Av(12354, 12453, 12543, 21354, 21453, 21543, 31452, 31542)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 112, 562, 2925, 15560, 84057, 459562, 2537429, 14127425, 79222292, 447042018, ...
Implicit Equation for the Generating Function
\(\displaystyle x^{3} \left(4 x^{3}-10 x^{2}+7 x -2\right) F \left(x \right)^{6}-x^{2} \left(10 x^{3}-27 x^{2}+23 x -8\right) F \left(x \right)^{5}+x \left(8 x^{4}-21 x^{3}+9 x^{2}+10 x -9\right) F \left(x \right)^{4}-\left(-2+x \right) \left(8 x^{3}-17 x^{2}+10 x +1\right) F \left(x \right)^{3}+\left(4 x^{4}-21 x^{3}+30 x^{2}-8 x -6\right) F \left(x \right)^{2}+\left(x -1\right) \left(-2+x \right) \left(2 x +3\right) F \! \left(x \right)-\left(x -1\right) \left(-2+x \right) = 0\)
Recurrence
\(\displaystyle a(0) = 1\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a(3) = 6\)
\(\displaystyle a(4) = 24\)
\(\displaystyle a(5) = 112\)
\(\displaystyle a(6) = 562\)
\(\displaystyle a(7) = 2925\)
\(\displaystyle a(8) = 15560\)
\(\displaystyle a(9) = 84057\)
\(\displaystyle a(10) = 459562\)
\(\displaystyle a(11) = 2537429\)
\(\displaystyle a(12) = 14127425\)
\(\displaystyle a(13) = 79222292\)
\(\displaystyle a(14) = 447042018\)
\(\displaystyle a(15) = 2536551186\)
\(\displaystyle a(16) = 14463343813\)
\(\displaystyle a(17) = 82832989904\)
\(\displaystyle a(18) = 476279412635\)
\(\displaystyle a(19) = 2748436555670\)
\(\displaystyle a(20) = 15912503444657\)
\(\displaystyle a(21) = 92406258823648\)
\(\displaystyle a(22) = 538108842191647\)
\(\displaystyle a(23) = 3141612746114930\)
\(\displaystyle a(24) = 18385145904195307\)
\(\displaystyle a(25) = 107830153583816408\)
\(\displaystyle a(26) = 633733000526866141\)
\(\displaystyle a(27) = 3731694238570409215\)
\(\displaystyle a(28) = 22013326930739516649\)
\(\displaystyle a(29) = 130075766538144015070\)
\(\displaystyle a(30) = 769827958968206215136\)
\(\displaystyle a(31) = 4562857060370257583645\)
\(\displaystyle a(32) = 27082494876269420148349\)
\(\displaystyle a(33) = 160958849050328637079478\)
\(\displaystyle a(34) = 957820020811397180721392\)
\(\displaystyle a(35) = 5706459711491088457163599\)
\(\displaystyle a(36) = 34035844022008516453773393\)
\(\displaystyle a(37) = 203220887518262081479671413\)
\(\displaystyle a(38) = 1214616406611479540258508763\)
\(\displaystyle a(39) = 7266537068608404263389725569\)
\(\displaystyle a(40) = 43512441947897353111815094750\)
\(\displaystyle a(41) = 260782507413822165944651751406\)
\(\displaystyle a(42) = 1564246380779534527739541394567\)
\(\displaystyle a(43) = 9390254575369350211311304973203\)
\(\displaystyle a(44) = 56413094773531806365932274586012\)
\(\displaystyle a(45) = 339155324011006919126247193923075\)
\(\displaystyle a(46) = 2040422906658068268900063480090480\)
\(\displaystyle a(47) = 12283781252637969788479902922973569\)
\(\displaystyle a(48) = 73998434377117801231329917654180597\)
\(\displaystyle a(49) = 446046868032002673171960421500481997\)
\(\displaystyle a(50) = 2690267924665752198103273542273417461\)
\(\displaystyle a(51) = 16235206290127166017716260613405735031\)
\(\displaystyle a(52) = 98029782040661407992245678856556554690\)
\(\displaystyle a(53) = 592225945082255830049070680329882716949\)
\(\displaystyle a(54) = 3579626222750628156761878641561137612934\)
\(\displaystyle a(55) = 21647159760572698817834385654143534322798\)
\(\displaystyle a(56) = 130969357105924543014594089844509691945682\)
\(\displaystyle a(57) = 792751230416805969007648319659338865831316\)
\(\displaystyle a(58) = 4800604084783181175996613276989033946555998\)
\(\displaystyle a(59) = 29083067192249473605065902279835954147543403\)
\(\displaystyle a(60) = 176264072512007571583145211088225819610400485\)
\(\displaystyle a(61) = 1068712500231074110014119641996782520061683682\)
\(\displaystyle a(62) = 6482252834387820795872778985463047835917316298\)
\(\displaystyle a(63) = 39332701929987489807030254010333949376284874450\)
\(\displaystyle a(64) = 238747770138344506940186226556694396228138528827\)
\(\displaystyle a(65) = 1449698913083579101423469977600480187397776897083\)
\(\displaystyle a(66) = 8805716109565543638616916549128985540016128248534\)
\(\displaystyle a(67) = 53505146364430309719443643742809444912652778060771\)
\(\displaystyle a(68) = 325211776945124964390283600290923255590544185847310\)
\(\displaystyle a(69) = 1977301083734011785475225143969306773715198010596102\)
\(\displaystyle a(70) = 12025727142025498994067062991553053740405800151631427\)
\(\displaystyle a(71) = 73160761449000507865100646537354384170588092976377122\)
\(\displaystyle a(72) = 445215112209177797447830660653752395239520590776257804\)
\(\displaystyle a(73) = 2710085603883433155845435466864710873926461080847494422\)
\(\displaystyle a(74) = 16501153688932652123938890812340528586582656717805103768\)
\(\displaystyle a(75) = 100498755198367138155862476731277436286700858179569862472\)
\(\displaystyle a(76) = 612236383969340824284775386107338787036222862862750526104\)
\(\displaystyle a(77) = 3730669605977283090899164433547133322207131951355987761639\)
\(\displaystyle a(78) = 22738450900227892197879481334682320784101050476675664663507\)
\(\displaystyle a(79) = 138624095587396036209513175187208870917286325049228799275530\)
\(\displaystyle a(80) = 845313445292451250351997123765399052148721953873773516365443\)
\(\displaystyle a(81) = 5155793974516053648131018398801712949503451798104549334417446\)
\(\displaystyle a(82) = 31453550493111084560517777086745828525487402372372222943568581\)
