Av(12435, 13425, 14325, 21435, 23415, 24315, 31425, 32415)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 112, 570, 3062, 17066, 97700, 570862, 3389812, 20394106, 124034760, 761292536, ...

This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 34 rules.

Found on January 23, 2022.

Finding the specification took 174 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 34 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{3}\! \left(x \right) &= x\\ F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{33}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{3}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\ F_{7}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y\right)+F_{31}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{8}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= -\frac{-y F_{7}\! \left(x , y\right)+F_{7}\! \left(x , 1\right)}{-1+y}\\ F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{11}\! \left(x , y\right) &= -\frac{-y F_{12}\! \left(x , y\right)+F_{12}\! \left(x , 1\right)}{-1+y}\\ F_{12}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y\right)+F_{29}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{14}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)+F_{18}\! \left(x \right)+F_{19}\! \left(x , y\right)+F_{27}\! \left(x , y\right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x , 1\right)\\ F_{17}\! \left(x , y\right) &= -\frac{-y F_{7}\! \left(x , y\right)+F_{7}\! \left(x , 1\right)}{-1+y}\\ F_{18}\! \left(x \right) &= F_{13}\! \left(x , 1\right)\\ F_{19}\! \left(x , y\right) &= F_{20}\! \left(x , y\right)\\ F_{20}\! \left(x , y\right) &= F_{21}\! \left(x , y\right) F_{26}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{21}\! \left(x , y\right) &= -\frac{-y F_{22}\! \left(x , y\right)+F_{22}\! \left(x , 1\right)}{-1+y}\\ F_{22}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= F_{24}\! \left(x , y\right)\\ F_{24}\! \left(x , y\right) &= F_{22}\! \left(x , y\right)^{2} F_{25}\! \left(x , y\right)\\ F_{25}\! \left(x , y\right) &= y x\\ F_{26}\! \left(x \right) &= F_{12}\! \left(x , 1\right)\\ F_{27}\! \left(x , y\right) &= F_{28}\! \left(x , y\right)\\ F_{28}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{22}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\ F_{29}\! \left(x , y\right) &= F_{30}\! \left(x , y\right)\\ F_{30}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{22}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\ F_{31}\! \left(x , y\right) &= F_{32}\! \left(x , y\right)\\ F_{32}\! \left(x , y\right) &= F_{22}\! \left(x , y\right) F_{25}\! \left(x , y\right) F_{7}\! \left(x , y\right)\\ F_{33}\! \left(x \right) &= F_{26}\! \left(x \right) F_{3}\! \left(x \right)\\ \end{align*}\)