376853445167369559872407390613 n^{3} + 3820185623543734365495122955359312324199132430883026 n^{2} + 54989311718502624315467080949313074234162648417979588 n + 316023990198043608055498568276003254815487304318308632\right) a{\left(n + 30 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(27157004152076065064132502132636898211083009061 n^{5} + 17801921539180800167252954950385566382433663203760 n^{4} + 4667778792974671027187963113550344054336241763105115 n^{3} + 611958580234465791489910082382420600810273870218004450 n^{2} + 40114572915858277917426105482596368212111663488274966754 n + 1051818224749344561951767842312357192554678465918059757480\right) a{\left(n + 131 \right)}}{13604889600000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(137535336808108136056276056489687408035018972427 n^{5} + 89488531009788173986342596702680881832000534384590 n^{4} + 23290513172945738655594570064761967203082006528044615 n^{3} + 3030814449757360866671908899237555333789137329123565210 n^{2} + 197200611842213648720071311451490985477687572372437271118 n + 5132344218779061532507185017159751795347051127036083613360\right) a{\left(n + 130 \right)}}{13604889600000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(518655663182714755226124051178697377635285608461 n^{5} + 78064887734155057544473698106638221458139603843905 n^{4} + 4695722208049361139426945543993469311666233739609245 n^{3} + 141090300550099130922610754766384540601564734536543555 n^{2} + 2117407108782137919495610479518501767284485732775557994 n + 12696209617597046400739012868977374029162093280341368920\right) a{\left(n + 31 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(1027896003114548482647284794006581564714752317723 n^{5} + 160489895753114104399909833455212088271928248224850 n^{4} + 10016994729791858642802487094838152700410574621954025 n^{3} + 312398619473598168383158765978664147641214772003896250 n^{2} + 4867897339361763179306030128361625849816208788856886232 n + 30318024925682067275510013287315951250620997243363655080\right) a{\left(n + 32 \right)}}{18139852800000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(1321115300654396858542627625290362961099873046012 n^{5} + 853180727672308369553543468537023044886033295815485 n^{4} + 220394203082652971634504064687288893654601438781325730 n^{3} + 28466110569672677256844473331063221426951460051666585875 n^{2} + 1838336182711663228253247334386768982340963971733818323978 n + 47487637999848460913568590638911003429773968175732627380560\right) a{\left(n + 129 \right)}}{27209779200000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(6024730411445401173966052523162102709982880682461 n^{5} + 3861579610712378872437030843459275375352353543571840 n^{4} + 990036913447567131322719325810673338894454920579767715 n^{3} + 126913207500584254673341087472707229005621960327358259780 n^{2} + 8134508087347319354180155720231855406868852410908981601484 n + 208552213593186387225252926497635389684697742020920587314720\right) a{\left(n + 128 \right)}}{27209779200000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(13057909041545525254963561433996512787009446669011 n^{5} + 8306321091726978275643910005509243045937164654672945 n^{4} + 2113503605682462717878049376416360667301248583064255435 n^{3} + 268884946912510278608807140975260570894801237574603445575 n^{2} + 17104059910707141320992899194089134582818561580354851290794 n + 435202260382776458304316067732697069769902616571323221420840\right) a{\left(n + 127 \right)}}{13604889600000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(16760575450635641236186592044371386889541866229163 n^{5} + 2707571777205088078048746248088984638585619745779655 n^{4} + 174876641235127251657026232990270338311312466091786295 n^{3} + 5644709067038070245110262814053712103490216539857872945 n^{2} + 91053211421521685692956256394697010006275178556248089582 n + 587175130507762663564263657751289552483164825492508111040\right) a{\left(n + 33 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(83638295327297906396141855596757300384270553846743 n^{5} + 13949935688045255223547801148411814703792034408222660 n^{4} + 930338075919356939600969197898930115889515035207870365 n^{3} + 31010707059803287780479697249641661179032445250222863880 n^{2} + 516624250378826521453740422177685081599022479728134704472 n + 3441195020637994771831534344131943099394781732365914367440\right) a{\left(n + 34 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(96112183373034866420370633410055344466044068684978 n^{5} + 16521397124605552552373155201646134596013950986202245 n^{4} + 1135638629621091775348503689500253426897172082416944285 n^{3} + 39017670433433462480474211005884530611816128153934524690 n^{2} + 670042708560068566828729275286622103591222192234457458012 n + 4600925271573242989999807381992825337264932218505651866220\right) a{\left(n + 35 \right)}}{13604889600000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(107706526159917476581434242391270311510915549557229 n^{5} + 67993352709302990481962108551104256377715552154519305 n^{4} + 17169207350106556067925592559766237788011347368636611255 n^{3} + 2167721091149425057747614288153023478930297141345636881285 n^{2} + 136844054437606594477330628364317703932294264893542777950886 n + 3455475561751926012419060819299640541366275222835937823652720\right) a{\left(n + 126 \right)}}{27209779200000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(211476036696525786769760239605692548362643313358328 n^{5} + 132482317036315652249125301688023326116234849194134240 n^{4} + 33198168580805653106977688028529169803781719209960048425 n^{3} + 4159487391413627040431012189068212598640091059146269960140 n^{2} + 260576338483229616794753493139653046651103338087385211131097 n + 6529645617625232939510700132415562445847693021550727453088470\right) a{\left(n + 125 \right)}}{13604889600000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(639872934515894612076400029297712025477380477501141 n^{5} + 116293993589105307952929339932241402017616840287793276 n^{4} + 8452001407738594321307781814871080672327090068643962869 n^{3} + 307046901283684804896190159897494517081718771244030997698 n^{2} + 5575534376254562369903755806881829675563397790647504481296 n + 40484445347389003506717221364934091031476551391142572984088\right) a{\left(n + 37 \right)}}{5441955840000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(815723618601493188380613322167586746130294684238283 n^{5} + 144287230131387392712408956419548781123574989774268995 n^{4} + 10205858642666197003948821650390752233399381612136625325 n^{3} + 360837602894327212185897859632140717669117543499506838785 n^{2} + 6376875843974536986186970078652800906742543367281373287592 n + 45063085400053370869985399990055282088193758767906456757740\right) a{\left(n + 36 \right)}}{27209779200000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(3164849290053871733309027728678995767620853400756421 n^{5} + 1967463667685608306441756998169429533461539096384754000 n^{4} + 489237698128795004746187637928217055686282574765817332215 n^{3} + 60827872860623154412315820939307831564596948848695674739880 n^{2} + 3781419599557950182248979410857644598061797092950818214253484 n + 94030041625998742829821560110147174824126798089912958452311520\right) a{\left(n + 124 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(3762252160675943454519883271065835807900829848227126 n^{5} + 2320840626142797641053232236597796259871316355385733705 n^{4} + 572667061769840838493817493006806187998053900557544224180 n^{3} + 70652669620621343674989783980171823000902794299548054371955 n^{2} + 4358373426265680685217878886856304022560638248695948963104714 n + 107542413695605025031694116637080430309762379824171938643463040\right) a{\left(n + 123 \right)}}{18139852800000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(4637297325469302781398842837842971398653612875949785 n^{5} + 864714660268809941732001332524831080486391325102807507 n^{4} + 64477874926628260283310800612563787741562117191969078661 n^{3} + 2403158502299676170200900757802528550871030405033503167469 n^{2} + 44769400960130205585110035990491269621098200508291978920162 n + 333495677695231574004784368823596526235450617388900248917120\right) a{\left(n + 38 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(12792985460287551068064208063827604852428183654076797 n^{5} + 7830738650026416037215838129090136102328475124076995365 n^{4} + 1917312327522405623056342608306465875079099018509534031545 n^{3} + 234721206937285627907644407131164020398668406626560116889675 n^{2} + 14367497487463322092084661360105106763417376435308424328962418 n + 351778470892934200540314511101820512492755930006471657498145960\right) a{\left(n + 122 \right)}}{18139852800000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(20739949375681984953970674895639087904580138606010503 n^{5} + 12596951832418050173861542616768478575473286488279926910 n^{4} + 3060428433585459158293758739274621666987268835508503713965 n^{3} + 371764564470465457803652005529853095767481983197177024727710 n^{2} + 22579939127926595340965371560468249639523339713174189289832032 n + 548575676632931826085100918504973891507149542276907742956452440\right) a{\left(n + 121 \right)}}{9069926400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(76934689302677687959322077727619142575046689604040537 n^{5} + 46366657306048695542179827708308176317516783777765781436 n^{4} + 11177579673529888818671187075218762626872676822866950622499 n^{3} + 1347281016379444170105972068855004126387056350874531126010172 n^{2} + 81196451355719877496489985366541826964942070327673863289995996 n + 1957376404478632287075030123407060362741012174235828606152084032\right) a{\left(n + 120 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(77425124724696940580336149371592245993603022130434123 n^{5} + 14789246327993416810108916592309788934756731926197838420 n^{4} + 1129578142730455087692273338035051862356066857183273835085 n^{3} + 43121616656478494293974767346084048278968678863808268085020 n^{2} + 822761884706227337508652964292664668306685793465391001893072 n + 6276751485767744674791238675711047217627900062371949457006920\right) a{\left(n + 39 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(118393675530348715951502294407298234745110962250779073 n^{5} + 23121069587740568150430463780279937831692612450760725510 