Av(12354, 12453, 13254, 13452, 14253, 14352, 21354, 21453)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 112, 570, 3068, 17162, 98724, 580098, 3466088, 20991886, 128564404, 794837976, ...

This specification was found using the strategy pack "Point Placements Tracked Fusion Tracked Component Fusion Req Corrob Symmetries" and has 484 rules.

Finding the specification took 90463 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 484 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{18}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{483}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{478}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{0}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{15}\! \left(x \right) &= -F_{19}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= \frac{F_{17}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{17}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{18}\! \left(x \right) &= x\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{18}\! \left(x \right) F_{21}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{21}\! \left(x \right) &= \frac{F_{22}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{22}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{18}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= \frac{F_{27}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{414}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{18}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{34}\! \left(x \right) &= -F_{37}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= \frac{F_{36}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{36}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{18}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{472}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{414}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x , 1\right)\\ F_{43}\! \left(x , y_{0}\right) &= F_{44}\! \left(x , y_{0}\right)\\ F_{44}\! \left(x , y_{0}\right) &= F_{45}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{45}\! \left(x , y_{0}\right) &= F_{265}\! \left(x , y_{0}\right)+F_{46}\! \left(x , y_{0}\right)\\ F_{46}\! \left(x , y_{0}\right) &= F_{47}\! \left(x , y_{0}\right)+F_{56}\! \left(x , y_{0}\right)\\ F_{47}\! \left(x , y_{0}\right) &= F_{48}\! \left(x , y_{0}\right)+F_{52}\! \left(x , y_{0}\right)\\ F_{48}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{49}\! \left(x , y_{0}\right)\\ F_{49}\! \left(x , y_{0}\right) &= F_{50}\! \left(x , y_{0}\right)\\ F_{50}\! \left(x , y_{0}\right) &= F_{48}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{51}\! \left(x , y_{0}\right) &= y_{0} x\\ F_{52}\! \left(x , y_{0}\right) &= F_{2}\! \left(x \right)+F_{53}\! \left(x , y_{0}\right)\\ F_{53}\! \left(x , y_{0}\right) &= F_{54}\! \left(x , y_{0}\right)\\ F_{54}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}\right) F_{55}\! \left(x , y_{0}\right)\\ F_{55}\! \left(x , y_{0}\right) &= F_{52}\! \left(x , y_{0}\right)+F_{56}\! \left(x , y_{0}\right)\\ F_{56}\! \left(x , y_{0}\right) &= F_{57}\! \left(x , y_{0}\right)\\ F_{57}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{58}\! \left(x , y_{0}\right)\\ F_{59}\! \left(x , y_{0}\right) &= F_{469}\! \left(x , y_{0}\right)+F_{58}\! \left(x , y_{0}\right)\\ F_{60}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}\right) F_{59}\! \left(x , y_{0}\right)\\ F_{60}\! \left(x , y_{0}\right) &= F_{61}\! \left(x , y_{0}\right)\\ F_{61}\! \left(x , y_{0}\right) &= F_{43}\! \left(x , y_{0}\right)+F_{62}\! \left(x , y_{0}\right)\\ F_{62}\! \left(x , y_{0}\right) &= F_{63}\! \left(x , y_{0}\right)\\ F_{63}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{64}\! \left(x , y_{0}\right)\\ F_{64}\! \left(x , y_{0}\right) &= F_{463}\! \left(x , y_{0}\right)+F_{65}\! \left(x , y_{0}\right)\\ F_{65}\! \left(x , y_{0}\right) &= -\frac{y_{0} \left(F_{66}\! \left(x , 1\right)-F_{66}\! \left(x , y_{0}\right)\right)}{-1+y_{0}}\\ F_{66}\! \left(x , y_{0}\right) &= F_{253}\! \left(x , y_{0}\right)+F_{67}\! \left(x , y_{0}\right)\\ F_{67}\! \left(x , y_{0}\right) &= F_{43}\! \left(x , y_{0}\right)+F_{68}\! \left(x , y_{0}\right)\\ F_{68}\! \left(x , y_{0}\right) &= F_{69}\! \left(x , y_{0}\right)\\ F_{69}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}\right) F_{70}\! \left(x , y_{0}\right)\\ F_{71}\! \left(x , y_{0}\right) &= F_{46}\! \left(x , y_{0}\right)+F_{70}\! \left(x , y_{0}\right)\\ F_{72}\! \left(x , y_{0}\right) &= F_{461}\! \left(x , y_{0}\right)+F_{71}\! \left(x , y_{0}\right)\\ F_{73}\! \left(x , y_{0}\right) &= F_{460}\! \left(x , y_{0}\right)+F_{72}\! \left(x , y_{0}\right)\\ F_{73}\! \left(x , y_{0}\right) &= F_{456}\! \left(x , y_{0}\right)+F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{416}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x , 1\right)\\ F_{80}\! \left(x , y_{0}\right) &= F_{453}\! \left(x , y_{0}\right)+F_{79}\! \left(x , y_{0}\right)\\ F_{81}\! \left(x , y_{0}\right) &= F_{455}\! \left(x \right)+F_{80}\! \left(x , y_{0}\right)\\ F_{81}\! \left(x , y_{0}\right) &= F_{433}\! \left(x , y_{0}\right)+F_{82}\! \left(x , y_{0}\right)\\ F_{82}\! \left(x , y_{0}\right) &= F_{399}\! \left(x , y_{0}\right)+F_{83}\! \left(x , y_{0}\right)\\ F_{83}\! \left(x , y_{0}\right) &= F_{84}\! \left(x , y_{0}\right)\\ F_{84}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{85}\! \left(x , y_{0}\right)\\ F_{85}\! \left(x , y_{0}\right) &= F_{86}\! \left(x , y_{0}\right)+F_{87}\! \left(x , y_{0}\right)\\ F_{86}\! \left(x , y_{0}\right) &= F_{0}\! \left(x \right)+F_{43}\! \left(x , y_{0}\right)\\ F_{87}\! \left(x , y_{0}\right) &= F_{88}\! \left(x , y_{0}\right)\\ F_{88}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{89}\! \left(x , y_{0}\right)\\ F_{89}\! \left(x , y_{0}\right) &= F_{395}\! \left(x , y_{0}\right)+F_{90}\! \left(x , y_{0}\right)\\ F_{90}\! \left(x , y_{0}\right) &= F_{394}\! \left(x , y_{0}\right)+F_{91}\! \left(x , y_{0}\right)\\ F_{91}\! \left(x , y_{0}\right) &= F_{303}\! \left(x , y_{0}\right)+F_{92}\! \left(x , y_{0}\right)\\ F_{93}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{92}\! \left(x , y_{0}\right)\\ F_{93}\! \left(x , y_{0}\right) &= F_{94}\! \left(x , y_{0}\right)\\ F_{95}\! \left(x , y_{0}\right) &= F_{390}\! \left(x , y_{0}\right)+F_{94}\! \left(x , y_{0}\right)\\ F_{95}\! \left(x , y_{0}\right) &= F_{96}\! \left(x , y_{0}\right)\\ F_{96}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{97}\! \left(x , y_{0}\right)\\ F_{97}\! \left(x , y_{0}\right) &= F_{386}\! \left(x , y_{0}\right)+F_{98}\! \left(x , y_{0}\right)\\ F_{98}\! \left(x , y_{0}\right) &= F_{47}\! \left(x , y_{0}\right)+F_{99}\! \left(x , y_{0}\right)\\ F_{99}\! \left(x , y_{0}\right) &= F_{100}\! \left(x , 1, y_{0}\right)\\ F_{100}\! \left(x , y_{0}, y_{1}\right) &= F_{101}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{101}\! \left(x , y_{0}, y_{1}\right) &= F_{102}\! \left(x , y_{0}, y_{1}\right)+F_{107}\! \left(x , y_{0}, y_{1}\right)\\ F_{102}\! \left(x , y_{0}, y_{1}\right) &= F_{103}\! \left(x , y_{0}, y_{1}\right)\\ F_{103}\! \left(x , y_{0}, y_{1}\right) &= F_{104}\! \left(x , y_{0}\right) F_{48}\! \left(x , y_{1}\right)\\ F_{104}\! \left(x , y_{0}\right) &= F_{105}\! \left(x , y_{0}\right)\\ F_{105}\! \left(x , y_{0}\right) &= F_{106}\! \left(x , y_{0}\right) F_{48}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{106}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{104}\! \left(x , y_{0}\right)\\ F_{107}\! \left(x , y_{0}, y_{1}\right) &= F_{108}\! \left(x , y_{0}, y_{1}\right)\\ F_{108}\! \left(x , y_{0}, y_{1}\right) &= F_{109}\! \left(x , y_{0}, y_{1}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{109}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{110}\! \left(x , y_{0}, 1\right) y_{0}-F_{110}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{110}\! \left(x , y_{0}, y_{1}\right) &= F_{111}\! \left(x , y_{0}, y_{1}\right)+F_{116}\! \left(x , y_{0}, y_{1}\right)\\ F_{111}\! \left(x , y_{0}, y_{1}\right) &= F_{112}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{112}\! \left(x , y_{0}, y_{1}\right) &= F_{113}\! \left(x , y_{1}, y_{0}\right)\\ F_{113}\! \left(x , y_{0}, y_{1}\right) &= F_{114}\! \left(x , y_{0}\right)+F_{115}\! \left(x , y_{0}, y_{1}\right)\\ F_{114}\! \left(x , y_{0}\right) &= F_{52}\! \left(x , y_{0}\right)\\ F_{115}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{1}, y_{0}\right)\\ F_{116}\! \left(x , y_{0}, y_{1}\right) &= F_{117}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{117}\! \left(x , y_{0}, y_{1}\right) &= F_{118}\! \left(x , y_{0}, y_{1}\right)+F_{56}\! \left(x , y_{1}\right)\\ F_{118}\! \left(x , y_{0}, y_{1}\right) &= F_{119}\! \left(x , y_{0}, y_{1}\right)\\ F_{119}\! \left(x , y_{0}, y_{1}\right) &= F_{120}\! \left(x , y_{0}, y_{1}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{120}\! \left(x , y_{0}, y_{1}\right) &= F_{121}\! \left(x , y_{0}, y_{1}\right)+F_{380}\! \left(x , y_{0}, y_{1}\right)\\ F_{121}\! \left(x , y_{0}, y_{1}\right) &= F_{122}\! \left(x , y_{1}, y_{0}\right)\\ F_{123}\! \left(x , y_{0}, y_{1}\right) &= F_{122}\! \left(x , y_{0}, y_{1}\right)+F_{375}\! \left(x , y_{0}, y_{1}\right)\\ F_{123}\! \left(x , y_{0}, y_{1}\right) &= F_{124}\! \left(x , y_{0}\right)+F_{363}\! \left(x , y_{0}, y_{1}\right)\\ F_{124}\! \left(x , y_{0}\right) &= F_{125}\! \left(x , y_{0}\right)\\ F_{125}\! \left(x , y_{0}\right) &= F_{126}\! \left(x , 1, y_{0}\right)\\ F_{126}\! \left(x , y_{0}, y_{1}\right) &= F_{127}\! \left(x , y_{0}, y_{1}\right)+F_{361}\! \left(x , y_{0}, y_{1}\right)\\ F_{128}\! \left(x , y_{0}, y_{1}\right) &= F_{127}\! \left(x , y_{0}, y_{1}\right)+F_{360}\! \left(x , y_{0}, y_{1}\right)\\ F_{128}\! \left(x , y_{0}, y_{1}\right) &= F_{129}\! \left(x , y_{0}, y_{1}\right)\\ F_{129}\! \left(x , y_{0}, y_{1}\right) &= F_{130}\! \left(x , y_{0}, y_{1}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{130}\! \left(x , y_{0}, y_{1}\right) &= F_{131}\! \left(x , y_{0}, y_{1}\right)+F_{355}\! \left(x , y_{0}, y_{1}\right)\\ F_{131}\! \left(x , y_{0}, y_{1}\right) &= F_{132}\! \left(x , y_{0}, y_{1}\right)+F_{246}\! \left(x , y_{1}\right)\\ F_{132}\! \left(x , y_{0}, y_{1}\right) &= F_{133}\! \left(x , y_{0}, y_{1}\right)+F_{307}\! \left(x , y_{0}, y_{1}\right)\\ F_{133}\! \left(x , y_{0}, y_{1}\right) &= F_{134}\! \left(x , y_{0}, y_{1}\right)+F_{135}\! \left(x , y_{0}, y_{1}\right)\\ F_{134}\! \left(x , y_{0}, y_{1}\right) &= F_{127}\! \left(x , y_{0}, y_{1}\right)+F_{46}\! \left(x , y_{1}\right)\\ F_{136}\! \left(x , y_{0}, y_{1}\right) &= F_{135}\! \left(x , y_{0}, y_{1}\right)+F_{284}\! \left(x , y_{0}, y_{1}\right)\\ F_{137}\! \left(x , y_{0}, y_{1}\right) &= F_{136}\! \left(x , y_{0}, y_{1}\right) F_{18}\! \left(x \right)\\ F_{137}\! \left(x , y_{0}, y_{1}\right) &= F_{138}\! \left(x , y_{0}, y_{1}\right)\\ F_{138}\! \left(x , y_{0}, y_{1}\right) &= F_{139}\! \left(x , y_{0}, y_{1}\right)+F_{282}\! \left(x , y_{0}, y_{1}\right)\\ F_{140}\! \left(x , y_{0}, y_{1}\right) &= F_{139}\! \left(x , y_{0}, y_{1}\right)+F_{154}\! \left(x , y_{0}, y_{1}\right)\\ F_{141}\! \left(x , y_{0}, y_{1}\right) &= F_{140}\! \left(x , y_{0}, y_{1}\right) F_{51}\! \left(x , y_{1}\right)\\ F_{141}\! \left(x , y_{0}, y_{1}\right) &= F_{142}\! \left(x , y_{0}, y_{1}\right)\\ F_{142}\! \left(x , y_{0}, y_{1}\right) &= F_{143}\! \left(x , y_{1}\right)+F_{145}\! \left(x , y_{0}, y_{1}\right)\\ F_{79}\! \left(x , y_{0}\right) &= F_{143}\! \left(x , y_{0}\right)+F_{144}\! \left(x , y_{0}\right)\\ F_{144}\! \left(x , y_{0}\right) &= F_{145}\! \left(x , 1, y_{0}\right)\\ F_{145}\! \left(x , y_{0}, y_{1}\right) &= F_{146}\! \left(x , y_{0}, y_{1}\right)\\ F_{146}\! \left(x , y_{0}, y_{1}\right) &= F_{147}\! \left(x , y_{0}, y_{1}\right) F_{18}\! \left(x \right)\\ F_{147}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{1} \left(F_{148}\! \left(x , y_{0}, 1\right)-F_{148}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{1}}\\ F_{148}\! \left(x , y_{0}, y_{1}\right) &= F_{149}\! \left(x , y_{0}, y_{1}\right)\\ F_{149}\! \left(x , y_{0}, y_{1}\right) &= F_{150}\! \left(x , y_{0}, y_{1}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{150}\! \left(x , y_{0}, y_{1}\right) &= F_{151}\! \left(x , y_{0}, y_{1}\right)+F_{152}\! \left(x , y_{0}, y_{1}\right)\\ F_{151}\! \left(x , y_{0}, y_{1}\right) &= F_{147}\! \left(x , y_{0}, y_{1}\right)+F_{61}\! \left(x , y_{1}\right)\\ F_{152}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{1} \left(F_{153}\! \left(x , y_{0}, 1\right)-F_{153}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{1}}\\ F_{153}\! \left(x , y_{0}, y_{1}\right) &= y_{0} F_{142}\! \left(x , y_{0}, y_{1}\right)\\ F_{154}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{155}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{155}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\ F_{155}\! \left(x , y_{0}, y_{1}\right) &= F_{156}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{156}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{157}\! \left(x , y_{0}, y_{1} y_{2}, y_{2}\right)\\ F_{157}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{158}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{158}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{159}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{18}\! \left(x \right)\\ F_{159}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{160}\! \left(x , y_{1}, y_{2}\right)+F_{230}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{160}\! \left(x , y_{0}, y_{1}\right) &= F_{161}\! \left(x , y_{0}, y_{1}\right)\\ F_{161}\! \left(x , y_{0}, y_{1}\right) &= F_{162}\! \left(x , y_{0}, y_{1}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{162}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{163}\! \left(x , y_{0}, 1\right) y_{0}-F_{163}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{163}\! \left(x , y_{0}, y_{1}\right) &= F_{164}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{164}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{165}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\ F_{165}\! \left(x , y_{0}, y_{1}\right) &= F_{166}\! \left(x , y_{1}, y_{0}\right)\\ F_{166}\! \left(x , y_{0}, y_{1}\right) &= F_{167}\! \left(x , y_{0}\right)+F_{280}\! \left(x , y_{0}, y_{1}\right)\\ F_{167}\! \left(x , y_{0}\right) &= F_{168}\! \left(x , y_{0}\right)\\ F_{168}\! \left(x , y_{0}\right) &= F_{169}\! \left(x , y_{0}\right)+F_{257}\! \left(x , y_{0}\right)\\ F_{58}\! \left(x , y_{0}\right) &= F_{169}\! \left(x , y_{0}\right)+F_{170}\! \left(x , y_{0}\right)\\ F_{171}\! \left(x , y_{0}\right) &= F_{170}\! \left(x , y_{0}\right)+F_{272}\! \left(x , y_{0}\right)\\ F_{171}\! \left(x , y_{0}\right) &= F_{172}\! \left(x , y_{0}\right)\\ F_{172}\! \left(x , y_{0}\right) &= F_{173}\! \left(x , y_{0}\right) F_{18}\! \left(x \right)\\ F_{173}\! \left(x , y_{0}\right) &= F_{174}\! \left(x , y_{0}\right)+F_{247}\! \left(x , y_{0}\right)\\ F_{174}\! \left(x , y_{0}\right) &= F_{175}\! \left(x , y_{0}\right)+F_{245}\! \left(x , y_{0}\right)\\ F_{175}\! \left(x , y_{0}\right) &= F_{176}\! \left(x , 1, y_{0}\right)\\ F_{176}\! \left(x , y_{0}, y_{1}\right) &= F_{177}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{178}\! \left(x , y_{0}, y_{1}\right) &= F_{177}\! \left(x , y_{0}, y_{1}\right) F_{18}\! \left(x \right)\\ F_{178}\! \left(x , y_{0}, y_{1}\right) &= F_{179}\! \left(x , y_{0}, y_{1}\right)\\ F_{180}\! \left(x , y_{0}, y_{1}\right) &= F_{179}\! \left(x , y_{0}, y_{1}\right)+F_{237}\! \left(x , y_{0}, y_{1}\right)\\ F_{181}\! \left(x , y_{0}, y_{1}\right) &= F_{180}\! \left(x , y_{0}, y_{1}\right)+F_{233}\! \left(x , y_{0}, y_{1}\right)\\ F_{182}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{181}\! \left(x , y_{0}, y_{1}\right)\\ F_{182}\! \left(x , y_{0}, y_{1}\right) &= F_{183}\! \left(x , y_{0}, y_{1}\right)\\ F_{183}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{184}\! \left(x , y_{0}, y_{1}\right)\\ F_{184}\! \left(x , y_{0}, y_{1}\right) &= F_{185}\! \left(x , y_{0}, y_{1}\right)+F_{202}\! \left(x , y_{0}, y_{1}\right)\\ F_{185}\! \left(x , y_{0}, y_{1}\right) &= F_{186}\! \left(x , y_{0}, y_{1}\right)+F_{189}\! \left(x , y_{0}, y_{1}\right)\\ F_{186}\! \left(x , y_{0}, y_{1}\right) &= F_{187}\! \left(x , y_{1}, y_{0}\right)\\ F_{187}\! \left(x , y_{0}, y_{1}\right) &= F_{113}\! \left(x , y_{0}, y_{1}\right)+F_{188}\! \left(x , y_{0}, y_{1}\right)\\ F_{188}\! \left(x , y_{0}, y_{1}\right) &= F_{183}\! \left(x , y_{1}, y_{0}\right)\\ F_{190}\! \left(x , y_{0}, y_{1}\right) &= F_{189}\! \left(x , y_{0}, y_{1}\right)+F_{193}\! \left(x , y_{0}, y_{1}\right)\\ F_{190}\! \left(x , y_{0}, y_{1}\right) &= F_{191}\! \left(x , y_{0}, y_{1}\right)+F_{70}\! \left(x , y_{1}\right)\\ F_{191}\! \left(x , y_{0}, y_{1}\right) &= F_{192}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{192}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= y_{0} F_{157}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{193}\! \left(x , y_{0}, y_{1}\right) &= F_{194}\! \left(x , y_{0}, y_{1}\right)\\ F_{194}\! \left(x , y_{0}, y_{1}\right) &= F_{195}\! \left(x , y_{0}\right) F_{48}\! \left(x , y_{1}\right)\\ F_{195}\! \left(x , y_{0}\right) &= F_{196}\! \left(x , y_{0}\right)+F_{5}\! \left(x \right)\\ F_{196}\! \left(x , y_{0}\right) &= F_{197}\! \left(x , y_{0}\right)\\ F_{197}\! \left(x , y_{0}\right) &= F_{104}\! \left(x , y_{0}\right) F_{18}\! \left(x \right) F_{198}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{199}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{200}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{18}\! \left(x \right) F_{198}\! \left(x \right) F_{201}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{202}\! \left(x , y_{0}, y_{1}\right) &= F_{203}\! \left(x , y_{0}, y_{1}\right)+F_{232}\! \left(x , y_{0}, y_{1}\right)\\ F_{204}\! \left(x , y_{0}, y_{1}\right) &= F_{203}\! \left(x , y_{0}, y_{1}\right)+F_{215}\! \left(x , y_{0}, y_{1}\right)\\ F_{204}\! \left(x , y_{0}, y_{1}\right) &= F_{205}\! \left(x , y_{1}\right)+F_{211}\! \left(x , y_{0}, y_{1}\right)\\ F_{205}\! \left(x , y_{0}\right) &= F_{206}\! \left(x , y_{0}\right)\\ F_{206}\! \left(x , y_{0}\right) &= F_{207}\! \left(x , y_{0}\right)+F_{208}\! \left(x , y_{0}\right)\\ F_{207}\! \left(x , y_{0}\right) &= F_{46}\! \left(x , y_{0}\right)\\ F_{208}\! \left(x , y_{0}\right) &= F_{209}\! \left(x , y_{0}\right)\\ F_{209}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{210}\! \left(x , y_{0}\right)\\ F_{210}\! \left(x , y_{0}\right) &= F_{131}\! \left(x , 1, y_{0}\right)\\ F_{212}\! \left(x , y_{0}, y_{1}\right) &= F_{211}\! \left(x , y_{0}, y_{1}\right)+F_{214}\! \left(x , y_{0}, y_{1}\right)\\ F_{213}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{212}\! \left(x , y_{0}, y_{1}\right)\\ F_{213}\! \left(x , y_{0}, y_{1}\right) &= F_{118}\! \left(x , y_{0}, y_{1}\right)\\ F_{214}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{0} \left(F_{191}\! \left(x , 1, y_{1}\right)-F_{191}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{0}}\\ F_{215}\! \left(x , y_{0}, y_{1}\right) &= F_{216}\! \left(x , y_{0}, y_{1}\right)+F_{46}\! \left(x , y_{1}\right)\\ F_{216}\! \left(x , y_{0}, y_{1}\right) &= F_{217}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{217}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{101}\! \left(x , y_{1}, y_{2}\right)+F_{218}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{218}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{219}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{219}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{220}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{220}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{221}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{231}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{221}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{222}\! \left(x , y_{1}, y_{2}\right)+F_{230}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{222}\! \left(x , y_{0}, y_{1}\right) &= F_{223}\! \left(x , y_{1}, y_{0}\right)\\ F_{224}\! \left(x , y_{0}, y_{1}\right) &= F_{223}\! \left(x , y_{0}, y_{1}\right)+F_{227}\! \left(x , y_{0}\right)\\ F_{224}\! \left(x , y_{0}, y_{1}\right) &= F_{225}\! \left(x , y_{1}, y_{0}\right)\\ F_{204}\! \left(x , y_{0}, y_{1}\right) &= F_{225}\! \left(x , y_{0}, y_{1}\right)+F_{226}\! \left(x , y_{0}, y_{1}\right)\\ F_{226}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{117}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{117}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\ F_{206}\! \left(x , y_{0}\right) &= F_{227}\! \left(x , y_{0}\right)+F_{228}\! \left(x , y_{0}\right)\\ F_{228}\! \left(x , y_{0}\right) &= F_{229}\! \left(x , y_{0}\right)\\ F_{229}\! \left(x , y_{0}\right) &= F_{117}\! \left(x , 1, y_{0}\right)\\ F_{230}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{y_{1} \left(F_{218}\! \left(x , y_{0}, 1, y_{2}\right)-F_{218}\! \left(x , y_{0}, y_{1}, y_{2}\right)\right)}{-1+y_{1}}\\ F_{231}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{y_{1} \left(F_{192}\! \left(x , y_{0}, 1, y_{2}\right)-F_{192}\! \left(x , y_{0}, y_{1}, y_{2}\right)\right)}{-1+y_{1}}\\ F_{232}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{191}\! \left(x , 1, y_{1}\right)-F_{191}\! \left(x , y_{0}, y_{1}\right)}{-1+y_{0}}\\ F_{233}\! \left(x , y_{0}, y_{1}\right) &= F_{234}\! \left(x , y_{0}, y_{1}\right)\\ F_{234}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{235}\! \left(x , y_{0}, y_{1}\right)\\ F_{236}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{235}\! \left(x , y_{0}, y_{1}\right)\\ F_{236}\! \left(x , y_{0}, y_{1}\right) &= F_{185}\! \left(x , y_{0}, y_{1}\right)\\ F_{237}\! \left(x , y_{0}, y_{1}\right) &= F_{238}\! \left(x , y_{1}\right)\\ F_{238}\! \left(x , y_{0}\right) &= y_{0} F_{239}\! \left(x , y_{0}\right)\\ F_{239}\! \left(x , y_{0}\right) &= F_{240}\! \left(x , y_{0}\right)\\ F_{240}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{241}\! \left(x , y_{0}\right)\\ F_{241}\! \left(x , y_{0}\right) &= F_{242}\! \left(x , y_{0}\right)\\ F_{242}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{243}\! \left(x , y_{0}\right)\\ F_{243}\! \left(x , y_{0}\right) &= F_{244}\! \left(x , y_{0}\right)\\ F_{244}\! \left(x , y_{0}\right) &= F_{132}\! \left(x , 1, y_{0}\right)\\ F_{245}\! \left(x , y_{0}\right) &= F_{246}\! \left(x , y_{0}\right)\\ F_{246}\! \left(x , y_{0}\right) &= y_{0} F_{241}\! \left(x , y_{0}\right)\\ F_{247}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{248}\! \left(x , y_{0}\right)\\ F_{249}\! \left(x , y_{0}\right) &= F_{248}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{249}\! \left(x , y_{0}\right) &= F_{250}\! \left(x , y_{0}\right)\\ F_{251}\! \left(x , y_{0}\right) &= F_{250}\! \left(x , y_{0}\right)+F_{271}\! \left(x , y_{0}\right)\\ F_{252}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{251}\! \left(x , y_{0}\right)\\ F_{252}\! \left(x , y_{0}\right) &= F_{253}\! \left(x , y_{0}\right)\\ F_{253}\! \left(x , y_{0}\right) &= F_{254}\! \left(x , y_{0}\right)\\ F_{254}\! \left(x , y_{0}\right) &= F_{255}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{255}\! \left(x , y_{0}\right) &= F_{256}\! \left(x , y_{0}\right)+F_{267}\! \left(x , y_{0}\right)\\ F_{256}\! \left(x , y_{0}\right) &= F_{257}\! \left(x , y_{0}\right)+F_{260}\! \left(x , y_{0}\right)\\ F_{257}\! \left(x , y_{0}\right) &= F_{258}\! \left(x , 1, y_{0}\right)\\ F_{258}\! \left(x , y_{0}, y_{1}\right) &= F_{259}\! \left(x , y_{0}, y_{1}\right)\\ F_{259}\! \left(x , y_{0}, y_{1}\right) &= F_{132}\! \left(x , y_{0}, y_{1}\right) F_{18}\! \left(x \right)\\ F_{261}\! \left(x , y_{0}\right) &= F_{260}\! \left(x , y_{0}\right)+F_{265}\! \left(x , y_{0}\right)\\ F_{261}\! \left(x , y_{0}\right) &= F_{262}\! \left(x , y_{0}, 1\right)\\ F_{262}\! \left(x , y_{0}, y_{1}\right) &= F_{263}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{263}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{264}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\ F_{264}\! \left(x , y_{0}, y_{1}\right) &= F_{159}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{265}\! \left(x , y_{0}\right) &= F_{266}\! \left(x , 1, y_{0}\right)\\ F_{266}\! \left(x , y_{0}, y_{1}\right) &= F_{216}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{267}\! \left(x , y_{0}\right) &= F_{268}\! \left(x , y_{0}\right)\\ F_{268}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{269}\! \left(x , y_{0}\right)\\ F_{270}\! \left(x , y_{0}\right) &= F_{269}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{270}\! \left(x , y_{0}\right) &= F_{271}\! \left(x , y_{0}\right)\\ F_{244}\! \left(x , y_{0}\right) &= F_{26}\! \left(x \right)+F_{271}\! \left(x , y_{0}\right)\\ F_{272}\! \left(x , y_{0}\right) &= F_{273}\! \left(x , y_{0}\right)\\ F_{273}\! \left(x , y_{0}\right) &= F_{274}\! \left(x , 1, y_{0}\right)\\ F_{274}\! \left(x , y_{0}, y_{1}\right) &= F_{275}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{276}\! \left(x , y_{0}, y_{1}\right) &= F_{275}\! \left(x , y_{0}, y_{1}\right)+F_{281}\! \left(x , y_{0}, y_{1}\right)\\ F_{276}\! \left(x , y_{0}, y_{1}\right) &= F_{211}\! \left(x , y_{0}, y_{1}\right)+F_{277}\! \left(x , y_{0}, y_{1}\right)\\ F_{277}\! \left(x , y_{0}, y_{1}\right) &= F_{278}\! \left(x , y_{1}, y_{0}\right)\\ F_{278}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{279}\! \left(x , y_{0}, y_{1}\right)\\ F_{279}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{1} \left(F_{280}\! \left(x , y_{0}, 1\right)-F_{280}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{1}}\\ F_{280}\! \left(x , y_{0}, y_{1}\right) &= F_{264}\! \left(x , y_{1}, y_{0}\right)\\ F_{281}\! \left(x , y_{0}, y_{1}\right) &= F_{201}\! \left(x \right) F_{216}\! \left(x , y_{0}, y_{1}\right)\\ F_{282}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{0} F_{283}\! \left(x , y_{0}, y_{1}\right)+F_{283}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\ F_{283}\! \left(x , y_{0}, y_{1}\right) &= F_{157}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{284}\! \left(x , y_{0}, y_{1}\right) &= F_{285}\! \left(x , y_{0}, y_{1}\right)+F_{299}\! \left(x , y_{0}, y_{1}\right)\\ F_{285}\! \left(x , y_{0}, y_{1}\right) &= F_{286}\! \left(x , y_{0}, y_{1}\right)+F_{297}\! \left(x , y_{0}, y_{1}\right)\\ F_{286}\! \left(x , y_{0}, y_{1}\right) &= F_{287}\! \left(x , y_{0}, y_{1}\right)+F_{46}\! \left(x , y_{1}\right)\\ F_{288}\! \left(x , y_{0}, y_{1}\right) &= F_{287}\! \left(x , y_{0}, y_{1}\right)+F_{290}\! \left(x , y_{0}, y_{1}\right)\\ F_{289}\! \left(x , y_{0}, y_{1}\right) &= F_{288}\! \left(x , y_{0}, y_{1}\right) F_{51}\! \left(x , y_{1}\right)\\ F_{289}\! \left(x , y_{0}, y_{1}\right) &= F_{148}\! \left(x , y_{0}, y_{1}\right)\\ F_{290}\! \left(x , y_{0}, y_{1}\right) &= F_{291}\! \left(x , y_{0}, y_{1}\right)\\ F_{291}\! \left(x , y_{0}, y_{1}\right) &= F_{292}\! \left(x , y_{0}, y_{1}\right) F_{51}\! \left(x , y_{1}\right)\\ F_{292}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{0} \left(F_{293}\! \left(x , 1, y_{1}\right)-F_{293}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{0}}\\ F_{293}\! \left(x , y_{0}, y_{1}\right) &= F_{294}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{294}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{295}\! \left(x , y_{0}, y_{1} y_{2}, y_{2}\right)\\ F_{296}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{295}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{51}\! \left(x , y_{1}\right)\\ F_{296}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{218}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{297}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{298}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{298}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\ F_{298}\! \left(x , y_{0}, y_{1}\right) &= F_{217}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{299}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{300}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{300}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\ F_{301}\! \left(x , y_{0}, y_{1}\right) &= F_{298}\! \left(x , y_{0}, y_{1}\right)+F_{300}\! \left(x , y_{0}, y_{1}\right)\\ F_{301}\! \left(x , y_{0}, y_{1}\right) &= F_{258}\! \left(x , y_{0}, y_{1}\right)+F_{302}\! \left(x , y_{0}, y_{1}\right)\\ F_{302}\! \left(x , y_{0}, y_{1}\right) &= F_{303}\! \left(x , y_{1}\right)+F_{304}\! \left(x , y_{0}, y_{1}\right)\\ F_{303}\! \left(x , y_{0}\right) &= F_{160}\! \left(x , 1, y_{0}\right)\\ F_{304}\! \left(x , y_{0}, y_{1}\right) &= F_{305}\! \left(x , y_{0}, y_{1}\right)\\ F_{305}\! \left(x , y_{0}, y_{1}\right) &= F_{306}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{306}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{y_{1} \left(F_{218}\! \left(x , y_{0}, 1, y_{2}\right)-F_{218}\! \left(x , y_{0}, y_{1}, y_{2}\right)\right)}{-1+y_{1}}\\ F_{307}\! \left(x , y_{0}, y_{1}\right) &= F_{308}\! \left(x , y_{0}, y_{1}\right)\\ F_{308}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{309}\! \left(x , y_{0}, y_{1}\right)\\ F_{309}\! \left(x , y_{0}, y_{1}\right) &= F_{310}\! \left(x , y_{0}, y_{1}\right)+F_{337}\! \left(x , y_{1}\right)\\ F_{310}\! \left(x , y_{0}, y_{1}\right) &= F_{311}\! \left(x , y_{0}, y_{1}\right)+F_{332}\! \left(x , y_{1}\right)\\ F_{311}\! \left(x , y_{0}, y_{1}\right) &= F_{312}\! \left(x , y_{1}\right)+F_{330}\! \left(x , y_{0}, y_{1}\right)\\ F_{312}\! \left(x , y_{0}\right) &= F_{313}\! \left(x \right)+F_{327}\! \left(x , y_{0}\right)\\ F_{313}\! \left(x \right) &= F_{314}\! \left(x \right)+F_{325}\! \left(x \right)\\ F_{314}\! \left(x \right) &= F_{315}\! \left(x \right)+F_{317}\! \left(x \right)\\ F_{315}\! \left(x \right) &= F_{316}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{316}\! \left(x \right) &= F_{67}\! \left(x , 1\right)\\ F_{317}\! \left(x \right) &= F_{318}\! \left(x \right)\\ F_{318}\! \left(x \right) &= F_{18}\! \left(x \right) F_{319}\! \left(x \right)\\ F_{319}\! \left(x \right) &= F_{320}\! \left(x , 1\right)\\ F_{320}\! \left(x , y_{0}\right) &= F_{312}\! \left(x , y_{0}\right)+F_{321}\! \left(x , y_{0}\right)\\ F_{321}\! \left(x , y_{0}\right) &= F_{322}\! \left(x , y_{0}\right)\\ F_{322}\! \left(x , y_{0}\right) &= F_{323}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{324}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{323}\! \left(x , y_{0}\right)\\ F_{324}\! \left(x , y_{0}\right) &= F_{256}\! \left(x , y_{0}\right)\\ F_{325}\! \left(x \right) &= F_{326}\! \left(x , 1\right)\\ F_{326}\! \left(x , y_{0}\right) &= F_{288}\! \left(x , 1, y_{0}\right)\\ F_{328}\! \left(x , y_{0}\right) &= F_{321}\! \left(x , y_{0}\right)+F_{327}\! \left(x , y_{0}\right)\\ F_{329}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{328}\! \left(x , y_{0}\right)\\ F_{329}\! \left(x , y_{0}\right) &= F_{253}\! \left(x , y_{0}\right)\\ F_{330}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{0} \left(F_{331}\! \left(x , 1, y_{1}\right)-F_{331}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{0}}\\ F_{331}\! \left(x , y_{0}, y_{1}\right) &= F_{295}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{332}\! \left(x , y_{0}\right) &= F_{333}\! \left(x , 1, y_{0}\right)\\ F_{333}\! \left(x , y_{0}, y_{1}\right) &= F_{334}\! \left(x , y_{0}, y_{1}\right)\\ F_{334}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{335}\! \left(x , y_{0}, y_{1}\right)\\ F_{336}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{335}\! \left(x , y_{0}, y_{1}\right)\\ F_{336}\! \left(x , y_{0}, y_{1}\right) &= F_{300}\! \left(x , y_{0}, y_{1}\right)\\ F_{337}\! \left(x , y_{0}\right) &= F_{338}\! \left(x , 1, y_{0}\right)\\ F_{339}\! \left(x , y_{0}, y_{1}\right) &= F_{338}\! \left(x , y_{0}, y_{1}\right)+F_{348}\! \left(x , y_{0}, y_{1}\right)\\ F_{340}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{339}\! \left(x , y_{0}, y_{1}\right)\\ F_{340}\! \left(x , y_{0}, y_{1}\right) &= F_{341}\! \left(x , y_{0}, y_{1}\right)\\ F_{341}\! \left(x , y_{0}, y_{1}\right) &= F_{342}\! \left(x , y_{0}, y_{1}\right)+F_{345}\! \left(x , y_{0}, y_{1}\right)\\ F_{342}\! \left(x , y_{0}, y_{1}\right) &= F_{343}\! \left(x , y_{0}, y_{1}\right)\\ F_{343}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{344}\! \left(x , y_{0}, y_{1}\right)\\ F_{344}\! \left(x , y_{0}, y_{1}\right) &= F_{132}\! \left(x , y_{0}, y_{1}\right)+F_{250}\! \left(x , y_{1}\right)\\ F_{345}\! \left(x , y_{0}, y_{1}\right) &= y_{0} F_{346}\! \left(x , y_{0}, y_{1}\right)\\ F_{346}\! \left(x , y_{0}, y_{1}\right) &= F_{347}\! \left(x , y_{0}, y_{1}\right)\\ F_{347}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{301}\! \left(x , y_{0}, y_{1}\right)\\ F_{348}\! \left(x , y_{0}, y_{1}\right) &= F_{349}\! \left(x , y_{0}, y_{1}\right)+F_{352}\! \left(x , y_{0}, y_{1}\right)\\ F_{349}\! \left(x , y_{0}, y_{1}\right) &= F_{331}\! \left(x , y_{0}, y_{1}\right)+F_{350}\! \left(x , y_{1}\right)\\ F_{351}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{350}\! \left(x , y_{0}\right)\\ F_{351}\! \left(x , y_{0}\right) &= F_{87}\! \left(x , y_{0}\right)\\ F_{352}\! \left(x , y_{0}, y_{1}\right) &= F_{353}\! \left(x , y_{0}, 1, y_{1}\right)\\ F_{353}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{354}\! \left(x , y_{0}, y_{0} y_{1}, y_{2}\right)\\ F_{354}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= y_{0} F_{333}\! \left(x , y_{2}, y_{2}\right)\\ F_{356}\! \left(x , y_{0}, y_{1}\right) &= F_{344}\! \left(x , y_{0}, y_{1}\right)+F_{355}\! \left(x , y_{0}, y_{1}\right)\\ F_{357}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{356}\! \left(x , y_{0}, y_{1}\right)\\ F_{357}\! \left(x , y_{0}, y_{1}\right) &= F_{358}\! \left(x , y_{0}, y_{1}\right)\\ F_{358}\! \left(x , y_{0}, y_{1}\right) &= F_{342}\! \left(x , y_{0}, y_{1}\right)+F_{359}\! \left(x , y_{0}, y_{1}\right)\\ F_{359}\! \left(x , y_{0}, y_{1}\right) &= y_{0} F_{283}\! \left(x , y_{0}, y_{1}\right)\\ F_{360}\! \left(x , y_{0}, y_{1}\right) &= y_{0} y_{1} F_{239}\! \left(x , y_{1}\right)\\ F_{361}\! \left(x , y_{0}, y_{1}\right) &= F_{362}\! \left(x , y_{0}, y_{1}\right)\\ F_{362}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{330}\! \left(x , y_{0}, y_{1}\right)\\ F_{363}\! \left(x , y_{0}, y_{1}\right) &= F_{364}\! \left(x , y_{0}, y_{1}\right)\\ F_{364}\! \left(x , y_{0}, y_{1}\right) &= F_{365}\! \left(x , y_{0}, y_{1}\right) F_{51}\! \left(x , y_{1}\right)\\ F_{365}\! \left(x , y_{0}, y_{1}\right) &= F_{366}\! \left(x , y_{1}, y_{0}\right)\\ F_{366}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{367}\! \left(x , y_{0}\right) y_{0}-y_{1} F_{367}\! \left(x , y_{1}\right)}{-y_{1}+y_{0}}\\ F_{367}\! \left(x , y_{0}\right) &= F_{368}\! \left(x , 1, y_{0}\right)\\ F_{369}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{368}\! \left(x , y_{0}, y_{1}\right) y_{1}+F_{368}\! \left(x , y_{0}, 1\right)}{-1+y_{1}}\\ F_{370}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{369}\! \left(x , y_{0}, y_{1}\right)\\ F_{370}\! \left(x , y_{0}, y_{1}\right) &= F_{371}\! \left(x , y_{0}, y_{1}\right)\\ F_{372}\! \left(x , y_{0}, y_{1}\right) &= F_{126}\! \left(x , y_{0}, y_{1}\right)+F_{371}\! \left(x , y_{0}, y_{1}\right)\\ F_{373}\! \left(x , y_{0}, y_{1}\right) &= F_{372}\! \left(x , y_{0}, y_{1}\right)+F_{89}\! \left(x , y_{1}\right)\\ F_{374}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{373}\! \left(x , y_{0}, y_{1}\right)\\ F_{374}\! \left(x , y_{0}, y_{1}\right) &= F_{342}\! \left(x , y_{0}, y_{1}\right)\\ F_{375}\! \left(x , y_{0}, y_{1}\right) &= F_{376}\! \left(x , y_{0}, y_{1}\right)\\ F_{376}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{377}\! \left(x , y_{0}, y_{1}\right)\\ F_{377}\! \left(x , y_{0}, y_{1}\right) &= F_{378}\! \left(x , y_{1}, y_{0}\right)\\ F_{378}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{0} F_{379}\! \left(x , y_{0}\right)-y_{1} F_{379}\! \left(x , y_{1}\right)}{-y_{1}+y_{0}}\\ F_{379}\! \left(x , y_{0}\right) &= F_{330}\! \left(x , 1, y_{0}\right)\\ F_{380}\! \left(x , y_{0}, y_{1}\right) &= F_{381}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{381}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{382}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{382}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{383}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{51}\! \left(x , y_{1}\right)\\ F_{383}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{1} F_{384}\! \left(x , y_{0}, y_{1}, 1\right)-F_{384}\! \left(x , y_{0}, y_{1}, \frac{y_{2}}{y_{1}}\right) y_{2}}{-y_{2}+y_{1}}\\ F_{384}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{385}\! \left(x , y_{0}, y_{1}, y_{1} y_{2}\right)\\ F_{385}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{y_{0} \left(F_{295}\! \left(x , 1, y_{1}, y_{2}\right)-F_{295}\! \left(x , y_{0}, y_{1}, y_{2}\right)\right)}{-1+y_{0}}\\ F_{256}\! \left(x , y_{0}\right) &= F_{386}\! \left(x , y_{0}\right)+F_{387}\! \left(x , y_{0}\right)\\ F_{387}\! \left(x , y_{0}\right) &= F_{388}\! \left(x , 1, y_{0}\right)\\ F_{388}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{0} \left(F_{389}\! \left(x , 1, y_{1}\right)-F_{389}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right)\right)}{-y_{1}+y_{0}}\\ F_{389}\! \left(x , y_{0}, y_{1}\right) &= F_{118}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{390}\! \left(x , y_{0}\right) &= F_{391}\! \left(x , 1, y_{0}\right)\\ F_{391}\! \left(x , y_{0}, y_{1}\right) &= F_{392}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{392}\! \left(x , y_{0}, y_{1}\right) &= F_{393}\! \left(x , y_{0}, y_{1}\right)\\ F_{393}\! \left(x , y_{0}, y_{1}\right) &= F_{160}\! \left(x , y_{0}, y_{1}\right) F_{18}\! \left(x \right)\\ F_{394}\! \left(x , y_{0}\right) &= -\frac{-y_{0} F_{229}\! \left(x , y_{0}\right)+F_{229}\! \left(x , 1\right)}{-1+y_{0}}\\ F_{395}\! \left(x , y_{0}\right) &= F_{396}\! \left(x , y_{0}\right)\\ F_{396}\! \left(x , y_{0}\right) &= F_{397}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{398}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{397}\! \left(x , y_{0}\right)\\ F_{398}\! \left(x , y_{0}\right) &= F_{256}\! \left(x , y_{0}\right)\\ F_{399}\! \left(x , y_{0}\right) &= F_{144}\! \left(x , y_{0}\right)+F_{400}\! \left(x \right)\\ F_{400}\! \left(x \right) &= F_{401}\! \left(x \right)\\ F_{401}\! \left(x \right) &= F_{18}\! \left(x \right) F_{402}\! \left(x \right)\\ F_{402}\! \left(x \right) &= F_{403}\! \left(x \right)+F_{414}\! \left(x \right)\\ F_{403}\! \left(x \right) &= F_{404}\! \left(x \right)\\ F_{404}\! \left(x \right) &= F_{18}\! \left(x \right) F_{405}\! \left(x \right)\\ F_{405}\! \left(x \right) &= F_{406}\! \left(x , 1\right)\\ F_{406}\! \left(x , y_{0}\right) &= F_{407}\! \left(x , y_{0}\right)+F_{412}\! \left(x , y_{0}\right)\\ F_{407}\! \left(x , y_{0}\right) &= F_{408}\! \left(x \right)+F_{409}\! \left(x , y_{0}\right)\\ F_{408}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{403}\! \left(x \right)\\ F_{409}\! \left(x , y_{0}\right) &= y_{0} F_{410}\! \left(x \right)\\ F_{410}\! \left(x \right) &= F_{400}\! \left(x \right)+F_{411}\! \left(x \right)\\ F_{411}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{412}\! \left(x , y_{0}\right) &= F_{28}\! \left(x \right)+F_{413}\! \left(x , y_{0}\right)\\ F_{413}\! \left(x , y_{0}\right) &= y_{0} F_{78}\! \left(x \right)\\ F_{414}\! \left(x \right) &= F_{415}\! \left(x \right)\\ F_{415}\! \left(x \right) &= F_{18}\! \left(x \right) F_{416}\! \left(x \right)\\ F_{416}\! \left(x \right) &= F_{417}\! \left(x , 1\right)\\ F_{417}\! \left(x , y_{0}\right) &= F_{418}\! \left(x , y_{0}\right)+F_{431}\! \left(x , y_{0}\right)\\ F_{418}\! \left(x , y_{0}\right) &= F_{419}\! \left(x \right)+F_{429}\! \left(x , y_{0}\right)\\ F_{419}\! \left(x \right) &= F_{420}\! \left(x \right)\\ F_{420}\! \left(x \right) &= F_{18}\! \left(x \right) F_{421}\! \left(x \right)\\ F_{421}\! \left(x \right) &= \frac{F_{422}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{422}\! \left(x \right) &= F_{423}\! \left(x \right)\\ F_{423}\! \left(x \right) &= -F_{426}\! \left(x \right)+F_{424}\! \left(x \right)\\ F_{424}\! \left(x \right) &= \frac{F_{425}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{425}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{426}\! \left(x \right) &= F_{427}\! \left(x \right)+F_{428}\! \left(x \right)\\ F_{427}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{428}\! \left(x \right) &= F_{87}\! \left(x , 1\right)\\ F_{429}\! \left(x , y_{0}\right) &= F_{430}\! \left(x , y_{0}, 1\right)\\ F_{430}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{148}\! \left(x , y_{0}, 1\right)-F_{148}\! \left(x , y_{0}, y_{1}\right)}{-1+y_{1}}\\ F_{431}\! \left(x , y_{0}\right) &= F_{432}\! \left(x , y_{0}, 1\right)\\ F_{432}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{153}\! \left(x , y_{0}, 1\right)-F_{153}\! \left(x , y_{0}, y_{1}\right)}{-1+y_{1}}\\ F_{433}\! \left(x , y_{0}\right) &= F_{434}\! \left(x \right)+F_{452}\! \left(x , y_{0}\right)\\ F_{434}\! \left(x \right) &= F_{435}\! \left(x \right)\\ F_{435}\! \left(x \right) &= F_{18}\! \left(x \right) F_{436}\! \left(x \right)\\ F_{436}\! \left(x \right) &= F_{437}\! \left(x \right)+F_{444}\! \left(x \right)\\ F_{437}\! \left(x \right) &= F_{438}\! \left(x \right)+F_{440}\! \left(x \right)\\ F_{438}\! \left(x \right) &= F_{439}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{439}\! \left(x \right) &= -F_{403}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{440}\! \left(x \right) &= F_{441}\! \left(x \right)\\ F_{441}\! \left(x \right) &= F_{442}\! \left(x , 1\right)\\ F_{442}\! \left(x , y_{0}\right) &= F_{443}\! \left(x , 1, y_{0}\right)\\ F_{443}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{0} \left(F_{148}\! \left(x , 1, y_{1}\right)-F_{148}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{0}}\\ F_{444}\! \left(x \right) &= F_{445}\! \left(x \right)+F_{448}\! \left(x \right)\\ F_{445}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{446}\! \left(x \right)\\ F_{446}\! \left(x \right) &= -F_{447}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{447}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{448}\! \left(x \right) &= -F_{451}\! \left(x \right)+F_{449}\! \left(x \right)\\ F_{449}\! \left(x \right) &= F_{450}\! \left(x \right)\\ F_{450}\! \left(x \right) &= -F_{31}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{451}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{441}\! \left(x \right)\\ F_{452}\! \left(x , y_{0}\right) &= F_{453}\! \left(x , y_{0}\right)\\ F_{453}\! \left(x , y_{0}\right) &= F_{454}\! \left(x , 1, y_{0}\right)\\ F_{454}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{0} \left(F_{145}\! \left(x , 1, y_{1}\right)-F_{145}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{0}}\\ F_{455}\! \left(x \right) &= F_{410}\! \left(x \right)+F_{434}\! \left(x \right)\\ F_{457}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right) F_{456}\! \left(x , y_{0}\right)\\ F_{457}\! \left(x , y_{0}\right) &= F_{458}\! \left(x , y_{0}\right)\\ F_{229}\! \left(x , y_{0}\right) &= F_{458}\! \left(x , y_{0}\right)+F_{459}\! \left(x \right)\\ F_{459}\! \left(x \right) &= F_{414}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{460}\! \left(x , y_{0}\right) &= F_{202}\! \left(x , 1, y_{0}\right)\\ F_{461}\! \left(x , y_{0}\right) &= F_{462}\! \left(x , 1, y_{0}\right)\\ F_{462}\! \left(x , y_{0}, y_{1}\right) &= F_{191}\! \left(x , y_{0}, y_{1}\right)+F_{216}\! \left(x , y_{0}, y_{1}\right)\\ F_{463}\! \left(x , y_{0}\right) &= F_{464}\! \left(x , y_{0}\right)\\ F_{464}\! \left(x , y_{0}\right) &= F_{465}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{465}\! \left(x , y_{0}\right) &= F_{466}\! \left(x , y_{0}, 1\right)\\ F_{466}\! \left(x , y_{0}, y_{1}\right) &= F_{467}\! \left(x , y_{0} y_{1}, y_{0}\right)\\ F_{468}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x \right) F_{467}\! \left(x , y_{0}, y_{1}\right)\\ F_{468}\! \left(x , y_{0}, y_{1}\right) &= F_{203}\! \left(x , y_{0}, y_{1}\right)\\ F_{469}\! \left(x , y_{0}\right) &= F_{470}\! \left(x , y_{0}\right)\\ F_{470}\! \left(x , y_{0}\right) &= F_{471}\! \left(x , 1, y_{0}\right)\\ F_{471}\! \left(x , y_{0}, y_{1}\right) &= F_{276}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{472}\! \left(x \right) &= F_{428}\! \left(x \right)+F_{473}\! \left(x \right)\\ F_{473}\! \left(x \right) &= F_{474}\! \left(x \right)\\ F_{474}\! \left(x \right) &= F_{475}\! \left(x , 1\right)\\ F_{475}\! \left(x , y_{0}\right) &= -\frac{-F_{476}\! \left(x , y_{0}\right)+F_{476}\! \left(x , 1\right)}{-1+y_{0}}\\ F_{476}\! \left(x , y_{0}\right) &= F_{477}\! \left(x , y_{0}\right)\\ F_{477}\! \left(x , y_{0}\right) &= F_{326}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{478}\! \left(x \right) &= F_{479}\! \left(x \right)\\ F_{479}\! \left(x \right) &= F_{18}\! \left(x \right) F_{23}\! \left(x \right) F_{480}\! \left(x \right)\\ F_{480}\! \left(x \right) &= \frac{F_{481}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{481}\! \left(x \right) &= F_{482}\! \left(x \right)\\ F_{482}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{483}\! \left(x \right) &= F_{0}\! \left(x \right) F_{24}\! \left(x \right)\\ \end{align*}\)