Av(12354, 12453, 13452, 21354, 21453, 23451, 31452, 32451)
View Raw Data
Generating Function
\(\displaystyle \frac{4 x -5+\sqrt{8 x^{2}-8 x +1}}{4 x -4}\)
Counting Sequence
1, 1, 2, 6, 24, 112, 568, 3032, 16768, 95200, 551616, 3248704, 19389824, 117021824, 712934784, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -2\right) F \left(x \right)^{2}+\left(-4 x +5\right) F \! \left(x \right)+x -3 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n +3\right) = \frac{8 n a \! \left(n \right)}{n +3}-\frac{4 \left(3+4 n \right) a \! \left(n +1\right)}{n +3}+\frac{3 \left(5+3 n \right) a \! \left(n +2\right)}{n +3}, \quad n \geq 3\)

This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 18 rules.

Found on January 23, 2022.

Finding the specification took 3 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 18 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{3}\! \left(x \right) &= x\\ F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{3}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\ F_{7}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y\right)+F_{11}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{8}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= \frac{F_{7}\! \left(x , y\right) y -F_{7}\! \left(x , 1\right)}{-1+y}\\ F_{10}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{9}\! \left(x , y\right)\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{14}\! \left(x , y\right) F_{7}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= y x\\ F_{14}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{14}\! \left(x , y\right)\\ F_{17}\! \left(x \right) &= F_{3}\! \left(x \right) F_{6}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 25 rules.

Found on January 22, 2022.

Finding the specification took 11 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 25 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{11}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{11}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x , 1\right)\\ F_{8}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y\right)+F_{13}\! \left(x , y\right)+F_{20}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{11}\! \left(x \right)\\ F_{10}\! \left(x , y\right) &= -\frac{-y F_{8}\! \left(x , y\right)+F_{8}\! \left(x , 1\right)}{-1+y}\\ F_{11}\! \left(x \right) &= x\\ F_{12}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{11}\! \left(x \right)\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{19}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y\right)+F_{15}\! \left(x , y\right)+F_{17}\! \left(x , y\right)+F_{18}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{16}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= -\frac{-y F_{14}\! \left(x , y\right)+F_{14}\! \left(x , 1\right)}{-1+y}\\ F_{17}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{16}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{14}\! \left(x , y\right)\\ F_{19}\! \left(x , y\right) &= y x\\ F_{20}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{21}\! \left(x , y\right)\\ F_{21}\! \left(x , y\right) &= -\frac{-y F_{14}\! \left(x , y\right)+F_{14}\! \left(x , 1\right)}{-1+y}\\ F_{22}\! \left(x \right) &= F_{11}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{13}\! \left(x , 1\right)\\ F_{24}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right)\\ \end{align*}\)