Av(12435, 12453, 12543, 14235, 14253, 14523, 15243, 15423)
Counting Sequence
1, 1, 2, 6, 24, 112, 568, 3024, 16600, 93008, 528632, 3036016, 17572504, 102318256, 598547640, ...
This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Tracked Component Fusion Req Corrob Symmetries" and has 137 rules.
Finding the specification took 14037 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 137 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\
F_{5}\! \left(x , y_{0}\right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x , y_{0}\right)\\
F_{6}\! \left(x , y_{0}\right) &= F_{7}\! \left(x , y_{0}\right)\\
F_{7}\! \left(x , y_{0}\right) &= F_{28}\! \left(x , y_{0}\right) F_{8}\! \left(x , y_{0}\right)\\
F_{8}\! \left(x , y_{0}\right) &= F_{12}\! \left(x , y_{0}\right)+F_{5}\! \left(x , y_{0}\right)+F_{9}\! \left(x , y_{0}\right)\\
F_{9}\! \left(x , y_{0}\right) &= F_{10}\! \left(x , y_{0}\right) F_{11}\! \left(x \right)\\
F_{10}\! \left(x , y_{0}\right) &= -\frac{-F_{8}\! \left(x , y_{0}\right) y_{0}+F_{8}\! \left(x , 1\right)}{-1+y_{0}}\\
F_{11}\! \left(x \right) &= x\\
F_{12}\! \left(x , y_{0}\right) &= F_{13}\! \left(x , y_{0}\right) F_{28}\! \left(x , y_{0}\right)\\
F_{13}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}, 1\right)\\
F_{14}\! \left(x , y_{0}, y_{1}\right) &= F_{15}\! \left(x , y_{0}, y_{0} y_{1}\right)\\
F_{16}\! \left(x , y_{0}, y_{1}\right) &= F_{15}\! \left(x , y_{0}, y_{1}\right) F_{28}\! \left(x , y_{1}\right)\\
F_{16}\! \left(x , y_{0}, y_{1}\right) &= F_{17}\! \left(x , y_{0}, y_{1}\right)\\
F_{17}\! \left(x , y_{0}, y_{1}\right) &= F_{106}\! \left(x , y_{0}, y_{1}\right)+F_{134}\! \left(x , y_{0}, y_{1}\right)+F_{18}\! \left(x \right)+F_{19}\! \left(x , y_{0}, y_{1}\right)\\
F_{18}\! \left(x \right) &= 0\\
F_{19}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x \right) F_{20}\! \left(x , y_{0}, y_{1}\right)\\
F_{20}\! \left(x , y_{0}, y_{1}\right) &= F_{21}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{21}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{18}\! \left(x \right)+F_{22}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{24}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{29}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{32}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{22}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{11}\! \left(x \right) F_{23}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{23}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{21}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{0}+F_{21}\! \left(x , 1, y_{1}, y_{2}\right)}{-1+y_{0}}\\
F_{24}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{25}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{28}\! \left(x , y_{0}\right)\\
F_{25}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{26}\! \left(x , y_{0}, 1, y_{2}\right) y_{0}-F_{26}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{26}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{27}\! \left(x , y_{0}, y_{0} y_{1}, y_{2}\right)\\
F_{27}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{2} \left(F_{17}\! \left(x , y_{0}, y_{1}\right)-F_{17}\! \left(x , y_{0}, y_{2}\right)\right)}{-y_{2}+y_{1}}\\
F_{28}\! \left(x , y_{0}\right) &= y_{0} x\\
F_{29}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{28}\! \left(x , y_{1}\right) F_{30}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{30}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{F_{31}\! \left(x , 1, y_{1}, y_{2}\right) y_{1}-F_{31}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}, y_{2}\right) y_{0}}{-y_{1}+y_{0}}\\
F_{31}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{27}\! \left(x , y_{0} y_{1}, y_{1}, y_{2}\right)\\
F_{32}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{28}\! \left(x , y_{2}\right) F_{33}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{33}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{133}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{34}\! \left(x , y_{0}, y_{2}\right)\\
F_{34}\! \left(x , y_{0}, y_{1}\right) &= F_{131}\! \left(x , y_{0}, y_{1}\right)+F_{35}\! \left(x , y_{0}, y_{1}\right)\\
