Av(12453, 12534, 12543, 13452, 13542, 14352, 23451, 23541, 24351)
Counting Sequence
1, 1, 2, 6, 24, 111, 549, 2822, 14909, 80462, 441698, 2458551, 13842796, 78699706, 451141326, ...
This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 107 rules.
Finding the specification took 2489 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 107 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{10}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\
F_{7}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y\right)+F_{72}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\
F_{8}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{9}\! \left(x , y\right)\\
F_{9}\! \left(x , y\right) &= -\frac{-F_{7}\! \left(x , y\right) y +F_{7}\! \left(x , 1\right)}{-1+y}\\
F_{10}\! \left(x \right) &= x\\
F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{40}\! \left(x , y\right)\\
F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)+F_{55}\! \left(x , y\right)\\
F_{13}\! \left(x , y\right) &= F_{14}\! \left(x \right)+F_{42}\! \left(x , y\right)\\
F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{10}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{13}\! \left(x , 1\right)\\
F_{17}\! \left(x \right) &= F_{10}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{20}\! \left(x \right) &= 0\\
F_{21}\! \left(x \right) &= F_{10}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x , 1\right)\\
F_{23}\! \left(x , y\right) &= 2 F_{20}\! \left(x \right)+F_{24}\! \left(x , y\right)+F_{26}\! \left(x , y\right)+F_{52}\! \left(x , y\right)\\
F_{24}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{25}\! \left(x , y\right)\\
F_{25}\! \left(x , y\right) &= -\frac{-F_{23}\! \left(x , y\right) y +F_{23}\! \left(x , 1\right)}{-1+y}\\
F_{26}\! \left(x , y\right) &= F_{27}\! \left(x , y\right)\\
F_{27}\! \left(x , y\right) &= F_{28}\! \left(x , y\right) F_{40}\! \left(x , y\right)\\
F_{28}\! \left(x , y\right) &= F_{19}\! \left(x \right)+F_{29}\! \left(x , y\right)\\
F_{29}\! \left(x , y\right) &= F_{30}\! \left(x , y\right)\\
F_{30}\! \left(x , y\right) &= F_{31}\! \left(x , y\right) F_{40}\! \left(x , y\right)\\
F_{32}\! \left(x , y\right) &= F_{31}\! \left(x , y\right)+F_{46}\! \left(x , y\right)\\
F_{33}\! \left(x , y\right) &= F_{32}\! \left(x , y\right) F_{40}\! \left(x , y\right)\\
F_{33}\! \left(x , y\right) &= F_{34}\! \left(x , y\right)\\
F_{34}\! \left(x , y\right) &= F_{20}\! \left(x \right)+F_{35}\! \left(x , y\right)+F_{37}\! \left(x , y\right)+F_{41}\! \left(x , y\right)+F_{45}\! \left(x , y\right)\\
F_{35}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{36}\! \left(x , y\right)\\
F_{36}\! \left(x , y\right) &= -\frac{y \left(F_{34}\! \left(x , 1\right)-F_{34}\! \left(x , y\right)\right)}{-1+y}\\
F_{37}\! \left(x , y\right) &= F_{38}\! \left(x , y\right) F_{40}\! \left(x , y\right)\\
F_{38}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)+F_{39}\! \left(x , y\right)\\
F_{39}\! \left(x , y\right) &= F_{28}\! \left(x , y\right)\\
F_{40}\! \left(x , y\right) &= y x\\
F_{41}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{42}\! \left(x , y\right)\\
F_{42}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{20}\! \left(x \right)+F_{43}\! \left(x , y\right)+F_{45}\! \left(x , y\right)\\
F_{43}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{44}\! \left(x , y\right)\\
F_{44}\! \left(x , y\right) &= -\frac{y \left(F_{42}\! \left(x , 1\right)-F_{42}\! \left(x , y\right)\right)}{-1+y}\\
F_{45}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{34}\! \left(x , y\right)\\
F_{46}\! \left(x , y\right) &= F_{47}\! \left(x , y\right)+F_{49}\! \left(x , y\right)\\
F_{48}\! \left(x , y\right) &= F_{40}\! \left(x , y\right) F_{47}\! \left(x , y\right)\\
F_{48}\! \left(x , y\right) &= F_{42}\! \left(x , y\right)\\
F_{49}\! \left(x , y\right) &= F_{28}\! \left(x , y\right)+F_{50}\! \left(x , y\right)\\
F_{50}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{51}\! \left(x , y\right)\\
F_{51}\! \left(x , y\right) &= -\frac{-F_{49}\! \left(x , y\right) y +F_{49}\! \left(x , 1\right)}{-1+y}\\
F_{52}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{13}\! \left(x , y\right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x , 1\right)\\
F_{54}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{40}\! \left(x , y\right)\\
F_{55}\! \left(x , y\right) &= y F_{56}\! \left(x , y\right)\\