\(\displaystyle a{\left(n + 83 \right)} = \frac{29779558400000 \left(n + 1\right) \left(n + 2\right) \left(n + 3\right) \left(2 n + 1\right) \left(2 n + 3\right) a{\left(n \right)}}{11741919 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{20971520000 \left(n + 2\right) \left(n + 3\right) \left(2 n + 3\right) \left(78075 n^{2} + 518645 n + 814306\right) a{\left(n + 1 \right)}}{3913973 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{26214400 \left(n + 3\right) \left(5600737646 n^{4} + 86598676132 n^{3} + 490343280249 n^{2} + 1204486728683 n + 1080895412620\right) a{\left(n + 2 \right)}}{3913973 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(1128830174 n + 89343616797\right) a{\left(n + 82 \right)}}{7987700 \left(n + 84\right)} - \frac{\left(1074339828625 n^{2} + 169031572814318 n + 6648544008992593\right) a{\left(n + 81 \right)}}{111827800 \left(n + 83\right) \left(n + 84\right)} + \frac{\left(329194542744687 n^{3} + 77212292690311839 n^{2} + 6036520895170225682 n + 157308980077743488216\right) a{\left(n + 80 \right)}}{782794600 \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(125603618246190455 n^{4} + 39035031651274469022 n^{3} + 4549048951911104366173 n^{2} + 235606196850856402625670 n + 4575796908055581679020720\right) a{\left(n + 79 \right)}}{9393535200 \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{6553600 \left(2060487883694 n^{5} + 49033177862827 n^{4} + 460753627134418 n^{3} + 2139002207120033 n^{2} + 4909112187115668 n + 4458091922072640\right) a{\left(n + 3 \right)}}{11741919 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{81920 \left(3701627733443639 n^{5} + 107550232226158621 n^{4} + 1237471921092206047 n^{3} + 7053760874022674243 n^{2} + 19931063075663953482 n + 22343977089399972960\right) a{\left(n + 4 \right)}}{11741919 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{4096 \left(1267193514756759721 n^{5} + 43375708364916678431 n^{4} + 589111212543545305397 n^{3} + 3970990914140658149065 n^{2} + 13291747143084166374138 n + 17681611945578930950400\right) a{\left(n + 5 \right)}}{11741919 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(15500860504936109543 n^{5} + 5983657356310899010270 n^{4} + 923877577584346060365775 n^{3} + 71319630364778949175739420 n^{2} + 2752648891432471937342696412 n + 42494209593352958662866077760\right) a{\left(n + 78 \right)}}{46967676000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(206534072625714121221 n^{5} + 78745276642031460873075 n^{4} + 12008717139882886896777625 n^{3} + 915626161161444932366910865 n^{2} + 34905142183275830553772275814 n + 532231317918316543046282073240\right) a{\left(n + 77 \right)}}{31311784000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{1024 \left(341417638840988202733 n^{5} + 13433320744094569648085 n^{4} + 209999001955485467453885 n^{3} + 1631357188689146634887275 n^{2} + 6300588397068036062058582 n + 9682077940270792095790080\right) a{\left(n + 6 \right)}}{58709595 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(2064829310154056418068 n^{5} + 777459739178879881675513 n^{4} + 117088320995398903149782644 n^{3} + 8816604865513181399096227637 n^{2} + 331926177879655339272178682814 n + 4998321074528111406840668492436\right) a{\left(n + 76 \right)}}{18787070400 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(97676450864678997026104 n^{5} + 36314550403361116410375300 n^{4} + 5400277977858757843704452675 n^{3} + 401519320063373802814390896555 n^{2} + 14926290872100852044584525385916 n + 221943637089358318610297317969500\right) a{\left(n + 75 \right)}}{62623568000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{256 \left(123904681978712055703731 n^{5} + 5504988114488975258748505 n^{4} + 97268217660727828750190515 n^{3} + 854797498095109708526093375 n^{2} + 3737788451477444763148678034 n + 6508272770798353722763460880\right) a{\left(n + 7 \right)}}{489246625 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{128 \left(6682860925694523462587947 n^{5} + 330819420639137133535755770 n^{4} + 6516862825034841387091499195 n^{3} + 63887940440623123380230724730 n^{2} + 311817659656725676650360138318 n + 606338816307815609500873378320\right) a{\left(n + 8 \right)}}{1467739875 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(28799199887764456123921234 n^{5} + 10570654986110155876756608035 n^{4} + 1551925365260659125096275782700 n^{3} + 113919350618767311975112946005645 n^{2} + 4181019315073675943662313481666306 n + 61378335745572390554501284557424320\right) a{\left(n + 74 \right)}}{1502965632000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{64 \left(100881703787730384383434138 n^{5} + 5506657674247564601653819145 n^{4} + 119659306872942536786544123920 n^{3} + 1294475039363614250322084827005 n^{2} + 6974184234169615712501884018152 n + 14975239260238351200815659194780\right) a{\left(n + 9 \right)}}{1467739875 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(394693600902462485831968489 n^{5} + 141135148034288425432209055024 n^{4} + 20186618585316776123745104197895 n^{3} + 1443629051746757559296639935843456 n^{2} + 51619242325664384533032420066425296 n + 738281419740672437279257884950019168\right) a{\left(n + 72 \right)}}{200395417600 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(620432800522334051782826593 n^{5} + 224790698222575594692877661405 n^{4} + 32577088632713988329243226014525 n^{3} + 2360515526901551749457070219417235 n^{2} + 85518960670411109495284249896202722 n + 1239279366162144080722266178261916400\right) a{\left(n + 73 \right)}}{3005931264000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{32 \left(1295113194030930074567825792 n^{5} + 77312930075158319654134247470 n^{4} + 1837587670935605864904854829655 n^{3} + 21747229623634231622810740882280 n^{2} + 128199412282062068296383282576333 n + 301248611405396512409490668253630\right) a{\left(n + 10 \right)}}{1467739875 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{16 \left(4756588240907822745601037601 n^{5} + 308494776469232440507576097895 n^{4} + 7965776805415995459372868297370 n^{3} + 102413755062028034575930750202105 n^{2} + 655866710807459326452977226511289 n + 1674325820879276788103517413970240\right) a{\left(n + 11 \right)}}{489246625 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{4 \left(54275821371003917746818929959 n^{5} + 3804570363748598584493901355703 n^{4} + 106146484765034363507347278009827 n^{3} + 1474198612481472083843887147827943 n^{2} + 10196618168369554621568531482248984 n + 28110196347403803607360313954052588\right) a{\left(n + 12 \right)}}{293547975 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(201883940500105921508617658359 n^{5} + 71235391812394893116750436950870 n^{4} + 10054168344827884287497822274317705 n^{3} + 709517572324863419752683648495994930 n^{2} + 25034976819667220565822665939202020616 n + 353336596875721256818592048639238279360\right) a{\left(n + 71 \right)}}{12023725056000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{2 \left(446041865114757586537939770311 n^{5} + 33661411903522449966142239959434 n^{4} + 1010472772028669848681367347272958 n^{3} + 15092198378924157306633656718118562 n^{2} + 112215911924046414920130713759258169 n + 332444393880155884051958180272473378\right) a{\left(n + 13 \right)}}{293547975 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(1548361543630586469812420474111 n^{5} + 539027408223423746363565265201525 n^{4} + 75060012487105016735807450256898495 n^{3} + 5226080977549395582806088123978170615 n^{2} + 181933951680146007498431025598433029014 n + 2533447285683737216451515792700977113920\right) a{\left(n + 70 \right)}}{12023725056000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(5373511403261042550609412810079 n^{5} + 1845289771886185993850222960297650 n^{4} + 253473937124236256006257083111676225 n^{3} + 17409039816175329055047559316040679100 n^{2} + 597846268901146606659613476558621831846 n + 8212357349906145116909615413135350795540\right) a{\left(n + 69 \right)}}{6011862528000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(11307808669055388679267711938278 n^{5} + 3829783685948577786400559710125095 n^{4} + 518842302591382577196040549489620450 n^{3} + 35145709291509220765393936822223492295 n^{2} + 1190379663125595698265737533544418673202 n + 16127437834447152260593750604512875888900\right) a{\left(n + 68 \right)}}{2003954176000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(15771858280360244991620144320837 n^{5} + 1278424763644235549725139231722250 n^{4} + 41173699558318486307775692709580430 n^{3} + 659187880070440865656476867350913400 n^{2} + 5249901114150414174287022229101627453 n + 16648981029525607943204924728707594330\right) a{\left(n + 14 \right)}}{1467739875 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(94614748358499338434979343718177 n^{5} + 8237733968800186637181647027510870 n^{4} + 284387067273205507611331924628607665 n^{3} + 4872398424562604136966091281702765070 n^{2} + 41471473666951044966222688229794876728 n + 140401631308544693987370694586795540250\right) a{\left(n + 15 \right)}}{2935479750 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(195629600418074086782942598082167 n^{5} + 65333981218346314791346764184155635 n^{4} + 8727944388761879426992694129499150080 n^{3} + 582993339928007094149658362875419730390 n^{2} + 19471278381137556702433047852979578239868 n + 260132761072916987298575556943318787810640\right) a{\left(n + 67 \right)}}{6011862528000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(463925269995932806632110012239579 n^{5} + 43623262949921496114069613436404880 n^{4} + 1619297547591683983025754003624806600 n^{3} + 29730984154566468509639880401105014240 n^{2} + 270472241277633300429645544217910330381 n + 976631534810239128483876464918899656900\right) a{\left(n + 16 \right)}}{5870959500 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(554294653894545610707244584314049 n^{5} + 57724528289290596418314178428945190 n^{4} + 2342055491733101991564406615896070435 n^{3} + 46574614862907282438098279109632092850 n^{2} + 455875402781813489870600366387288027666 n + 1762137030462212400993740115709994328390\right) a{\left(n + 17 \right)}}{3913973000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(1034358711256448092316132607587626 n^{5} + 340566320082917006487853698000090065 n^{4} + 44854226590228568589103994070696731150 n^{3} + 2953838240294477956642039289877724659160 n^{2} + 97264016065062273297622264408530464083449 n + 1281121508826580882418718934486675832872830\right) a{\left(n + 66 \right)}}{6011862528000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(2163961750090844234331588622164902 n^{5} + 323305268140871784987830043987378925 n^{4} + 16352109240980218802675847411101948815 n^{3} + 380115491277848176309212238125139943945 n^{2} + 4195366176538028846342961610478244742983 n + 17874100054178627854713373725819000868530\right) a{\left(n + 18 \right)}}{23483838000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(5030368127262565371161639005604251 n^{5} + 1632567793068329740915135618169683550 n^{4} + 211941776786204062118330197459846562120 n^{3} + 13757715620382492254705631722497920901510 n^{2} + 446540656064701610560937901819531546617289 n + 5797638116251986118005952164141530459316030\right) a{\left(n + 65 \right)}}{6011862528000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(9041663144944195958374527527947326 n^{5} + 730917797481522852134988395873334110 n^{4} + 23201243030577357166756171051028678275 n^{3} + 361356765926420835629723327918761080990 n^{2} + 2768498381301430650362196707119977245409 n + 8423680049551864234428176685759729058050\right) a{\left(n + 19 \right)}}{15655892000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(45128820130543086996437287055113757 n^{5} + 14433745807699196456549279517283528960 n^{4} + 1846632912275142180846525945005774315755 n^{3} + 118132411711570008189186984227257375639190 n^{2} + 3778723125835955627750825704856116133891058 n + 48350290387359974149649882883889244793911580\right) a{\left(n + 64 \right)}}{12023725056000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(51020651128941614040875576242306723 n^{5} + 5029740793821740570967950895647258940 n^{4} + 200130385222148355640318930918785723325 n^{3} + 4024809073846518616013932528229059390905 n^{2} + 40977588940497192607303661623217393300827 n + 169180537921458117066415485326069890585380\right) a{\left(n + 20 \right)}}{15655892000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(338366250302183863636685894296950196 n^{5} + 36246542903629403137920343225558912835 n^{4} + 1565946932275277676970872664386999066200 n^{3} + 34122326614533905264347587666246463064535 n^{2} + 375114261526062722661851525422934483405854 n + 1664355600429818508550621240219723372360320\right) a{\left(n + 21 \right)}}{31311784000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(374322016431348049027266780681022973 n^{5} + 117959902479101418459352292228477073340 n^{4} + 14869699875926003277759535048180769286805 n^{3} + 937258332248026719317750797176132158439770 n^{2} + 29539712108897335377696280658622950366611632 n + 372420491807304071918801359512237267040332000\right) a{\left(n + 63 \right)}}{24047450112000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(479425678431816633378238151915479672 n^{5} + 148827178909338225458620570343106892215 n^{4} + 18480937114482807934159902857026357032030 n^{3} + 1147511538147339648785943567651138522823415 n^{2} + 35627225618399896166972331908746681666112328 n + 442475619538977194313886704968420162299072020\right) a{\left(n + 62 \right)}}{8015816704000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(566746756852599560109700449417393894 n^{5} + 170611412593419940717034097881236751241 n^{4} + 20545215318271499564907944427463061826516 n^{3} + 1237107546195512369337589981347513517339721 n^{2} + 37247652064141965767882061467914665164439784 n + 448616837546702222244069698364598416835446810\right) a{\left(n + 60 \right)}}{801581670400 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(1709100183848432744673201399931050296 n^{5} + 195034297961015644422345760960991250930 n^{4} + 8968655911693880795326972529339253761375 n^{3} + 207743457487659964233657518372229779838480 n^{2} + 2423470756000064213478779732746325284930049 n + 11386936977314049423895669442741761751877270\right) a{\left(n + 22 \right)}}{62623568000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(5129158115628451507426054686162246011 n^{5} + 1568138892675385741118905791442055116045 n^{4} + 191780913532355082000330797304612877975825 n^{3} + 11727871860856684666291657921473003579544055 n^{2} + 358613436107020024076841669459783806721932424 n + 4386498143133473380721375718402381106107442500\right) a{\left(n + 61 \right)}}{24047450112000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(10266128340471750984166488972954012703 n^{5} + 1241953116556103907804085518827871268895 n^{4} + 60526122350197593648905695203355681982885 n^{3} + 1484850030495854902909250922283639937043820 n^{2} + 18328312136985136707763309251626718666292797 n + 91014072653634750920814912358926725772096660\right) a{\left(n + 23 \right)}}{187870704000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(10309711565528562071337965650614766234 n^{5} + 1330424588056898546015438294734726724685 n^{4} + 69166409676866426275780850418019088645330 n^{3} + 1809214180547093450245828340872217039026225 n^{2} + 23788933670141347170167113418991753733020806 n + 125673303844403650304918337037567496975418060\right) a{\left(n + 24 \right)}}{125247136000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(26227231008695071087977041904744690076 n^{5} + 7772356324731869237988131082932560409555 n^{4} + 921376511982948091245258866490650685760115 n^{3} + 54615549115639180433837416880699957370711280 n^{2} + 1618790902667395874624491124356684784465482614 n + 19193360794914262270014444166361222639865579810\right) a{\left(n + 59 \right)}}{12023725056000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(26347983013277604033952886675229944668 n^{5} + 2836076129142055184585686670836486911000 n^{4} + 111222178390701862068563797467219410367565 n^{3} + 1790655749079809369625577395863319410528075 n^{2} + 6731160052705831325247885841547875498096172 n - 63602969334608439995165007395408841216078540\right) a{\left(n + 26 \right)}}{250494272000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(49546321483242885276606101393704442048 n^{5} + 7265060077087602551081697722873746181080 n^{4} + 426482079512703532143564997991979196177825 n^{3} + 12505831024640176950834611931782998888958330 n^{2} + 182951564573783101665762980119154463267575967 n + 1067368335275323925516999627550814747474522710\right) a{\left(n + 25 \right)}}{751482816000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(96495602409019536281574091087775252996 n^{5} + 12520530402181444579342678512372826896598 n^{4} + 643410959374705614613207816134216223833553 n^{3} + 16333139170904806935733697518063650163510514 n^{2} + 204198551864265787386224242636214610220589673 n + 1001441406913109484031719359473925606242080834\right) a{\left(n + 27 \right)}}{150296563200 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(150768329063345917705579469837597381999 n^{5} + 43973362339450260590617427664583740002080 n^{4} + 5130424404401377447846078942125986549184385 