F_{35}\! \left(x , y_{0}, y_{1}\right) &= F_{36}\! \left(x , y_{1}\right)+F_{83}\! \left(x , y_{0}, y_{1}\right)\\
F_{36}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{37}\! \left(x , y_{0}\right)+F_{46}\! \left(x , y_{0}\right)\\
F_{37}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{38}\! \left(x , y_{0}\right)\\
F_{38}\! \left(x , y_{0}\right) &= F_{39}\! \left(x , 1, y_{0}\right)\\
F_{39}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{40}\! \left(x , y_{0}, y_{1}\right)+F_{42}\! \left(x , y_{0}, y_{1}\right)+F_{45}\! \left(x , y_{0}, y_{1}\right)\\
F_{40}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x \right) F_{41}\! \left(x , y_{0}, y_{1}\right)\\
F_{41}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{39}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{39}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{42}\! \left(x , y_{0}, y_{1}\right) &= F_{28}\! \left(x , y_{0}\right) F_{43}\! \left(x , y_{0}, y_{1}\right)\\
F_{43}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{44}\! \left(x , y_{0}, 1\right) y_{0}-F_{44}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{44}\! \left(x , y_{0}, y_{1}\right) &= F_{35}\! \left(x , y_{0}, y_{0} y_{1}\right)\\
F_{45}\! \left(x , y_{0}, y_{1}\right) &= F_{28}\! \left(x , y_{1}\right) F_{34}\! \left(x , y_{0}, y_{1}\right)\\
F_{46}\! \left(x , y_{0}\right) &= F_{28}\! \left(x , y_{0}\right) F_{47}\! \left(x , y_{0}\right)\\
F_{47}\! \left(x , y_{0}\right) &= F_{36}\! \left(x , y_{0}\right)+F_{48}\! \left(x , y_{0}\right)\\
F_{48}\! \left(x , y_{0}\right) &= y_{0} F_{49}\! \left(x , y_{0}\right)\\
F_{49}\! \left(x , y_{0}\right) &= F_{50}\! \left(x , y_{0}\right)\\
F_{50}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{51}\! \left(x , y_{0}\right)\\
F_{51}\! \left(x , y_{0}\right) &= F_{0}\! \left(x \right)+F_{120}\! \left(x , y_{0}\right)+F_{52}\! \left(x , y_{0}\right)\\
F_{52}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{53}\! \left(x , y_{0}\right)\\
F_{53}\! \left(x , y_{0}\right) &= F_{54}\! \left(x , 1, y_{0}\right)\\
F_{54}\! \left(x , y_{0}, y_{1}\right) &= F_{130}\! \left(x , y_{0}, y_{1}\right)+F_{5}\! \left(x , y_{0}\right)+F_{55}\! \left(x , y_{0}, y_{1}\right)+F_{57}\! \left(x , y_{0}, y_{1}\right)\\
F_{55}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x \right) F_{56}\! \left(x , y_{0}, y_{1}\right)\\
F_{56}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{54}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{54}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{57}\! \left(x , y_{0}, y_{1}\right) &= F_{28}\! \left(x , y_{0}\right) F_{58}\! \left(x , y_{0}, y_{1}\right)\\
F_{58}\! \left(x , y_{0}, y_{1}\right) &= F_{127}\! \left(x , y_{0}\right)+F_{59}\! \left(x , y_{0}, y_{1}\right)\\
F_{59}\! \left(x , y_{0}, y_{1}\right) &= F_{126}\! \left(x , y_{0}\right)+F_{60}\! \left(x , y_{0}, y_{1}\right)\\
F_{60}\! \left(x , y_{0}, y_{1}\right) &= F_{113}\! \left(x , y_{0}, y_{1}\right)+F_{61}\! \left(x , y_{0}\right)\\
F_{61}\! \left(x , y_{0}\right) &= F_{62}\! \left(x , y_{0}, 1\right)\\
F_{63}\! \left(x , y_{0}, y_{1}\right) &= F_{121}\! \left(x , y_{0}, y_{1}\right)+F_{62}\! \left(x , y_{0}, y_{1}\right)\\
F_{63}\! \left(x , y_{0}, y_{1}\right) &= F_{64}\! \left(x , y_{0}, y_{0} y_{1}\right)\\
F_{15}\! \left(x , y_{0}, y_{1}\right) &= F_{64}\! \left(x , y_{0}, y_{1}\right)+F_{65}\! \left(x , y_{0}, y_{1}\right)\\
F_{65}\! \left(x , y_{0}, y_{1}\right) &= F_{66}\! \left(x , y_{0}, y_{1}\right)\\
F_{66}\! \left(x , y_{0}, y_{1}\right) &= F_{67}\! \left(x , y_{0}, 1, y_{1}\right)\\
F_{67}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= y_{1} y_{2} F_{68}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{68}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{69}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{69}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{11}\! \left(x \right) F_{70}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{70}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{71}\! \left(x , y_{0}, y_{1}, 1, y_{2}\right)\\
