Av(1243, 1324, 1342, 2314, 2341, 3124)
View Raw Data
Generating Function
\(\displaystyle \frac{-\sqrt{-4 x +1}\, x^{2}+3 x^{2}+\sqrt{-4 x +1}-1}{2 \left(x -1\right) x}\)
Counting Sequence
1, 1, 2, 6, 18, 55, 173, 560, 1858, 6291, 21657, 75581, 266797, 950911, 3417339, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x -1\right)^{2} F \left(x \right)^{2}-\left(x -1\right) \left(3 x^{2}-1\right) F \! \left(x \right)+x^{4}+2 x^{3}-2 x^{2}-x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 18\)
\(\displaystyle a \! \left(n +2\right) = \frac{2 \left(-1+2 n \right) a \! \left(n \right)}{n +3}+\frac{\left(5+3 n \right) a \! \left(n +1\right)}{n +3}+\frac{6 n}{n +3}, \quad n \geq 5\)

This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 27 rules.

Found on January 20, 2022.

Finding the specification took 13 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 27 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{18}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{18}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x , 1\right)\\ F_{10}\! \left(x , y\right) &= \frac{y F_{11}\! \left(x , y\right)-F_{11}\! \left(x , 1\right)}{-1+y}\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)+F_{5}\! \left(x \right)\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{19}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{15}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{18}\! \left(x \right)\\ F_{17}\! \left(x , y\right) &= \frac{y F_{14}\! \left(x , y\right)-F_{14}\! \left(x , 1\right)}{-1+y}\\ F_{18}\! \left(x \right) &= x\\ F_{19}\! \left(x , y\right) &= y x\\ F_{20}\! \left(x \right) &= F_{18}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{18}\! \left(x \right) F_{23}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{14}\! \left(x , 1\right)\\ F_{24}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{18}\! \left(x \right) F_{24}\! \left(x \right)\\ \end{align*}\)