n^{3} + 299303325828739945866381551454391556120711150 n^{2} + 8731019934716097877174853858510880857924264766 n + 101883568798989768686361973856764240091517040320\right) a{\left(n + 58 \right)}}{24047450112000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(404061571473628089896883971064773619506 n^{5} + 115958274457789175026727077546489773759415 n^{4} + 13311869758333488415380379667188032388925020 n^{3} + 764134966778208061746202843697374528255193555 n^{2} + 21932864345317101156753548095980685759434196764 n + 251828834108211648960447636978301018112112007920\right) a{\left(n + 57 \right)}}{24047450112000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(471592169000995327059768469797940416152 n^{5} + 130931341517770441210093559646867104909989 n^{4} + 14541148183094306858749527728989200199771438 n^{3} + 807499889753035281881316767289476813119640297 n^{2} + 22422062686664437918741244233711748665644829632 n + 249051173821699743616628585565641667139621225632\right) a{\left(n + 55 \right)}}{4809490022400 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(1010325409252882835627534324062966201984 n^{5} + 285221637336746932137828289863184700581595 n^{4} + 32209563348999504127811614016537109139157870 n^{3} + 1818775022773502343633483200523122602834453135 n^{2} + 51352961186621354423515824814716669241018771836 n + 580009288651990901204765944650623929710340154640\right) a{\left(n + 56 \right)}}{24047450112000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(1404112029935843351674997772140316851996 n^{5} + 193416109630949742401994510587056457889145 n^{4} + 10615512700329932936045764117475367125017480 n^{3} + 290022480189084672816740484600532123871233385 n^{2} + 3941762817674260261381054893923082988572668214 n + 21304366718759300338998005888940155207802167250\right) a{\left(n + 28 \right)}}{751482816000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(2090704323165689940384751690321633164263 n^{5} + 560955585654047685727048918966165458399592 n^{4} + 60204894220773216602744997087810095275018273 n^{3} + 3230824605657813715160820710229008126520577286 n^{2} + 86691001471328913244803671781319172467031541486 n + 930474535097060414703708381209928231241340892120\right) a{\left(n + 53 \right)}}{4809490022400 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(5137904500466987453917574569483239401497 n^{5} + 1402501404423600483529497738381534804421715 n^{4} + 153141933894557975315371931087934008859434825 n^{3} + 8361211285048903747087590765729549732009106375 n^{2} + 228259683961387646902897999041000451388599901448 n + 2492670373291183493045255134341942257836460963760\right) a{\left(n + 54 \right)}}{24047450112000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(7947293089743456512378139324680268309364 n^{5} + 1187474248172185871102760187627296823420630 n^{4} + 70885649895415153018948860619463253771912350 n^{3} + 2112947039329019491115525756726180377126349955 n^{2} + 31446122602056992948850512184655885095997268351 n + 186908941068282602746083642478099631121136484670\right) a{\left(n + 30 \right)}}{1001977088000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(7967573220509372549084411326434718047158 n^{5} + 1232082653786633533862660524767972902295394 n^{4} + 76150136479166034688244006427689196866214478 n^{3} + 2351280123503705955537500615433939529401133073 n^{2} + 36267230005397362398797072175839792349084173493 n + 223543279537695997760775618945180566599988477196\right) a{\left(n + 31 \right)}}{601186252800 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(12566725044465035960811831246036879549388 n^{5} + 1808329934445932216143367813502725375719430 n^{4} + 103872652610723119282676005744378491735247535 n^{3} + 2976561515797013769333847028008153231187150980 n^{2} + 42541951154312279437590341737745434479509429157 n + 242538962837061466683103652887529754237067237350\right) a{\left(n + 29 \right)}}{3005931264000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(13498670471429693495838880326576039859062 n^{5} + 2287414736159883537920351043891146585717179 n^{4} + 154992317563864018329105924012458084772175408 n^{3} + 5249137338102452617057712082232092026306309471 n^{2} + 88852300713949408625289774565110683776769339228 n + 601356648309450864830298455134683648569018332908\right) a{\left(n + 34 \right)}}{400790835200 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(15292522732093502722692687568465181463961 n^{5} + 3591656958825752794184697283194146481803908 n^{4} + 337375379300413510779555009386560280111214979 n^{3} + 15843322869633872721638663396575029064964309276 n^{2} + 371958929474515229918751349343751932974877784580 n + 3492616981860431939141465068981294075672424015748\right) a{\left(n + 46 \right)}}{1603163340800 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(19461162281869823567560770192505785762537 n^{5} + 4948950774542839537151746748833679887305345 n^{4} + 503380169333407105883365469875045873873373465 n^{3} + 25599357297072891746948404983381704627287260605 n^{2} + 650898642383619557018568496812931039338936690668 n + 6619730943359824336981744919917255943319621163320\right) a{\left(n + 50 \right)}}{8015816704000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(19860135449940915816776695868345926688596 n^{5} + 5236077624490152747883696639016673353847665 n^{4} + 552191316144628451547077266036293145619629970 n^{3} + 29116799730693594518825424330810993831734547805 n^{2} + 767660521737136404584955048862701709332944577024 n + 8095751904708472671167612281256812434205260827160\right) a{\left(n + 52 \right)}}{24047450112000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(23900285081712229267181309222816321735500 n^{5} + 