Av(1243, 1342, 1423, 1432, 2143, 2413)
Generating Function
\(\displaystyle \frac{1-\sqrt{-4 x^{3}-4 x +1}}{2 x \left(x^{2}+1\right)}\)
Counting Sequence
1, 1, 2, 6, 18, 57, 190, 654, 2306, 8290, 30272, 111973, 418666, 1579803, 6008464, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x^{2}+1\right) F \left(x
\right)^{2}-F \! \left(x \right)+1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 18\)
\(\displaystyle a \! \left(n \right) = -\frac{4 \left(n +3\right) a \! \left(n +2\right)}{3+2 n}+\frac{\left(6+n \right) a \! \left(n +3\right)}{6+4 n}-\frac{\left(9+2 n \right) a \! \left(n +4\right)}{3+2 n}+\frac{\left(6+n \right) a \! \left(n +5\right)}{6+4 n}, \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 18\)
\(\displaystyle a \! \left(n \right) = -\frac{4 \left(n +3\right) a \! \left(n +2\right)}{3+2 n}+\frac{\left(6+n \right) a \! \left(n +3\right)}{6+4 n}-\frac{\left(9+2 n \right) a \! \left(n +4\right)}{3+2 n}+\frac{\left(6+n \right) a \! \left(n +5\right)}{6+4 n}, \quad n \geq 5\)
This specification was found using the strategy pack "Point Placements" and has 10 rules.
Found on July 23, 2021.Finding the specification took 3 seconds.
Copy 10 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{0}\! \left(x \right) F_{7}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{0}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= x\\
\end{align*}\)