Av(1243, 1342, 2143, 2413, 3412, 4132)
Generating Function
\(\displaystyle \frac{2 x^{7}-6 x^{6}+x^{5}-5 x^{4}+19 x^{3}-18 x^{2}+7 x -1}{\left(x -1\right) \left(x^{2}-3 x +1\right) \left(2 x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 18, 49, 128, 328, 833, 2108, 5332, 13505, 34288, 87312, 223041, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x -1\right) \left(x^{2}-3 x +1\right) \left(2 x -1\right)^{2} F \! \left(x \right)+2 x^{7}-6 x^{6}+x^{5}-5 x^{4}+19 x^{3}-18 x^{2}+7 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 18\)
\(\displaystyle a \! \left(5\right) = 49\)
\(\displaystyle a \! \left(6\right) = 128\)
\(\displaystyle a \! \left(7\right) = 328\)
\(\displaystyle a \! \left(n +4\right) = -4 a \! \left(n \right)+16 a \! \left(n +1\right)-17 a \! \left(n +2\right)+7 a \! \left(n +3\right)+1, \quad n \geq 8\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 18\)
\(\displaystyle a \! \left(5\right) = 49\)
\(\displaystyle a \! \left(6\right) = 128\)
\(\displaystyle a \! \left(7\right) = 328\)
\(\displaystyle a \! \left(n +4\right) = -4 a \! \left(n \right)+16 a \! \left(n +1\right)-17 a \! \left(n +2\right)+7 a \! \left(n +3\right)+1, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ 2 & n =2 \\ \frac{\left(-4 \sqrt{5}+20\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{40}+\frac{\left(4 \sqrt{5}+20\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{40}-1+\\\frac{\left(5 n -5\right) 2^{n}}{40} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 35 rules.
Found on July 23, 2021.Finding the specification took 3 seconds.
Copy 35 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{13}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{14}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{13}\! \left(x \right) &= x\\
F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{13}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{13}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{13}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{24}\! \left(x \right) &= 0\\
F_{25}\! \left(x \right) &= F_{13}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{13}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{13}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{13}\! \left(x \right) F_{20}\! \left(x \right) F_{32}\! \left(x \right)\\
\end{align*}\)