3816379547380821252373971436295136750574031 n^{4} + 243624933862512094573826807896306987247298794 n^{3} + 7771561494524115149744667960430011015064565971 n^{2} + 123878124618629504042790921651330850995764014596 n + 789319295917227811133231964265150789903591746528\right) a{\left(n + 32 \right)}}{1202372505600 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(35234025489769206104319400190335551728558 n^{5} + 9124934102149668967375438067874358900401745 n^{4} + 945251054233849903912261668892160690007417940 n^{3} + 48958229470448253791559429268258932072212770985 n^{2} + 1267845853813005874181933000967506785835595233712 n + 13132896513597500408420992190631747402225037984440\right) a{\left(n + 51 \right)}}{24047450112000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(66072261491368122479930363284601872074718 n^{5} + 13179760153063342587015312759291610677382073 n^{4} + 1051443579539198895510024703937208188747998322 n^{3} + 41933180849984621093926929078855819263175186463 n^{2} + 836018167687153571314752362256957349890118405764 n + 6665639807606108832559182971880297016570761746364\right) a{\left(n + 40 \right)}}{2404745011200 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(81339177977659679040502335331755492071282 n^{5} + 13388923687155284272272622516881203735234980 n^{4} + 881194826301054228952757493067095743643968905 n^{3} + 28985292978812293315872277043615163780850944275 n^{2} + 476487125486416655063275158097996386817120680348 n + 3131624361792500242750246001871856338452510069040\right) a{\left(n + 33 \right)}}{3005931264000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(89017068086695007533258722663247745546935 n^{5} + 16807757369590107252059459217262172565954119 n^{4} + 1269058275159202185043892176977387413827397039 n^{3} + 47894967045708362541073284657360128067593513479 n^{2} + 903493779396945583266064636517592505845459060960 n + 6815019017525832638218712357415673665895600569360\right) a{\left(n + 38 \right)}}{2404745011200 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(90415102755893451050594131944321812839717 n^{5} + 22566221074107187406619996756771989477778560 n^{4} + 2252697397367166795079850873407871234553507395 n^{3} + 112430641472589432731367556944612430413967926790 n^{2} + 2805472027219299279510683441451513990794866075998 n + 28000010234027483616445038679192377979726947399840\right) a{\left(n + 49 \right)}}{24047450112000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(110372962151000810581226231848766942676781 n^{5} + 22666926608685394897701302278935331004599349 n^{4} + 1861890906319537566926106723403533623731259993 n^{3} + 76463190851484727019542763735330280623130048523 n^{2} + 1569935495282326808906361461417716135103153116746 n + 12892189174241443415174114528301503711427188481552\right) a{\left(n + 41 \right)}}{4809490022400 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(130891669873460244738587862843026347908196 n^{5} + 28510296208794187616669744307751447363718145 n^{4} + 2483967149465325016136768674234772237628959720 n^{3} + 108206117107969588676773627022764156633589530435 n^{2} + 2356769046325811476564519115431256078225468119364 n + 20531885754030024191235515062342898531996245340460\right) a{\left(n + 43 \right)}}{8015816704000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(131063152205423043601926335468837517110602 n^{5} + 32085454758805554098880821846557099973246315 n^{4} + 3141592227204746816184187675190440746754886840 n^{3} + 153786187117712945858264632263337343774435868415 n^{2} + 3763678936692390056196804640915263118244055344328 n + 36840651420368039637819921461833377912029433448200\right) a{\left(n + 48 \right)}}{24047450112000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(160769037524725292175541165416044436804582 n^{5} + 29561074043400562118117452057943887942753335 n^{4} + 2173538659120853737178779134965760852286712940 n^{3} + 79881328795138904111770205916058271008038984035 n^{2} + 1467386783327789569766193312741265239838218124348 n + 10778174341713926307244040220578860807451602909680\right) a{\left(n + 37 \right)}}{4007908352000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(163414045526822894470762047339554166030986 n^{5} + 29258521054068844763715913780444958800174135 n^{4} + 2094806686102230341666744428327980298915045220 n^{3} + 74966272850713052860188981844096310103587529615 n^{2} + 1340940123322961065001144335347281804688030256504 n + 9590797607638231628778902840200744686353141185620\right) a{\left(n + 36 \right)}}{4007908352000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(178399264546760953857668260109921809420273 n^{5} + 42802517591283742417010447828815169786363015 n^{4} + 4107243447598838899311846373986365639667860135 n^{3} + 197037261895047286256765829020198965054505214745 n^{2} + 4725686630094540144709696035867963020603572590492 n + 45330645440328002986067962568369684569476051111360\right) a{\left(n + 47 \right)}}{24047450112000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(195047009872890911843049832677399369920167 n^{5} + 37834681813933461653833337494258219123746965 n^{4} + 2934914563502775073712664977847645553253718785 n^{3} + 113803917115145155430488788638981208062340017920 n^{2} + 2205801470710459580679432481838262491914360916223 n + 17096351931547523856905293929379655680550407022490\right) a{\left(n + 39 \right)}}{6011862528000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(281455227551583812196132192022967519994662 n^{5} + 64603458087743745793854149291131312877491465 n^{4} + 5930814442895318065751275565597527647141057850 n^{3} + 272204666313165575420028012213903041242378728065 n^{2} + 6245970936552570653927067181084264394439137062458 n + 