n^{4} + 1805271078959299986879271427846230434730069333896297931045 n^{3} + 70441885280977196498510851839527550880861600842599877327080 n^{2} + 1373604296076497656517340632610635688092280314402862229653072 n + 10708078726314450503316017524849977334209240088579042015870980\right) a{\left(n + 40 \right)}}{27209779200000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(163675528239774591684379052179366659545062664807733827 n^{5} + 32588598333151984323425698156479739708094772284173374315 n^{4} + 2593535760952902706046838615719091769247937820327449818125 n^{3} + 103122492947004201576748167568533272774044243246180925178435 n^{2} + 2048458911605254744798532221474103295879351622917542623415418 n + 16262217696910854871758180480824922254949666533847787429825770\right) a{\left(n + 41 \right)}}{13604889600000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(795567405148615665133358765145396745783080027897230563 n^{5} + 160677654956292436790489113292620402711553323104650778525 n^{4} + 12962860182190538707741133334321534100212751050211781990945 n^{3} + 522123598701995882642018881291509696658467366404227314622935 n^{2} + 10498249795850625517637872980011940786644737107247302886162932 n + 84286517328033159253608594351031134544532242986200715565257600\right) a{\left(n + 42 \right)}}{27209779200000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(1133136346474522817058147590944946667296029395997474646 n^{5} + 677638140541825456712827269091580756551463723863651760415 n^{4} + 162095502551816088159628052922277270399137521917679089602640 n^{3} + 19387043097331607846793410554427078875778194602856067815552725 n^{2} + 1159363692579121529446522649095818568949374598527841074108135134 n + 27732264432701554547139730481328973900923249850651405590704192400\right) a{\left(n + 119 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(1273383155764542253833491259535142629050771820396087116 n^{5} + 239202381264879000169130254331505239548331716173059179845 n^{4} + 17466027837184727585153006454378381081718624745927991630770 n^{3} + 611624904555626419594760447102315833057230834789439922372335 n^{2} + 10021343968054447449012500294132997972296431085490044723050814 n + 58107493150732117070947685740824953089948423451568603655793640\right) a{\left(n + 44 \right)}}{18139852800000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(1694519296023475598981182370903896920924438836187473542 n^{5} + 997913995102784895878948011710223628379734255814104195835 n^{4} + 235067848002879231522723939856235976370203693154149230541728 n^{3} + 27685792473271073693245626612320437968650018958845228537517021 n^{2} + 1630363212906328966610794533450368664656760503273744451360790338 n + 38403031793818208141415610041312634824455895449255691797625383712\right) a{\left(n + 117 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(3160957176416819400557347980768426240339687769217620513 n^{5} + 639095518004191369298348126044777195801901528313121299955 n^{4} + 51497073329197382721108552065949211197362888273339030684285 n^{3} + 2066147809794275630456251691302423720520298990571242163741745 n^{2} + 41251289225802325331050776975109158660786833113553145357792582 n + 327622947368358897094300942464529150351462731260049059129766960\right) a{\left(n + 43 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(3177880402855023515768363200320495356858668199056915604 n^{5} + 1885828831689469097822606785477419487435047674348617426515 n^{4} + 447633855796226114835239688478586782181161493202260122463110 n^{3} + 53126299579420324039724011371229241749810992143476433614233345 n^{2} + 3152551813878047274640426972746936988960393406106589193284129626 n + 74829173659251788961777723272568913267767886339849791370235598960\right) a{\left(n + 118 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(5647275026079311451635769025374144985387746686144362813 n^{5} + 1626945595843310736379261757075441860698368649557248269440 n^{4} + 178331642757037749295947685412028665072414301337624497720335 n^{3} + 9453789739940155547597695557530787136291535692756963565631100 n^{2} + 244711315499214059228216028000034940643223241882706604430435472 n + 2489143163142961890592865048869451750753617863858842511256418280\right) a{\left(n + 45 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(21424510605551976626803203321063880001644083170756888394 n^{5} + 12522663791034341472943004973764686493700904800989591437825 n^{4} + 2927737868663163017347136316166730714326698382196264036300400 n^{3} + 342237398519878456658784768776195276861985167467747144424377715 n^{2} + 20002426317478808763051000938658459299896416827322038271892351386 n + 467614472519308271817628464452946840895965202841163728764082483760\right) a{\left(n + 116 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(30986470382272944656757945009255022112780554123255023516 n^{5} + 7621436540747774504159526820342549129067406083324865510955 n^{4} + 746463256663284173408381602387601768137665917072593623160110 n^{3} + 36411650017810333369174802431978725232561983971913389839735595 n^{2} + 884980975956719841012625326349937866657958899241204094080809284 n + 8577239832795957773188176960841018447880405374787171527545416460\right) a{\left(n + 46 \right)}}{27209779200000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(51197020370573320040458009184373759029027638126617020216 n^{5} + 29707558789457544337644864350316311684876342403305028961225 n^{4} + 6894972340797168572204493545214675464477269386296542104730630 n^{3} + 800113585643911587827042077532338862177750010805038055862509835 n^{2} + 46422076514905672842503320777322551355111833642698430788333393054 n + 1077312037258100849502115173928767116560284667909411959158110316400\right) a{\left(n + 115 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(91711441756011766814120489842641138444089969677788823854 n^{5} + 52268367068390528951972730127658818283798267320562288103953 n^{4} + 11913049496451644635554024171845987523597751827410573646839928 n^{3} + 1357339050448834226063044132493466177617155746544831191774846439 n^{2} + 77310373200030463346865769921496678479730481243798114434566328514 n + 1761017768556011249747703172173342328384761820226960048201008389888\right) a{\left(n + 112 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(114947355657280767996997809134922856231052274487508293583 n^{5} + 66240626642313857294819228847286736758250459252698004743715 n^{4} + 15267999534479492709137255475691992362608188577339888249687015 n^{3} + 1759473086846468938989503636080271288495481351368088764201780905 n^{2} + 101373957271457857933633396081285173984988362991235518627920086142 n + 2336167204900278727499027886791360536598734849583499401322141701160\right) a{\left(n + 114 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(131295572754029769997480237556424085678191584165215214561 n^{5} + 82066750353645816315420456408401294463730704180765335744840 n^{4} + 20195168719389884408827963434725386350042360441360513102536443 n^{3} + 2453941698092669644121243134887514808985471251712164627877922144 n^{2} + 147590964344148301142938260873212939343824478891169327426436787444 n + 3521216517885517254254634813539119863366269045239098073449880011264\right) a{\left(n + 109 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(143727585861198101484149572391576095943409945486533969028 n^{5} + 35089935600775978242369437591412657656652948176904815910845 n^{4} + 3421484713603626120295849372030641051781061359442926740221340 n^{3} + 166571001319671984785177504053613849357025297402546206550501625 n^{2} + 4049340979615212564700262033818368501133422164030857832620025142 n + 39328003531978810437673500898120456038706371878966984342486021100\right) a{\left(n + 47 \right)}}{27209779200000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(240130885687590041494066453955434719087208784835469326357 n^{5} + 137523091023005506145995852108994445481470626098115213303660 n^{4} + 31500318146676548986289938823544953169627810572341849103231235 n^{3} + 3607257084360434682999196731289206374078878091763273857441678620 n^{2} + 206520498608884940493401646268796076866918743299401998401122969808 n + 4728944030878597898866409653908496397447347079688205295468307883200\right) a{\left(n + 113 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(258589314837037346727097042511126887739065811660186552908 n^{5} + 148291077841335073785877899570056580601024984961891172117575 n^{4} + 33966370357555200535433111049601582115932614549025449436634660 n^{3} + 3884802317183527134195956899039613744419251305059622759440391995 n^{2} + 221878652923266346273192988340252130709506485014159495313173316672 n + 5063092793300220766916482272738257777824600921025984594674755170130\right) a{\left(n + 110 \right)}}{13604889600000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(771337362963700589199685385169901920290352123534333696333 n^{5} + 438825479475868960023078565724940787466284162549760949858155 n^{4} + 99815302568402282338058704280921246826888626155329525314997825 n^{3} + 11346946138584312994210444437447451489072643676432270491144318125 n^{2} + 644682111747200783782496246662336546846415878315614460326062638242 n + 14645178674145567579985474856883052018485711986770704074398646605440\right) a{\left(n + 111 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(1044749570425355334949920558956076931733374015892874517551 n^{5} + 257423759625638066479255222620043352599962885816508774828325 n^{4} + 25352384436300613830369205990560169711790782083408746631546555 n^{3} + 1247534011273019474783437843737981289862407572594829719650107195 n^{2} + 30673792873054509551723256138475891722609587951321048546247897774 n + 301488526488873239505384626545539270658678794893312903543787322800\right) a{\left(n + 48 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(2097618461261819240238593932534230523536809938200141758664 n^{5} + 1023829900852591993817515965284002060592452575830062046379005 n^{4} + 197490064849912604885946783795600249912430406555928063535305750 n^{3} + 18758839279922832112204467959913971605220928940617996956509631635 n^{2} + 873366862566804194917012623010479704081327012099387492183651197626 n + 15831093737527422111214601777610766407180518613008848399349969679720\right) a{\left(n + 108 