F_{71}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= -\frac{-F_{72}\! \left(x , y_{0}, y_{1}, y_{2} y_{3}\right) y_{2}+F_{72}\! \left(x , y_{0}, y_{1}, y_{3}\right)}{y_{2}-1}\\
F_{72}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{73}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\
F_{74}\! \left(x , y_{0}, y_{1}\right) &= F_{28}\! \left(x , y_{1}\right) F_{73}\! \left(x , y_{0}, y_{1}\right)\\
F_{74}\! \left(x , y_{0}, y_{1}\right) &= F_{75}\! \left(x , y_{0}, y_{1}\right)\\
F_{75}\! \left(x , y_{0}, y_{1}\right) &= F_{112}\! \left(x , y_{0}, y_{1}\right)+F_{120}\! \left(x , y_{1}\right)+F_{18}\! \left(x \right)+F_{76}\! \left(x , y_{0}, y_{1}\right)\\
F_{76}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x \right) F_{77}\! \left(x , y_{0}, y_{1}\right)\\
F_{78}\! \left(x , y_{0}, y_{1}\right) &= F_{108}\! \left(x , y_{0}, y_{1}\right)+F_{77}\! \left(x , y_{0}, y_{1}\right)\\
F_{79}\! \left(x , y_{0}, y_{1}\right) &= F_{28}\! \left(x , y_{0}\right) F_{78}\! \left(x , y_{0}, y_{1}\right)\\
F_{79}\! \left(x , y_{0}, y_{1}\right) &= F_{80}\! \left(x , y_{0}, y_{1}\right)\\
F_{81}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x \right) F_{80}\! \left(x , y_{0}, y_{1}\right)\\
F_{82}\! \left(x , y_{0}, y_{1}\right) &= F_{103}\! \left(x , y_{0}, y_{1}\right)+F_{106}\! \left(x , y_{0}, y_{1}\right)+F_{18}\! \left(x \right)+F_{81}\! \left(x , y_{0}, y_{1}\right)\\
F_{83}\! \left(x , y_{0}, y_{1}\right) &= F_{6}\! \left(x , y_{0}\right)+F_{82}\! \left(x , y_{0}, y_{1}\right)\\
F_{83}\! \left(x , y_{0}, y_{1}\right) &= F_{103}\! \left(x , y_{0}, y_{1}\right)+F_{18}\! \left(x \right)+F_{42}\! \left(x , y_{0}, y_{1}\right)+F_{84}\! \left(x , y_{0}, y_{1}\right)\\
F_{84}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x \right) F_{85}\! \left(x , y_{0}, y_{1}\right)\\
F_{85}\! \left(x , y_{0}, y_{1}\right) &= F_{86}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{86}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{18}\! \left(x \right)+F_{87}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{89}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{93}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{97}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{87}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{11}\! \left(x \right) F_{88}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{88}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{86}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{0}+F_{86}\! \left(x , 1, y_{1}, y_{2}\right)}{-1+y_{0}}\\
F_{89}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{28}\! \left(x , y_{0}\right) F_{90}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{90}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{1} \left(F_{91}\! \left(x , y_{0}, 1, y_{2}\right)-F_{91}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}, y_{2}\right)\right)}{-y_{1}+y_{0}}\\
F_{91}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{0} y_{1} \left(F_{92}\! \left(x , y_{0}, y_{1}\right)-F_{92}\! \left(x , y_{0}, \frac{y_{2}}{y_{0}}\right)\right)}{y_{0} y_{1}-y_{2}}\\
F_{92}\! \left(x , y_{0}, y_{1}\right) &= F_{17}\! \left(x , y_{0}, y_{0} y_{1}\right)\\
F_{93}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{28}\! \left(x , y_{1}\right) F_{94}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{94}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{F_{95}\! \left(x , 1, y_{1}, y_{2}\right) y_{1}-F_{95}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}, y_{2}\right) y_{0}}{-y_{1}+y_{0}}\\
F_{95}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{96}\! \left(x , y_{0} y_{1}, y_{1}, y_{2}\right)\\
F_{96}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{35}\! \left(x , y_{0}, y_{1}\right) y_{1}-F_{35}\! \left(x , y_{0}, y_{2}\right) y_{2}}{-y_{2}+y_{1}}\\
F_{97}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{98}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{98}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{28}\! \left(x , y_{2}\right) F_{99}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{99}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= y_{1} F_{100}\! \left(x , y_{0}, y_{2}\right)\\