57321558991366539782033173222911653436182460666300\right) a{\left(n + 45 \right)}}{24047450112000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(334578523478508106303758925718077150049404 n^{5} + 74896589051342138058448314042436245445474775 n^{4} + 6705927420143581264709754341735723862239359910 n^{3} + 300190875825546993126046396568534678296706861995 n^{2} + 6718571557597782335872429351522212788492163341016 n + 60143154819664269070898877351621896878475588633820\right) a{\left(n + 44 \right)}}{24047450112000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} + \frac{\left(462854431367983026679140289917476741317322 n^{5} + 97922931988223658419783270989627900698445345 n^{4} + 8286703189274273949347481861949325707772636200 n^{3} + 350624933128715955818098526675552788968626421515 n^{2} + 7417602004033860779209311745846771367890787528778 n + 62766786842084313266650757782594746813530826928200\right) a{\left(n + 42 \right)}}{24047450112000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)} - \frac{\left(463447629540611963850561669320871678500681 n^{5} + 80758585089633037404788837077979896844404615 n^{4} + 5627320835060492275404871731486998674157935075 n^{3} + 195993409634292423671582245812741455161061020205 n^{2} + 3411923610523408168966518334566162044404319946444 n + 23749566345021771340946032296612210920866444816980\right) a{\left(n + 35 \right)}}{12023725056000 \left(n + 80\right) \left(n + 81\right) \left(n + 82\right) \left(n + 83\right) \left(n + 84\right)}, \quad n \geq 83\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 108 rules.

Finding the specification took 1428 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 108 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{42}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{42}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{12}\! \left(x \right) &= \frac{F_{13}\! \left(x \right)}{F_{42}\! \left(x \right) F_{52}\! \left(x \right) F_{55}\! \left(x \right)}\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{15}\! \left(x \right) &= \frac{F_{16}\! \left(x \right)}{F_{42}\! \left(x \right)}\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{20}\! \left(x \right) &= x^{2} F_{20} \left(x \right)^{2}+2 x^{2} F_{20}\! \left(x \right)-2 x F_{20} \left(x \right)^{2}+x^{2}-3 x F_{20}\! \left(x \right)-x +2 F_{20}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{2}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= x^{2} F_{26} \left(x \right)^{2}-2 x F_{26} \left(x \right)^{2}+F_{26}\! \left(x \right) x +2 F_{26}\! \left(x \right)-1\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{30}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{30}\! \left(x \right) &= \frac{F_{31}\! \left(x \right)}{F_{42}\! \left(x \right)}\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= -F_{26}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= \frac{F_{34}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{34}\! \left(x \right) &= -F_{43}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= \frac{F_{36}\! \left(x \right)}{F_{42}\! \left(x \right)}\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= -F_{26}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= \frac{F_{41}\! \left(x \right)}{F_{42}\! \left(x \right)}\\ F_{41}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{42}\! \left(x \right) &= x\\ F_{43}\! \left(x \right) &= -F_{46}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= \frac{F_{45}\! \left(x \right)}{F_{42}\! \left(x \right)}\\ F_{45}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{2}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{26}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{42}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{42}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{42}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{42}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{62}\! \left(x \right) &= \frac{F_{63}\! \left(x \right)}{F_{42}\! \left(x \right)}\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= -F_{104}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= -F_{4}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= \frac{F_{68}\! \left(x \right)}{F_{42}\! \left(x \right) F_{75}\! \left(x \right)}\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{42}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{42}\! \left(x \right) F_{75}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{75}\! \left(x \right) &= -F_{24}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= -F_{47}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{78}\! \left(x \right) &= \frac{F_{79}\! \left(x \right)}{F_{42}\! \left(x \right)}\\ F_{79}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{80}\! \left(x \right) &= -F_{85}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= \frac{F_{82}\! \left(x \right)}{F_{42}\! \left(x \right)}\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{2}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{42}\! \left(x \right) F_{89}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{90}\! \left(x \right) &= \frac{F_{91}\! \left(x \right)}{F_{42}\! \left(x \right)}\\ F_{91}\! \left(x \right) &= F_{80}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{42}\! \left(x \right) F_{75}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= \frac{F_{95}\! \left(x \right)}{F_{42}\! \left(x \right)}\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{42}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{104}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{42}\! \left(x \right) F_{62}\! \left(x \right) F_{75}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 107 rules.