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(2312705704043739968252372139730476944491296160313014052284 n^{5} + 1194203333667977863143989438522582796636752040524748665031963 n^{4} + 246282761683367912821856618190828332568204850000522371064854722 n^{3} + 25353724363093256771307402757536904823775560426018287310485072569 n^{2} + 1302682054095725562717142932275028887348494484556560990388911571918 n + 26720360195784209680101525613072703347987709564854596683569385152560\right) a{\left(n + 107 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(3318586052252362686278277749413317074599754913894909993466 n^{5} + 829330444039407797941894912939987268312825058408465984998625 n^{4} + 82866357821626115992286820878535819734658776217021618143322980 n^{3} + 4138321596950029165671855315923158722912280686767680339483121295 n^{2} + 103293794924277253582230474204290923688503103555518394246808555714 n + 1030923374997010415696999685205909079298924912046571376482224968720\right) a{\left(n + 49 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(8582871870216396860424206326204466374866343697487988127831 n^{5} + 2216888226702805118089158220340436659715090231214415429753080 n^{4} + 229006907164593836662909115837062133333744780971920416673518845 n^{3} + 11826595165784410498800741362886320271682827236489166028194938620 n^{2} + 305337313669079546853789666706115076848633778176038486629122301304 n + 3152837284316606909630765808314867212219104867753837167815639708440\right) a{\left(n + 51 \right)}}{18139852800000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(9593757312754281708609635425265036870078269047495423272624 n^{5} + 2436396758584646603538545320053127252065703202817244556469935 n^{4} + 247432691381902728102086647758435929365421621136466001809264510 n^{3} + 12561191154976577335933942006073538375888683467832195666011520665 n^{2} + 318767405871118817883950563301086725332723254363425991160168775066 n + 3235048244527479887332853720478638844382327614565244265128223265680\right) a{\left(n + 50 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(37463538212639816565227527730982740721652287465751891795683 n^{5} + 19449462606250164962533096132325793738906005543380928689970815 n^{4} + 4036659391980118984660812817037917754787812183560357690976572935 n^{3} + 418648659152526307101475774918426721208270827379399382251861828665 n^{2} + 21695858866574253260585294133494336786888185663919266549095126764622 n + 449447436489879919588898966587568218649685804504739985968524296502840\right) a{\left(n + 106 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(49907009517817614243568802835311979159285696696937257309858 n^{5} + 25837852412474500978435287475279490780903027480927457011684485 n^{4} + 5349203240357510380850200062198004934021941181782196361735686010 n^{3} + 553560339064632829395010948524434396881161833660017296625864848125 n^{2} + 28633808808116440605140979748971208333392336608159043789511167082302 n + 592265439556112585696496901828097676637445007942861837194343469856820\right) a{\left(n + 105 \right)}}{27209779200000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(64896414986075191633193998753286676563252225208287952122351 n^{5} + 17054347401990194972714472272539259432229220030508830968040675 n^{4} + 1792552301709497922394700439567683617448852198041438874944318015 n^{3} + 94198164134473634594232405356255929617724704815082082268695934465 n^{2} + 2474847247254075390186052091997239841177250198295025230164477936974 n + 26006454373552022944120502277245032460743254743646237979601212756320\right) a{\left(n + 52 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(118433294082621808058984121984438495527810713406422736718009 n^{5} + 60972500797831916674375197875789255190760097549179301278548950 n^{4} + 12554086438315628786820128554510957929438579248853119850572703015 n^{3} + 1292215653745394834950599114248051292615742176353609992971102491380 n^{2} + 66493842627433275939190662665627697518612267432535919635966419285766 n + 1368396921789064001468389516294371554337170882558424394877388435808260\right) a{\left(n + 104 \right)}}{27209779200000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(154729650456960848559246744026615527833063955056234579583959 n^{5} + 41374519090469579517313804351868467979190612909623113503263170 n^{4} + 4425219945618422182736014236931118674990599844789803922880518605 n^{3} + 236641032797065175461514945506591206958262413688334484832245970450 n^{2} + 6327021398100421783191169969176212040360023811856606275830115795936 n + 67663328495992856742068601399897042512207079606353873463170505599040\right) a{\left(n + 53 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(258407596341480557978988702437812758839015493653018532608486 n^{5} + 132115729637665332592616692473145057066239403619603152082051625 n^{4} + 27016136002586329865333657251925002214948580110962664675162236330 n^{3} + 2761978564730143798277234597766189902157732160225295934060950044875 n^{2} + 141170710673913158137688809152208332337115840951925095430612122803644 n + 2885924358507843419626877189713309269929722442620573940166230204500560\right) a{\left(n + 103 \right)}}{27209779200000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(314237967812701688280563086946019036110844998748556807935733 n^{5} + 88474465787179754035973057537841826830250649530910694525084987 n^{4} + 9964487399170371077638902088107569382866553955601925673025577137 n^{3} + 561150618247493128654301553943641100211481353667519384019609282053 n^{2} + 15801238864793166107782121496041094449414394721794035712608840530842 n + 177983510976367104550756156253499054312162635365875186610910892642600\right) a{\left(n + 56 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(350763146264725794418488757019514471139536087641759155638051 n^{5} + 95433314323964276533658520244990053639548994444203210425537865 n^{4} + 10385883060624855600552849907202118742916792687575345075572902895 n^{3} + 565138036188241517581407071538986959566225988226963764161066427975 n^{2} + 15375655376921708374595320642495751738896687744490889901448819331294 n + 167328919611314264301953097973424716568565013540080070658412573417360\right) a{\left(n + 54 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(758847035997358072304008800987164290635400595034578006915763 n^{5} + 210045705113569786030334339828257846490645905063329388220517160 n^{4} + 23256381353143649766005212279193505511689902190378818842035949065 n^{3} + 1287505906235167062415342700009085193302106686751009408791284709680 n^{2} + 35639782768400768323270287460261123591190599115879793019568026449972 n + 394629509500895604867358403658164764349271396774521795685908280843960\right) a{\left(n + 55 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(1053209625794601866880371963507668533631609376980263313722467 n^{5} + 534362165135503752920076854588677954204008095754717418574063890 n^{4} + 108441026518286817013178682670737423884874819009726871607623308325 n^{3} + 11002667582028240736143254342720995700031868983040638030647867606030 n^{2} + 558146501226700366904745197770895141085100088690328998597902140178128 n + 11324880506764941194780619382195956897723913914050353902540947379895200\right) a{\left(n + 102 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(2022250481518401606038176594170101862710197505421503084224736 n^{5} + 1017737461862417450418850002887462689010856463041727205972865605 n^{4} + 204873357301677120900420824666062819687031428769806569737359777270 n^{3} + 20620244300833038751784088784647438823864319615448358792233698886715 n^{2} + 1037672715134706624551610781039810085090826955303746145775018963140314 n + 20886944425906068734952774628012244298611097459415053232439696460885480\right) a{\left(n + 101 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(2417323763404585484892363806764766051990643804353823311689218 n^{5} + 1165783466596135941508950135123857427601563501357260243043844673 n^{4} + 224890406893149866060522708460927905979013937162711851086636458250 n^{3} + 21692219474863941901118849160324300136514345450498908829347276976371 n^{2} + 1046205760471360367333793729393966826510986488019901075708553860955064 n + 20183677628771177906040712708681086647959387540926823158212225050974552\right) a{\left(n + 96 \right)}}{5441955840000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(2918875711308464142547904236029218633228095714100210933879413 n^{5} + 1672250915570446091083994243835504343105362423263750881001832171 n^{4} + 364536920121506816923017850411593947620765619575214122856577847517 n^{3} + 38434315323242620078923226359694190631445510322341183482086889684993 n^{2} + 1978673484815385514559579828328970154514539798668059705557803737785586 n + 40029361758770516790281726325762932732136008609806110022507016347343784\right) a{\left(n + 89 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(3120434348551520419350482263093353544511426889392775684985416 n^{5} + 893486190004942801750249058171244420154568883964143281312260115 n^{4} + 102340018914534377044612899358803563251591587501130169304332328570 n^{3} + 5861348882780929548504852100333592358433676309149579294060851332605 n^{2} + 167858620529612675925170006375797036299282104452545513621831964352574 n + 1922973420530620065552377544543000767430153444714935619869254946968440\right) a{\left(n + 57 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(3677119943783743419263430338777557842323952608930648268978246 n^{5} + 1835137681104328034084573380397218756193771464666736505174271055 n^{4} + 366342170542250691547245614322929410786576588053624152269940553960 n^{3} + 36565576468066539566977947593806885420196862362472710942347187189485 n^{2} + 1824840930777458280393931254722323502875120887597755330402525006366814 n + 36427930271785837960326538139606629496580204353549689672999037959618680\right) a{\left(n + 100 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(5955369213469578809104049471714306172348390947728162234459584 n^{5} + 1733809253644091031367282074800717080793222887425776196662942695 n^{4} + 201922402920082992596996559625553358444167044590469939885860576930 n^{3} + 11758927418514285472935944842765572098898650228619505415614849482785 n^{2} + 342413096036294122229119604527352078030470579659600575229812160270126 n + 3988613020646693526101703751047930140514563272743395156409968020713120\right) a{\left(n + 58 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(6350265229886467102548948954386932492788554097807123045628167 n^{5} + 3142252762746247715110383455373000861686949623282415658980083335 n^{4} + 621947849971972363338307163140951996095212024774671288815519901395 n^{3} + 61551743779079428709507623004084516375116910034094741858301342526185 n^{2} + 3045791767753988307413363160598834044851061683599039899714605865244878 n + 60286964961821791514010439977656861633122918667903879976039102029008200\right) a{\left(n + 99 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(10429759631703363094744098066508631096566106822077583833283797 n^{5} + 5116575171626767179050126492758758434931565703367906950597749920 n^{4} + 1004043044240792095391811063054516156633496184435463976674241112135 n^{3} + 98515191036732791313619851827178975577755014230846014806972733539400 n^{2} + 4833168624433883070480212116202677554646344634599264146945852411675868 n + 94848075086713029501038504512055661304863221819948228017450376775028800\right) a{\left(n + 98 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(10938785481028319860797665360310439253352195010531023592025478 n^{5} + 3237304447625017160019545249913157442873935249917283569293167265 n^{4} + 383259642790230167804884861432928519205156622487235890334231982680 n^{3} + 22688568824560654223730415489596199623185742026483223778747051031455 n^{2} + 671622009318768884276419516540078801149415739644812178556345494509282 n + 7953089536572020594093163303831857955973496392395835588993579741821840\right) a{\left(n + 59 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(11020507828390485740170034366144332075271050625057704908534921 n^{5} + 3367885085078803761708358119024550512433531964030422117430058630 n^{4} + 411731635226362216438777066741430364025330334766229668144419372055 n^{3} + 25169915707931733464634447647082845346711438281679794067773239109270 n^{2} + 769412171612930501670463146116494990590215164560846296564972504578764 n + 9408823174835757899031195738665882308826707341251961472264160026612080\right) a{\left(n + 61 \right)}}{18139852800000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(16292070366330223951608521517301813738304318859707202661858033 n^{5} + 7923982123069216601337937250318454246539203526597054140214504745 n^{4} + 1541632835674424265078683391215263507483380163798111654675763651885 n^{3} + 149968031076899513876192887856268156355223973203509621879240637220435 n^{2} + 7294519734199591626273385390937329042176406712135170042823549189823342 n + 141926986555984898173654394657602429923292601273583421657958861073056880\right) a{\left(n + 97 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(16983305251911485669136803361831634441367827971252202260676203 n^{5} + 8123494915764388077835633673851066732303541214001302438736306040 n^{4} + 1554279168284458169940221418430939201260841248623917229176348758375 n^{3} + 148693058608401567953062315331808283527271227339421887009867511301410 n^{2} + 7112594314468917491575272062784705882673502600927861692272253331911152 n + 136091548331583862281883870243451738400336769971226017210697799810362320\right) a{\left(n + 95 \right)}}{27209779200000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(18170356475176637882208167643101545862789342309957675137231707 n^{5} + 5640750843484821717059007582407831241182660758019126862583168595 n^{4} + 700508732237653749907521244887932463122255127753458880545704550155 n^{3} + 43501332112380958303709500709077514707147417834107698168295606626585 n^{2} + 1350837479773858469082661096639180471447878169101141643745111791885518 n + 16780478637766743634744576531998421686066653291933713070446529463614280\right) a{\left(n + 62 \right)}}{18139852800000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(18491077372392120836614864164883078008687313327024203090651699 n^{5} + 8719056666220435150182974558498007063260993073859216285311047185 n^{4} + 1644371093810794289588100445814806727536941172611896797054847475095 n^{3} + 155047408455240802214757612783715126037599410768106140144103993903555 n^{2} + 7309114430012468264092739703138745946922948201928157882079926468804386 n + 137813494273614381230203245179306240739845157020751742933888236260062680\right) a{\left(n + 93 \right)}}{18139852800000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(19362018127835374666046976506573389317521997472583015730718118 n^{5} + 5823531947853493795556923167423870842074862281603707113734726685 n^{4} + 700681993141077901988116887960230107059758396062063409890881267700 n^{3} + 42156387951928935691350544497544523649895974327568445374602445731475 n^{2} + 1268273853857980885846848321402399320333791687319288086646849393313942 n + 15263676386349533366185586772106968643767229544022593776909637553567120\right) a{\left(n + 60 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(20885514326331510302374216208438422808905080024111198462619027 n^{5} + 9803205600257133112516834790492728134654756308171225993884785830 n^{4} + 1840097152578353589718855933852534734195830394306120257150071117105 n^{3} + 172654368082412492016254233703193878473309309298896648297582209816530 n^{2} + 8098093331149867441782674020789118809078829240267395838314802969045148 n + 151897404626027597288743560269263060015480481851316009446962979577065920\right) a{\left(n + 92 \right)}}{18139852800000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(39888621599210587707280803646847828484146932622734169504807012 n^{5} + 12961797487995826517400946750854026151608156072864710697272388015 n^{4} + 1684945083327176327108917195499709424534914212830907962343485140742 n^{3} + 109526631282613534748411956208031397625824181854046125048788309184057 n^{2} + 3560133514068072839136689696288111326040472404506176316594275105989238 n + 46292912202654194821770807669185440134058437890273708631959976283668240\right) a{\left(n + 65 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(44950424964363196699336913395369445510285660138861932880448449 n^{5} + 21336636408593328172791826837842528863363437105089587354559287290 n^{4} + 4051081284377705257040169381771398073577217655226448300345004385375 n^{3} + 384573375882816052153425098541452342757069791114590247632106171211170 n^{2} + 18253708414672598747470757293182830440037270171222047288102491616384596 n + 346558847354182382002003155071399815459066113565735338871032117122208720\right) a{\left(n + 94 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(46368263246178871821231066215744767114576499632759049846406119 n^{5} + 17884812825739049886975177145963383373247912430704449980374393740 n^{4} + 2702071971281806766126070249303606270721481841840079832623915330765 n^{3} + 198325510567563854367280913007256392882794029422541687475645445909200 n^{2} + 6979334328277526268887516121352254847606210082594971598607997117660056 n + 91891257307898496935347504048562564023901573818831201497053268528645840\right) a{\left(n + 88 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(46924412012865716920977397982547344360720412467501447573415438 n^{5} + 19324648200298456629667605650782673037676287808898982757771120005 n^{4} + 3172228086927815954526986391951562764841579167498189501777822491420 n^{3} + 259336916838483823423765271984266075006918687678401137655088867780595 n^{2} + 10552753822583100414841718501301441898613889386749442379117481690504062 n + 170866781421378050866389803806370359330098742880566280437435633646815680\right) a{\left(n + 87 \right)}}{18139852800000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(48429694741205977930253490611180709566912416247733534819319367 n^{5} + 23121637294100254951341526121126276399588882527853649398234328000 n^{4} + 4402583608695802439748032041796599425997283709737446366850017580365 n^{3} + 418042545722875314663211103932970517054126279606058996001631350825520 n^{2} + 19800209415880592645042384748501903234452672937046492640081134744178508 n + 374319558402441444282915710374387488846953887274261588484026305531890600\right) a{\left(n + 90 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(54571722312682175166615948537638362396394283422845797773329903 n^{5} + 22652060467617366497064131398490784309883339460279604049318940587 n^{4} + 3755478786695447935913349525522443666716091699524073698542467116319 n^{3} + 310809537795337423563134913226709767870391803240445338286143595478293 n^{2} + 12839004296983670258898907147652839894687363589315628838545391199203362 n + 211735777911994571020273555031611760579730852625261351709595758917941984\right) a{\left(n + 86 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(62204617441335375339169289273969058422341087539592733676869029 n^{5} + 29207718488168667086235682863429888491936072237679624109358193475 n^{4} + 5481606482869342175442752374596254735042040410601593424396647838305 n^{3} + 514022493460799735661463612629691537317055187045018956446135606678845 n^{2} + 24084506281708919166577869225065341122286604796108903460807734383672826 n + 451108133857475576239159412353045086138801363142662873458904325533840120\right) a{\left(n + 91 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(86850823972358038840813623533797886122940764839075048713284838 n^{5} + 27381878766604922561725305790128001950428190849360107513602402045 n^{4} + 3453478885628439697988637857429293965611705633608158450432264985420 n^{3} + 217802972391578607999891572111128856579737122035212510503903922124375 n^{2} + 6868839728009022152771102403426274523530529183424581613235793705869722 n + 86657203620009491608454576845664012507846078401228906883568510270732240\right) a{\left(n + 63 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(95912534542338516556329863061859321219357152382210448462167077 n^{5} + 31630309408885675791339613115304359143335935244045018796341871560 n^{4} + 4172869799800369139515489387625902244060160631709001080115932373235 n^{3} + 275282552539289101833106352044148624331192402385611605420887174863120 n^{2} + 9081008926631117610448975876255665820876402489201137174513388620762768 n + 119836787208109505535250113577419276689155638518111639983642155134290800\right) a{\left(n + 66 \right)}}{18139852800000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(129762626201466477291418174405352071618393275085501736009593015 n^{5} + 