F_{100}\! \left(x , y_{0}, y_{1}\right) &= F_{101}\! \left(x , y_{0}, y_{1}\right)\\
F_{101}\! \left(x , y_{0}, y_{1}\right) &= F_{102}\! \left(x , y_{0}, y_{1}\right) F_{11}\! \left(x \right)\\
F_{102}\! \left(x , y_{0}, y_{1}\right) &= F_{75}\! \left(x , y_{0}, y_{1}\right)+F_{8}\! \left(x , y_{0}\right)\\
F_{103}\! \left(x , y_{0}, y_{1}\right) &= F_{104}\! \left(x , y_{0}, y_{1}\right)\\
F_{104}\! \left(x , y_{0}, y_{1}\right) &= F_{105}\! \left(x , y_{0}, y_{1}\right) F_{28}\! \left(x , y_{1}\right)\\
F_{105}\! \left(x , y_{0}, y_{1}\right) &= y_{0} F_{49}\! \left(x , y_{1}\right)\\
F_{106}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}, y_{1}\right) F_{28}\! \left(x , y_{0}\right)\\
F_{107}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{1} \left(F_{92}\! \left(x , y_{0}, 1\right)-F_{92}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right)\right)}{-y_{1}+y_{0}}\\
F_{108}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{109}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{109}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{110}\! \left(x , y_{0}, y_{1}\right) &= F_{109}\! \left(x , y_{0}, y_{1}\right)+F_{75}\! \left(x , y_{0}, y_{1}\right)\\
F_{111}\! \left(x , y_{0}, y_{1}\right) &= F_{110}\! \left(x , y_{0}, y_{1}\right) F_{28}\! \left(x , y_{0}\right)\\
F_{111}\! \left(x , y_{0}, y_{1}\right) &= F_{82}\! \left(x , y_{0}, y_{1}\right)\\
F_{112}\! \left(x , y_{0}, y_{1}\right) &= F_{113}\! \left(x , y_{0}, y_{1}\right) F_{28}\! \left(x , y_{0}\right)\\
F_{113}\! \left(x , y_{0}, y_{1}\right) &= F_{114}\! \left(x , y_{1}, y_{0}\right)\\
F_{114}\! \left(x , y_{0}, y_{1}\right) &= F_{115}\! \left(x , y_{0}, y_{1}\right) F_{118}\! \left(x , y_{0}\right)\\
F_{115}\! \left(x , y_{0}, y_{1}\right) &= F_{116}\! \left(x , y_{1}, y_{0}\right)\\
F_{116}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{117}\! \left(x , y_{0}, 1\right) y_{0}-F_{117}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{117}\! \left(x , y_{0}, y_{1}\right) &= F_{72}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{118}\! \left(x , y_{0}\right) &= F_{119}\! \left(x , y_{0}\right)\\
F_{119}\! \left(x , y_{0}\right) &= y_{0} x\\
F_{120}\! \left(x , y_{0}\right) &= F_{28}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{0}\right)\\
F_{121}\! \left(x , y_{0}, y_{1}\right) &= y_{0} F_{122}\! \left(x , y_{0}, y_{1}\right)\\
F_{122}\! \left(x , y_{0}, y_{1}\right) &= F_{123}\! \left(x , y_{0}, y_{1}\right)\\
F_{123}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x \right) F_{124}\! \left(x , y_{0}, y_{1}\right)\\
F_{124}\! \left(x , y_{0}, y_{1}\right) &= F_{125}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{125}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-y_{0} F_{72}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{72}\! \left(x , 1, y_{1}, y_{2}\right)}{-1+y_{0}}\\
F_{126}\! \left(x , y_{0}\right) &= F_{121}\! \left(x , y_{0}, 1\right)\\
F_{127}\! \left(x , y_{0}\right) &= F_{128}\! \left(x , y_{0}\right)\\
F_{128}\! \left(x , y_{0}\right) &= F_{129}\! \left(x , y_{0}, 1\right)\\
F_{129}\! \left(x , y_{0}, y_{1}\right) &= F_{66}\! \left(x , y_{0}, y_{0} y_{1}\right)\\
F_{130}\! \left(x , y_{0}, y_{1}\right) &= F_{102}\! \left(x , y_{0}, y_{1}\right) F_{28}\! \left(x , y_{1}\right)\\
F_{131}\! \left(x , y_{0}, y_{1}\right) &= F_{132}\! \left(x , y_{0}, y_{1}, 1\right)\\
F_{132}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{99}\! \left(x , y_{0}, y_{1}, y_{1} y_{2}\right)\\
F_{133}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{99}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{134}\! \left(x , y_{0}, y_{1}\right) &= F_{135}\! \left(x , y_{0}, y_{1}\right) F_{28}\! \left(x , y_{1}\right)\\
F_{135}\! \left(x , y_{0}, y_{1}\right) &= F_{136}\! \left(x , y_{0}, y_{1}\right)+F_{47}\! \left(x , y_{1}\right)\\
F_{136}\! \left(x , y_{0}, y_{1}\right) &= F_{105}\! \left(x , y_{0}, y_{1}\right)\\
\end{align*}\)