F_{57}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)+F_{56}\! \left(x , y\right)\\
F_{57}\! \left(x , y\right) &= F_{58}\! \left(x \right)+F_{90}\! \left(x , y\right)\\
F_{58}\! \left(x \right) &= -F_{89}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{60}\! \left(x \right)+F_{83}\! \left(x \right)+F_{84}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{10}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x , 1\right)\\
F_{62}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{63}\! \left(x , y\right)+F_{65}\! \left(x , y\right)+F_{70}\! \left(x , y\right)+F_{72}\! \left(x , y\right)+F_{74}\! \left(x , y\right)\\
F_{63}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{64}\! \left(x , y\right)\\
F_{64}\! \left(x , y\right) &= -\frac{-F_{62}\! \left(x , y\right) y +F_{62}\! \left(x , 1\right)}{-1+y}\\
F_{65}\! \left(x , y\right) &= F_{40}\! \left(x , y\right) F_{66}\! \left(x , y\right)\\
F_{66}\! \left(x , y\right) &= F_{67}\! \left(x , y\right)+F_{69}\! \left(x , y\right)\\
F_{67}\! \left(x , y\right) &= F_{57}\! \left(x , y\right)+F_{68}\! \left(x , y\right)\\
F_{68}\! \left(x , y\right) &= F_{55}\! \left(x , y\right)\\
F_{69}\! \left(x , y\right) &= F_{56}\! \left(x , y\right)\\
F_{70}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{71}\! \left(x , y\right)\\
F_{71}\! \left(x , y\right) &= -\frac{-F_{57}\! \left(x , y\right) y +F_{57}\! \left(x , 1\right)}{-1+y}\\
F_{72}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{73}\! \left(x , y\right)\\
F_{73}\! \left(x , y\right) &= -\frac{-F_{13}\! \left(x , y\right) y +F_{13}\! \left(x , 1\right)}{-1+y}\\
F_{74}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{75}\! \left(x , y\right)\\
F_{75}\! \left(x , y\right) &= F_{76}\! \left(x , y\right)+F_{78}\! \left(x , y\right)\\
F_{76}\! \left(x , y\right) &= -\frac{-y F_{77}\! \left(x , y\right)+F_{77}\! \left(x , 1\right)}{-1+y}\\
F_{77}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)+F_{23}\! \left(x , y\right)\\
F_{78}\! \left(x , y\right) &= F_{79}\! \left(x , y\right)\\
F_{79}\! \left(x , y\right) &= 3 F_{20}\! \left(x \right)+F_{72}\! \left(x , y\right)+F_{80}\! \left(x , y\right)+F_{82}\! \left(x , y\right)\\
F_{80}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{81}\! \left(x , y\right)\\
F_{81}\! \left(x , y\right) &= -\frac{-F_{79}\! \left(x , y\right) y +F_{79}\! \left(x , 1\right)}{-1+y}\\
F_{82}\! \left(x , y\right) &= F_{27}\! \left(x , y\right)\\
F_{83}\! \left(x \right) &= F_{10}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{10}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{86}\! \left(x , 1\right)\\
F_{86}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{87}\! \left(x , y\right)\\
F_{87}\! \left(x , y\right) &= F_{77}\! \left(x , y\right)+F_{88}\! \left(x , y\right)\\
F_{88}\! \left(x , y\right) &= F_{28}\! \left(x , y\right)\\
F_{89}\! \left(x \right) &= F_{90}\! \left(x , 1\right)\\
F_{90}\! \left(x , y\right) &= F_{42}\! \left(x , y\right)+F_{91}\! \left(x , y\right)\\
F_{91}\! \left(x , y\right) &= F_{92}\! \left(x , y\right)\\
F_{92}\! \left(x , y\right) &= F_{40}\! \left(x , y\right) F_{93}\! \left(x , y\right)\\
F_{93}\! \left(x , y\right) &= 2 F_{20}\! \left(x \right)+F_{100}\! \left(x , y\right)+F_{103}\! \left(x , y\right)+F_{94}\! \left(x , y\right)\\
F_{94}\! \left(x , y\right) &= F_{95}\! \left(x , y\right)\\
F_{95}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{96}\! \left(x , y\right)\\
F_{97}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{96}\! \left(x , y\right)\\
F_{97}\! \left(x , y\right) &= F_{98}\! \left(x , y\right)\\
F_{99}\! \left(x , y\right) &= F_{56}\! \left(x , y\right)+F_{98}\! \left(x , y\right)\\
F_{99}\! \left(x , y\right) &= -\frac{-y F_{56}\! \left(x , y\right)+F_{56}\! \left(x , 1\right)}{-1+y}\\
F_{100}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{101}\! \left(x , y\right)\\
F_{102}\! \left(x , y\right) &= F_{101}\! \left(x , y\right) F_{40}\! \left(x , y\right)\\
F_{102}\! \left(x , y\right) &= F_{42}\! \left(x , y\right)\\
F_{103}\! \left(x , y\right) &= F_{104}\! \left(x , y\right)\\
F_{104}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{105}\! \left(x , y\right)\\
F_{106}\! \left(x , y\right) &= F_{105}\! \left(x , y\right) F_{40}\! \left(x , y\right)\\
F_{106}\! \left(x , y\right) &= F_{29}\! \left(x , y\right)\\
\end{align*}\)