53368464150439505620495314262237150529219213104120094305287499263 n^{4} + 8774999482365911806615773731231828140963686022266073767034237995167 n^{3} + 720996555334888165407135414793902428750706773558379784421740154537469 n^{2} + 29602493162120075291774220496632654952099695134947505807873077857428334 n + 485854842151400722883264199448980432828891062140337653500438958919923416\right) a{\left(n + 84 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(133805532508862255976279791456308585535274650155972700198143026 n^{5} + 42832900860288140607594551081966771590039003720485058614972037885 n^{4} + 5485112520716092328286123349982472145062286648705253581315264463940 n^{3} + 351242764186450072803065676700428325187884197196040403750801221784155 n^{2} + 11247141318002825332354572710003945783888472427749350332430033588462874 n + 144071785912877532896306266119626359709276318188746076855825814837400600\right) a{\left(n + 64 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(136399534503284263795050132744029964695595782976624418576995163 n^{5} + 54535288640061865633301387475788727120446990211664270952902024118 n^{4} + 8720060141308360571237008406780961186625659774194579052458044126121 n^{3} + 697018453054115465906021189243333763208309593911441347984258005518638 n^{2} + 27851435187452678244609817739644212240693220885881906132636983944366056 n + 445056076403922897797927714450276729098380574339181988202217996543318604\right) a{\left(n + 81 \right)}}{5441955840000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(200965193806777941912101259186494202660168031012822862058433939 n^{5} + 67245042070969964955079467742435256491216457954096340321196008875 n^{4} + 9001219642778064398815590304812652928010996576194201748613928940695 n^{3} + 602494720310062798933204551614709203311385613696399723596756583583855 n^{2} + 20165780047635032373799593565313845063065576911156150850393511650629676 n + 270007461802663981391763250264817683065146306464110507261527472062393460\right) a{\left(n + 67 \right)}}{27209779200000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(224869204006236069821134059987829502091802996291152350763353007 n^{5} + 90835888603720402068067046061800734146726316417935588236767394227 n^{4} + 14673388579138489131629710078821958835916147793874608956948469326951 n^{3} + 1184821737429549676394835185533591436654326249551967571415690739580645 n^{2} + 47821048908656531311045609789224221404267071595309324705295179502227890 n + 771813115081942854522941875607600186569542913099353886031599288994387928\right) a{\left(n + 82 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(271865118997157960550448055726863091871932971847372117304296784 n^{5} + 92279256732363274904050752018693986900686383461150537330798186285 n^{4} + 12530085802991902380243769895068159086279103379951934415339909471260 n^{3} + 850770621258369009428611039052516121301388176486474209176992033213525 n^{2} + 28885407273121604821085462138892001022909198086364158526804403730972146 n + 392320618799374819215438759113375619233767527165783668642317501993512480\right) a{\left(n + 68 \right)}}{27209779200000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(305076040997873994772738698275696178594878688082336227084848954 n^{5} + 110844757392077430349378517741116822220229568075379923577902502027 n^{4} + 16110166397848643477256207412752139349770253503834721267041293530512 n^{3} + 1170770228715790111629384913261369609041963810443167465222689644869765 n^{2} + 42543087971780654599980697138643066801326371015855300873072933336550830 n + 618387815747710053728387510872450245720318077847483139536874689887392656\right) a{\left(n + 73 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(351188048073423995495543245397510460574351187170071793623743701 n^{5} + 137351104351404787797721690020299254562783531744971263601491124601 n^{4} + 21485382358060692736046999498133364185466026754520562580830543150605 n^{3} + 1680273708706070217939276966265061778526541461185222281150796861059035 n^{2} + 65696221428193174317637046480312424116081463623569783970320978004342298 n + 1027333501309672151021098424205297658125499566583324623233688902003050536\right) a{\left(n + 79 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(367240845814437979468559388887240603570669567084890420137876620 n^{5} + 136889693477898430491984451685672188275095538556875583034019365415 n^{4} + 20410528482315511017871252849099887403466456505131456708636431917370 n^{3} + 1521634060660818063628560726080294680989702844853474450234764996744977 n^{2} + 56720148647608554422764466684462826347332758543660090888998108954355786 n + 845715545724812258919577602070913098632639596023617901248975846850362768\right) a{\left(n + 75 \right)}}{10883911680000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(443436863312281893631797416479762263458712106745912993833263771 n^{5} + 183572752913317473403840091619129550947367202359832784349362697520 n^{4} + 30372657268317254976893701155528520355881624688407468275994421915205 n^{3} + 2510387546815949394578552666759340753254739875075678589496024302940060 n^{2} + 103646596488818599172888561582344702306869051756399663427751952458178324 n + 1709959309987233032816707660403734886856423675602875907958204743477593920\right) a{\left(n + 85 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(555802152627344878052903561663787252656689805055527835706088326 n^{5} + 196655081497929157216364382356355256904826246247951995075113069725 n^{4} + 27834193353919567649247504310477612429207723992211017203622901907300 n^{3} + 1969924999685842224963555032199710950141992394864676333663074940941685 n^{2} + 69713575544272668334238228450313153349065373187219051734164455150712804 n + 986894277949732930675414673669132846275056708401286857794485440971346100\right) a{\left(n + 71 \right)}}{27209779200000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(625169767758973760280520063732553181665427223990089853332767351 n^{5} + 241691176442820951195689094211902903118269475353143452270915058120 n^{4} + 37372883364160028583641133438752096857811943839534752723143850891685 n^{3} + 2889304978293980727978795084907113817451847638504175731161707211349820 n^{2} + 111678363190466824641067369524966496292454886558934382294273780589126824 n + 1726519087853208017051499672440269976953446704009776861864675154164405200\right) a{\left(n + 78 \right)}}{18139852800000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(712451030417536505432445022480793684248822185778779707254969511 n^{5} + 245254435866755400229403767160936710058918800318170281971263633525 n^{4} + 33773426723254065057734389811837784305100039305868418360563068594635 n^{3} + 2325620781205111445296894237288476099256811652534832996165727010944715 n^{2} + 80076902335090345034302476881734418950624527372690800133230339881396734 n + 1102984135109148075864090249914881791640851131028670953809497594563286560\right) a{\left(n + 69 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(880269794212247939610104545393785531344725113483085655514312699 n^{5} + 358994238135225954112645293392088401522276250021238131446686991080 n^{4} + 58540818087331668323346383254413813097219060193331662137608576136365 n^{3} + 4771239192447707833887973802590469095057676983845283597824577915658840 n^{2} + 194354938556859486217615296749123986523083521928062694401260274428148336 n + 3165426566534748710389107528062292850550645515515837340114006571100701760\right) a{\left(n + 83 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(904242167048759224011192177948854013416024106363855200313244023 n^{5} + 315615318696080830050038589253374278387800739368873927557110294570 n^{4} + 44068085972978890021354063927862145718723841856615214084408772614485 n^{3} + 3076749878097437720515362246623140919397116693195545106121011580343630 n^{2} + 107414062991368809475200822348325643650436496412432698395792978655116652 n + 1500099505454472867534137798366221775209362710386033167953517904674380640\right) a{\left(n + 70 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(1323382785305633031337015820323908034407606974588117657461303651 n^{5} + 474549925683457472506221228828895282900979428093179143955406886465 n^{4} + 68070960775759014869069978974201895057816445998727250639560466535315 n^{3} + 4882411919469346943316071553909509304478348593812310351837591248750275 n^{2} + 175104983016850453765092758273608563191984874829313463764840028296773614 n + 2512135674866951481734327998155727934526770444206206460551144704786111880\right) a{\left(n + 72 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(1580513428550492101787178013314604616602483624410112055423916281 n^{5} + 625126614426234007615825085777379061297750281044205255428191894040 n^{4} + 98886784090187571534801823974189771940380859586714823269300785230775 n^{3} + 7820163004991594984543630259568246122878202662163685631218076347172860 n^{2} + 309169979684251920976527853076874201505239552633912456667835043753287124 n + 4888428879859621958452345357746565417146648602607554926003023962173978440\right) a{\left(n + 80 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(1701626472194199344024226023177578046958157293007406815922622212 n^{5} + 626296204957080027300641675028718145991860687741149560284132051185 n^{4} + 92207570143327053208932357680856758414172798168170000564678185760170 n^{3} + 6787869709076452613393850149678236636358949930736047073977250247516015 n^{2} + 249850007595589074523589523175236159479786340517754274949874834214936618 n + 3678688108385634976051693864418891548886026402913989554690939876597819960\right) a{\left(n + 74 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} + \frac{\left(1915380494370592181326101229143759714780894632375312729909165824 n^{5} + 722888654374234946081147816922397969266948773310587000030627459985 n^{4} + 109129661939329978271458054604339464857235421067011537942359037598590 n^{3} + 8237166300891317950658625339298295140197957508135583467052599108367835 n^{2} + 310867266319113433853588894858865502594466630108450936078454260768603766 n + 4692699504321859080405093268232494087318860687924106537520699151197408520\right) a{\left(n + 76 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)} - \frac{\left(1929681911191904793107785252085541147263552117987763195987368492 n^{5} + 737200744362148958016436196976331001657563250371280346902384627705 n^{4} + 112649884605292037089804353556924905444330927647362840985662380883690 n^{3} + 8606548311624256162379461640723889344737483109451007133536104083219035 n^{2} + 328759872145452435532867734803478495886430951878562373600020542762823718 n + 5023059424131237959663476013600144141676227827591308150212592520965217920\right) a{\left(n + 77 \right)}}{54419558400000000 \left(n + 154\right) \left(n + 156\right) \left(n + 157\right) \left(2 n + 309\right) \left(2 n + 313\right)}, \quad n \geq 156\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 278 rules.

