Av(1243, 1324, 1342, 1423, 2314, 3142)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(2 x -1\right)^{2}}{x^{4}-3 x^{3}+7 x^{2}-5 x +1}\)
Counting Sequence
1, 1, 2, 6, 18, 53, 155, 452, 1316, 3828, 11129, 32345, 93990, 273094, 793446, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{4}-3 x^{3}+7 x^{2}-5 x +1\right) F \! \left(x \right)-\left(2 x -1\right)^{2} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = -a \! \left(n \right)+3 a \! \left(n +1\right)-7 a \! \left(n +2\right)+5 a \! \left(n +3\right), \quad n \geq 4\)
Explicit Closed Form
\(\displaystyle -\frac{64 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{4}-3 Z^{3}+7 Z^{2}-5 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{283}+\frac{185 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{4}-3 Z^{3}+7 Z^{2}-5 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{283}-\frac{273 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{4}-3 Z^{3}+7 Z^{2}-5 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{283}+\frac{100 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{4}-3 Z^{3}+7 Z^{2}-5 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{283}\)

This specification was found using the strategy pack "Point Placements" and has 26 rules.

Found on July 23, 2021.

Finding the specification took 4 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 26 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{0}\! \left(x \right) F_{12}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{22}\! \left(x \right) &= 0\\ F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\ \end{align*}\)