Av(1243, 1342, 1423, 1432, 2143, 35142, 354162, 461325, 465132)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(3 x^{2}-5 x +1\right) \sqrt{1-4 x}+4 x^{3}-5 x^{2}+5 x -1}{8 x^{2}-2 x}\)
Counting Sequence
1, 1, 2, 6, 19, 63, 216, 759, 2717, 9867, 36244, 134368, 501942, 1886966, 7131840, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(4 x -1\right) F \left(x \right)^{2}-\left(4 x -1\right) \left(x^{2}-x +1\right) F \! \left(x \right)+x^{4}-4 x^{2}+5 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +3\right) = \frac{6 \left(-1+2 n \right) a \! \left(n \right)}{n +4}-\frac{\left(30+23 n \right) a \! \left(1+n \right)}{n +4}+\frac{3 \left(8+3 n \right) a \! \left(n +2\right)}{n +4}, \quad n \geq 5\)

This specification was found using the strategy pack "All The Strategies 2 Expand Verified" and has 16 rules.

Found on January 21, 2022.

Finding the specification took 41 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 16 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{0}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{8} \left(x \right)^{2} F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= x\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{13}\! \left(x \right) &= -F_{8}\! \left(x \right)+F_{0}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{11} \left(x \right)^{2} F_{8} \left(x \right)^{3}\\ \end{align*}\)

This specification was found using the strategy pack "Insertion Row And Col Placements Expand Verified" and has 32 rules.

Found on January 21, 2022.

Finding the specification took 35 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 32 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{10}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{11}\! \left(x \right)\\ F_{10}\! \left(x \right) &= x\\ F_{11}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{11} \left(x \right)^{2} F_{10}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{11}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= -F_{11}\! \left(x \right)+F_{0}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{11}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{10}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{11}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{26}\! \left(x \right) &= -F_{16}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= \frac{F_{28}\! \left(x \right)}{F_{10}\! \left(x \right)}\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{18}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{18}\! \left(x \right) F_{20}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Insertion Point Placements Req Corrob Expand Verified" and has 24 rules.

Found on January 21, 2022.

Finding the specification took 30 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 24 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{11}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= x\\ F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{11}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{16}\! \left(x \right) &= \frac{F_{17}\! \left(x \right)}{F_{11}\! \left(x \right)}\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{13}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{13}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= -F_{12}\! \left(x \right)+F_{0}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{11}\! \left(x \right) F_{13}\! \left(x \right)\\ \end{align*}\)