Finding the specification took 4251 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 278 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{23}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{20}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= \frac{F_{22}\! \left(x \right)}{F_{23}\! \left(x \right)}\\ F_{22}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{23}\! \left(x \right) &= x\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{23}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{23}\! \left(x \right) F_{28}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{28}\! \left(x \right) &= \frac{F_{29}\! \left(x \right)}{F_{23}\! \left(x \right) F_{56}\! \left(x \right)}\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= -F_{34}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= \frac{F_{32}\! \left(x \right)}{F_{23}\! \left(x \right)}\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{2}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{23}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= -F_{43}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= \frac{F_{42}\! \left(x \right)}{F_{23}\! \left(x \right)}\\ F_{42}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{23}\! \left(x \right) F_{45}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{23}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{48}\! \left(x \right) &= \frac{F_{49}\! \left(x \right)}{F_{23}\! \left(x \right)}\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= -F_{51}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{23}\! \left(x \right) F_{48}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= -F_{45}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{56}\! \left(x \right) &= \frac{F_{57}\! \left(x \right)}{F_{23}\! \left(x \right) F_{45}\! \left(x \right) F_{71}\! \left(x \right)}\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{23}\! \left(x \right) F_{45}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= \frac{F_{61}\! \left(x \right)}{F_{23}\! \left(x \right)}\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{23}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{15}\! \left(x \right) F_{23}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{23}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{23}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{79}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{78}\! \left(x \right) &= 0\\ F_{79}\! \left(x \right) &= F_{23}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{23}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{15}\! \left(x \right) F_{23}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{4}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= -F_{135}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{133}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{15}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{23}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{23}\! \left(x \right) F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{23}\! \left(x \right) F_{97}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{126}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{111}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{109}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{112}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{117}\! \left(x \right)+F_{118}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{116}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{108}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{112}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{104}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{121}\! \left(x \right) &= 2 F_{78}\! \left(x \right)+F_{117}\! \left(x \right)+F_{122}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{125}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{101}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{121}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{120}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right) F_{15}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{130}\! \left(x \right) &= \frac{F_{131}\! \left(x \right)}{F_{23}\! \left(x \right)}\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)\\ F_{132}\! \left(x \right) &= -F_{92}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{135}\! \left(x \right) F_{23}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{133}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right) F_{276}\! \left(x \right)\\ F_{137}\! \left(x \right) &= \frac{F_{138}\! \left(x \right)}{F_{93}\! \left(x \right)}\\ F_{138}\! \left(x \right) &= -F_{88}\! \left(x \right)+F_{139}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{275}\! \left(x \right)\\ F_{140}\! \left(x \right) &= -F_{274}\! \left(x \right)+F_{141}\! \left(x \right)\\ F_{141}\! \left(x \right) &= \frac{F_{142}\! \left(x \right)}{F_{23}\! \left(x \right)}\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)\\ F_{143}\! \left(x \right) &= -F_{271}\! \left(x \right)+F_{144}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{244}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{195}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{148}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)+F_{158}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{150}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{152}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{149}\! \left(x \right)+F_{153}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{156}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{155}\! \left(x \right)\\ F_{155}\! \left(x \right) &= x^{2}\\ F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{150}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)+F_{171}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{170}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{161}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{163}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{159}\! \left(x \right)+F_{164}\! \left(x \right)\\ F_{164}\! \left(x \right) &= 2 F_{78}\! \left(x \right)+F_{165}\! \left(x \right)+F_{169}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{166}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{168}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{154}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{164}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{159}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{23}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{171}\! \left(x \right) &= 2 F_{78}\! \left(x \right)+F_{172}\! \left(x \right)+F_{193}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{173}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)+F_{178}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{150}\! \left(x \right)+F_{175}\! \left(x \right)\\ F_{175}\! \left(x \right) &= 2 F_{78}\! \left(x \right)+F_{157}\! \left(x \right)+F_{176}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{177}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{153}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{171}\! \left(x \right)+F_{179}\! \left(x \right)\\ F_{179}\! \left(x \right) &= 2 F_{78}\! \left(x \right)+F_{180}\! \left(x \right)+F_{184}\! \left(x \right)+F_{185}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{181}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{182}\! \left(x \right)+F_{183}\! \left(x \right)\\ F_{182}\! \left(x \right) &= F_{175}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{179}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{171}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{186}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{187}\! \left(x \right)\\ F_{187}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{188}\! \left(x \right)\\ F_{188}\! \left(x \right) &= 3 F_{78}\! \left(x \right)+F_{184}\! \left(x \right)+F_{189}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{190}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{190}\! \left(x \right) &= F_{191}\! \left(x \right)+F_{192}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{156}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{188}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{194}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{158}\! \left(x \right)+F_{187}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{196}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{197}\! \left(x \right)+F_{208}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{198}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)+F_{202}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{200}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{201}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{170}\! \left(x \right)+F_{199}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{203}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{197}\! \left(x \right)+F_{204}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)+F_{206}\! \left(x \right)\\ F_{205}\! \left(x \right) &= F_{170}\! \left(x \right)\\ F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{198}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{209}\! \left(x \right)+F_{220}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{210}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{211}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{212}\! \left(x \right)+F_{213}\! \left(x \right)\\ F_{212}\! \left(x \right) &= F_{205}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{209}\! \left(x \right)+F_{214}\! \left(x \right)\\ F_{214}\! \left(x \right) &= 2 F_{78}\! \left(x \right)+F_{215}\! \left(x \right)+F_{219}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{216}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{217}\! \left(x \right)+F_{218}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{205}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{214}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{209}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{220}\! \left(x \right) &= 2 F_{78}\! \left(x \right)+F_{221}\! \left(x \right)+F_{242}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{222}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{223}\! \left(x \right)+F_{227}\! \left(x \right)\\ F_{223}\! \left(x \right) &= F_{198}\! \left(x \right)+F_{224}\! \left(x \right)\\ F_{224}\! \left(x \right) &= 2 F_{78}\! \left(x \right)+F_{207}\! \left(x \right)+F_{225}\! \left(x \right)\\ F_{225}\! \left(x \right) &= F_{226}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{226}\! \left(x \right) &= F_{204}\! \left(x \right)\\ F_{227}\! \left(x \right) &= F_{220}\! \left(x \right)+F_{228}\! \left(x \right)\\ F_{228}\! \left(x \right) &= 2 F_{78}\! \left(x \right)+F_{229}\! \left(x \right)+F_{233}\! \left(x \right)+F_{234}\! \left(x \right)\\ F_{229}\! \left(x \right) &= F_{23}\! \left(x \right) F_{230}\! \left(x \right)\\ F_{230}\! \left(x \right) &= F_{231}\! \left(x \right)+F_{232}\! \left(x \right)\\ F_{231}\! \left(x \right) &= F_{224}\! \left(x \right)\\ F_{232}\! \left(x \right) &= F_{228}\! \left(x \right)\\ F_{233}\! \left(x \right) &= F_{220}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{234}\! \left(x \right) &= F_{23}\! \left(x \right) F_{235}\! \left(x \right)\\ F_{235}\! \left(x \right) &= F_{236}\! \left(x \right)\\ F_{236}\! \left(x \right) &= F_{214}\! \left(x \right)+F_{237}\! \left(x \right)\\ F_{237}\! \left(x \right) &= 3 F_{78}\! \left(x \right)+F_{233}\! \left(x \right)+F_{238}\! \left(x \right)\\ F_{238}\! \left(x \right) &= F_{23}\! \left(x \right) F_{239}\! \left(x \right)\\ F_{239}\! \left(x \right) &= F_{240}\! \left(x \right)+F_{241}\! \left(x \right)\\ F_{240}\! \left(x \right) &= F_{206}\! \left(x \right)\\ F_{241}\! \left(x \right) &= F_{237}\! \left(x \right)\\ F_{242}\! \left(x \right) &= F_{23}\! \left(x \right) F_{243}\! \left(x \right)\\ F_{243}\! \left(x \right) &= F_{208}\! \left(x \right)+F_{236}\! \left(x \right)\\ F_{244}\! \left(x \right) &= F_{245}\! \left(x \right)\\ F_{245}\! \left(x \right) &= F_{23}\! \left(x \right) F_{246}\! \left(x \right)\\ F_{246}\! \left(x \right) &= F_{247}\! \left(x \right)+F_{261}\! \left(x \right)\\ F_{247}\! \left(x \right) &= F_{248}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{248}\! \left(x \right) &= F_{249}\! \left(x \right)+F_{251}\! \left(x \right)\\ F_{249}\! \left(x \right) &= F_{250}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{250}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{251}\! \left(x \right) &= F_{252}\! \left(x \right)+F_{253}\! \left(x \right)\\ F_{252}\! \left(x \right) &= F_{46}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{253}\! \left(x \right) &= F_{254}\! \left(x \right)\\ F_{254}\! \left(x \right) &= F_{23}\! \left(x \right) F_{255}\! \left(x \right)\\ F_{255}\! \left(x \right) &= F_{256}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{256}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{257}\! \left(x \right)\\ F_{257}\! \left(x \right) &= F_{258}\! \left(x \right)\\ F_{258}\! \left(x \right) &= F_{23}\! \left(x \right) F_{259}\! \left(x \right)\\ F_{259}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{260}\! \left(x \right)\\ F_{260}\! \left(x \right) &= F_{257}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{261}\! \left(x \right) &= F_{262}\! \left(x \right)+F_{270}\! \left(x \right)\\ F_{262}\! \left(x \right) &= F_{263}\! \left(x \right)\\ F_{263}\! \left(x \right) &= F_{15}\! \left(x \right) F_{23}\! \left(x \right) F_{264}\! \left(x \right)\\ F_{264}\! \left(x \right) &= \frac{F_{265}\! \left(x \right)}{F_{23}\! \left(x \right)}\\ F_{265}\! \left(x \right) &= F_{266}\! \left(x \right)\\ F_{266}\! \left(x \right) &= F_{267}\! \left(x \right)+F_{269}\! \left(x \right)\\ F_{267}\! \left(x \right) &= F_{268}\! \left(x \right)\\ F_{268}\! \left(x \right) &= F_{130}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{269}\! \left(x \right) &= F_{55}\! \left(x \right) F_{93}\! \left(x \right)\\ F_{270}\! \left(x \right) &= F_{145}\! \left(x \right) F_{84}\! \left(x \right)\\ F_{271}\! \left(x \right) &= F_{272}\! \left(x \right)\\ F_{272}\! \left(x \right) &= F_{23}\! \left(x \right) F_{249}\! \left(x \right) F_{273}\! \left(x \right)\\ F_{273}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{274}\! \left(x \right) &= F_{16}\! \left(x \right) F_{248}\! \left(x \right)\\ F_{275}\! \left(x \right) &= F_{16}\! \left(x \right) F_{251}\! \left(x \right)\\ F_{276}\! \left(x \right) &= F_{277}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{277}\! \left(x \right) &= -F_{5}\! \left(x \right)+F_{40}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 286 rules.

Finding the specification took 11024 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 286 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{28}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right) F_{28}\! \left(x \right) F_{84}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= \frac{F_{27}\! \left(x \right)}{F_{28}\! \left(x \right)}\\ F_{27}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{28}\! \left(x \right) &= x\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{28}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{28}\! \left(x \right) F_{33}\! \left(x \right) F_{84}\! \left(x \right)\\ F_{33}\! \left(x \right) &= \frac{F_{34}\! \left(x \right)}{F_{28}\! \left(x \right) F_{39}\! \left(x \right)}\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= -F_{38}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= \frac{F_{37}\! \left(x \right)}{F_{28}\! \left(x \right)}\\ F_{37}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{2}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{39}\! \left(x \right) &= \frac{F_{40}\! \left(x \right)}{F_{83}\! \left(x \right)}\\ F_{40}\! \left(x \right) &= -F_{81}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= \frac{F_{42}\! \left(x \right)}{F_{28}\! \left(x \right)}\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{28}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{18}\! \left(x \right) F_{28}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{28}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{56}\! \left(x \right) &= -F_{5}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= -F_{60}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= \frac{F_{59}\! \left(x \right)}{F_{28}\! \left(x \right)}\\ F_{59}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{28}\! \left(x \right) F_{62}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{28}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{65}\! \left(x \right) &= \frac{F_{66}\! \left(x \right)}{F_{28}\! \left(x \right)}\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= -F_{68}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{28}\! \left(x \right) F_{65}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= -F_{62}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{28}\! \left(x \right) F_{39}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{28}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{28}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{28}\! \left(x \right) F_{33}\! \left(x \right) F_{39}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{4}\! \left(x \right) F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= -F_{146}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{18}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{28}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{28}\! \left(x \right) F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{95}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{28}\! \left(x \right) F_{96}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{115}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{107}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{108}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{110}\! \left(x \right)+F_{114}\! \left(x \right)\\ F_{109}\! \left(x \right) &= 0\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{113}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{108}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{103}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{116}\! \left(x \right)+F_{137}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{122}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{109}\! \left(x \right)+F_{120}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{121}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{99}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{123}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{124}\! \left(x \right)+F_{128}\! \left(x \right)+F_{129}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{127}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{119}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{123}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{115}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{132}\! \left(x \right)\\ F_{132}\! \left(x \right) &= 2 F_{109}\! \left(x \right)+F_{128}\! \left(x \right)+F_{133}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{136}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{132}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{138}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{131}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right) F_{18}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{141}\! \left(x \right) &= \frac{F_{142}\! \left(x \right)}{F_{28}\! \left(x \right)}\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)\\ F_{143}\! \left(x \right) &= -F_{91}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right) F_{28}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{144}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{148}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{148}\! \left(x \right) &= \frac{F_{149}\! \left(x \right)}{F_{92}\! \left(x \right)}\\ F_{149}\! \left(x \right) &= -F_{87}\! \left(x \right)+F_{150}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)+F_{285}\! \left(x \right)\\ F_{151}\! \left(x \right) &= -F_{284}\! \left(x \right)+F_{152}\! \left(x \right)\\ F_{152}\! \left(x \right) &= \frac{F_{153}\! \left(x \right)}{F_{28}\! \left(x \right)}\\ F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)\\ F_{154}\! \left(x \right) &= -F_{282}\! \left(x \right)+F_{155}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{255}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{158}\! \left(x \right)+F_{206}\! \left(x \right)\\ F_{158}\! \left(x \right) &= F_{159}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{169}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{163}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{164}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{165}\! \left(x \right)+F_{167}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{166}\! \left(x \right)\\ F_{166}\! \left(x \right) &= x^{2}\\ F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{161}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)+F_{182}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{171}\! \left(x \right)+F_{181}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{172}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{174}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{165}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{170}\! \left(x \right)+F_{175}\! \left(x \right)\\ F_{175}\! \left(x \right) &= 2 F_{109}\! \left(x \right)+F_{176}\! \left(x \right)+F_{180}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{177}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{179}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{165}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{175}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{170}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{28}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{182}\! \left(x \right) &= 2 F_{109}\! \left(x \right)+F_{183}\! \left(x \right)+F_{204}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{184}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{185}\! \left(x \right)+F_{189}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{186}\! \left(x \right)\\ F_{186}\! \left(x \right) &= 2 F_{109}\! \left(x \right)+F_{168}\! \left(x \right)+F_{187}\! \left(x \right)\\ F_{187}\! \left(x \right) &= F_{188}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{188}\! \left(x \right) &= F_{164}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{182}\! \left(x \right)+F_{190}\! \left(x \right)\\ F_{190}\! \left(x \right) &= 2 F_{109}\! \left(x \right)+F_{191}\! \left(x \right)+F_{195}\! \left(x \right)+F_{196}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{192}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{193}\! \left(x \right)+F_{194}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{186}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{190}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{182}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{197}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{198}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{175}\! \left(x \right)+F_{199}\! \left(x \right)\\ F_{199}\! \left(x \right) &= 3 F_{109}\! \left(x \right)+F_{195}\! \left(x \right)+F_{200}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{201}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{202}\! \left(x \right)+F_{203}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{167}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{199}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{205}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{205}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{198}\! \left(x \right)\\ F_{206}\! \left(x \right) &= F_{207}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{208}\! \left(x \right)+F_{219}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{209}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{210}\! \left(x \right)+F_{213}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{211}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{212}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{212}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{181}\! \left(x \right)+F_{210}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{214}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{208}\! \left(x \right)+F_{215}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)+F_{217}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{181}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{218}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{209}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{220}\! \left(x \right)+F_{231}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{221}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{222}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{223}\! \left(x \right)+F_{224}\! \left(x \right)\\ F_{223}\! \left(x \right) &= F_{216}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{224}\! \left(x \right) &= F_{220}\! \left(x \right)+F_{225}\! \left(x \right)\\ F_{225}\! \left(x \right) &= 2 F_{109}\! \left(x \right)+F_{226}\! \left(x \right)+F_{230}\! \left(x \right)\\ F_{226}\! \left(x \right) &= F_{227}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{227}\! \left(x \right) &= F_{228}\! \left(x \right)+F_{229}\! \left(x \right)\\ F_{228}\! \left(x \right) &= F_{216}\! \left(x \right)\\ F_{229}\! \left(x \right) &= F_{225}\! \left(x \right)\\ F_{230}\! \left(x \right) &= F_{220}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{231}\! \left(x \right) &= 2 F_{109}\! \left(x \right)+F_{232}\! \left(x \right)+F_{253}\! \left(x \right)\\ F_{232}\! \left(x \right) &= F_{233}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{233}\! \left(x \right) &= F_{234}\! \left(x \right)+F_{238}\! \left(x \right)\\ F_{234}\! \left(x \right) &= F_{209}\! \left(x \right)+F_{235}\! \left(x \right)\\ F_{235}\! \left(x \right) &= 2 F_{109}\! \left(x \right)+F_{218}\! \left(x \right)+F_{236}\! \left(x \right)\\ F_{236}\! \left(x \right) &= F_{237}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{237}\! \left(x \right) &= F_{215}\! \left(x \right)\\ F_{238}\! \left(x \right) &= F_{231}\! \left(x \right)+F_{239}\! \left(x \right)\\ F_{239}\! \left(x \right) &= 2 F_{109}\! \left(x \right)+F_{240}\! \left(x \right)+F_{244}\! \left(x \right)+F_{245}\! \left(x \right)\\ F_{240}\! \left(x \right) &= F_{241}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{241}\! \left(x \right) &= F_{242}\! \left(x \right)+F_{243}\! \left(x \right)\\ F_{242}\! \left(x \right) &= F_{235}\! \left(x \right)\\ F_{243}\! \left(x \right) &= F_{239}\! \left(x \right)\\ F_{244}\! \left(x \right) &= F_{231}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{245}\! \left(x \right) &= F_{246}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{246}\! \left(x \right) &= F_{247}\! \left(x \right)\\ F_{247}\! \left(x \right) &= F_{225}\! \left(x \right)+F_{248}\! \left(x \right)\\ F_{248}\! \left(x \right) &= 3 F_{109}\! \left(x \right)+F_{244}\! \left(x \right)+F_{249}\! \left(x \right)\\ F_{249}\! \left(x \right) &= F_{250}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{250}\! \left(x \right) &= F_{251}\! \left(x \right)+F_{252}\! \left(x \right)\\ F_{251}\! \left(x \right) &= F_{217}\! \left(x \right)\\ F_{252}\! \left(x \right) &= F_{248}\! \left(x \right)\\ F_{253}\! \left(x \right) &= F_{254}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{254}\! \left(x \right) &= F_{219}\! \left(x \right)+F_{247}\! \left(x \right)\\ F_{255}\! \left(x \right) &= F_{256}\! \left(x \right)\\ F_{256}\! \left(x \right) &= F_{257}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{257}\! \left(x \right) &= F_{258}\! \left(x \right)+F_{272}\! \left(x \right)\\ F_{258}\! \left(x \right) &= F_{259}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{259}\! \left(x \right) &= F_{260}\! \left(x \right)+F_{262}\! \left(x \right)\\ F_{260}\! \left(x \right) &= F_{261}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{261}\! \left(x \right) &= F_{157}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{262}\! \left(x \right) &= F_{263}\! \left(x \right)+F_{264}\! \left(x \right)\\ F_{263}\! \left(x \right) &= F_{63}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{264}\! \left(x \right) &= F_{265}\! \left(x \right)\\ F_{265}\! \left(x \right) &= F_{266}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{266}\! \left(x \right) &= F_{267}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{267}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{268}\! \left(x \right)\\ F_{268}\! \left(x \right) &= F_{269}\! \left(x \right)\\ F_{269}\! \left(x \right) &= F_{270}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{270}\! \left(x \right) &= F_{271}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{271}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{268}\! \left(x \right)\\ F_{272}\! \left(x \right) &= F_{273}\! \left(x \right)+F_{281}\! \left(x \right)\\ F_{273}\! \left(x \right) &= F_{274}\! \left(x \right)\\ F_{274}\! \left(x \right) &= F_{18}\! \left(x \right) F_{275}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{275}\! \left(x \right) &= \frac{F_{276}\! \left(x \right)}{F_{28}\! \left(x \right)}\\ F_{276}\! \left(x \right) &= F_{277}\! \left(x \right)\\ F_{277}\! \left(x \right) &= F_{278}\! \left(x \right)+F_{280}\! \left(x \right)\\ F_{278}\! \left(x \right) &= F_{279}\! \left(x \right)\\ F_{279}\! \left(x \right) &= F_{141}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{280}\! \left(x \right) &= F_{72}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{281}\! \left(x \right) &= F_{156}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{282}\! \left(x \right) &= F_{283}\! \left(x \right)\\ F_{283}\! \left(x \right) &= F_{15}\! \left(x \right) F_{260}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{284}\! \left(x \right) &= F_{19}\! \left(x \right) F_{259}\! \left(x \right)\\ F_{285}\! \left(x \right) &= F_{19}\! \left(x \right) F_{262}\! \left(x \right)\\ \end{align*}\)