Finding the specification took 3218 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 107 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{41}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{41}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{12}\! \left(x \right) &= \frac{F_{13}\! \left(x \right)}{F_{41}\! \left(x \right) F_{52}\! \left(x \right) F_{55}\! \left(x \right)}\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{15}\! \left(x \right) &= \frac{F_{16}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{20}\! \left(x \right) &= x^{2} F_{20} \left(x \right)^{2}+2 x^{2} F_{20}\! \left(x \right)-2 x F_{20} \left(x \right)^{2}+x^{2}-3 x F_{20}\! \left(x \right)-x +2 F_{20}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{2}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= x^{2} F_{26} \left(x \right)^{2}-2 x F_{26} \left(x \right)^{2}+F_{26}\! \left(x \right) x +2 F_{26}\! \left(x \right)-1\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{31}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{31}\! \left(x \right) &= \frac{F_{32}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= -F_{26}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= \frac{F_{35}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{35}\! \left(x \right) &= -F_{42}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= \frac{F_{37}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= \frac{F_{40}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{40}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{41}\! \left(x \right) &= x\\ F_{42}\! \left(x \right) &= -F_{46}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= \frac{F_{44}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= -F_{20}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{2}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{26}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{41}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{41}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{41}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{41}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{62}\! \left(x \right) &= \frac{F_{63}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= -F_{103}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= -F_{4}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= \frac{F_{68}\! \left(x \right)}{F_{41}\! \left(x \right) F_{75}\! \left(x \right)}\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{41}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{41}\! \left(x \right) F_{75}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{75}\! \left(x \right) &= -F_{24}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= -F_{47}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{78}\! \left(x \right) &= \frac{F_{79}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{79}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{80}\! \left(x \right) &= -F_{85}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= \frac{F_{82}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{2}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{41}\! \left(x \right) F_{89}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{90}\! \left(x \right) &= \frac{F_{91}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{91}\! \left(x \right) &= F_{80}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{41}\! \left(x \right) F_{75}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= \frac{F_{95}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{41}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{41}\! \left(x \right) F_{62}\! \left(x \right) F_{75}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 66 rules.

Finding the specification took 1043 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 66 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{22}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{13}\! \left(x \right) &= \frac{F_{14}\! \left(x \right)}{F_{22}\! \left(x \right)}\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= \frac{F_{20}\! \left(x \right)}{F_{22}\! \left(x \right)}\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= x^{2} F_{21} \left(x \right)^{2}+2 x^{2} F_{21}\! \left(x \right)-2 x F_{21} \left(x \right)^{2}+x^{2}-3 x F_{21}\! \left(x \right)-x +2 F_{21}\! \left(x \right)\\ F_{22}\! \left(x \right) &= x\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{11}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{22}\! \left(x \right) F_{28}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{28}\! \left(x \right) &= \frac{F_{29}\! \left(x \right)}{F_{22}\! \left(x \right) F_{36}\! \left(x \right)}\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= -F_{33}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= \frac{F_{32}\! \left(x \right)}{F_{22}\! \left(x \right)}\\ F_{32}\! \left(x \right) &= F_{5}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{0}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= \frac{F_{35}\! \left(x \right)}{F_{22}\! \left(x \right)}\\ F_{35}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{22}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{22}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{22}\! \left(x \right) F_{38}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= \frac{F_{47}\! \left(x \right)}{F_{0}\! \left(x \right) F_{22}\! \left(x \right) F_{55}\! \left(x \right)}\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= -F_{54}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= \frac{F_{50}\! \left(x \right)}{F_{22}\! \left(x \right)}\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= \frac{F_{53}\! \left(x \right)}{F_{22}\! \left(x \right)}\\ F_{53}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{0}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{55}\! \left(x \right) &= x^{2} F_{55} \left(x \right)^{2}-2 x F_{55} \left(x \right)^{2}+F_{55}\! \left(x \right) x +2 F_{55}\! \left(x \right)-1\\ F_{56}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{38}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= -F_{59}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{22}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{22}\! \left(x \right) F_{63}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 107 rules.

Finding the specification took 3218 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 107 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{41}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{41}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{12}\! \left(x \right) &= \frac{F_{13}\! \left(x \right)}{F_{41}\! \left(x \right) F_{52}\! \left(x \right) F_{55}\! \left(x \right)}\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{15}\! \left(x \right) &= \frac{F_{16}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{20}\! \left(x \right) &= x^{2} F_{20} \left(x \right)^{2}+2 x^{2} F_{20}\! \left(x \right)-2 x F_{20} \left(x \right)^{2}+x^{2}-3 x F_{20}\! \left(x \right)-x +2 F_{20}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{2}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= x^{2} F_{26} \left(x \right)^{2}-2 x F_{26} \left(x \right)^{2}+F_{26}\! \left(x \right) x +2 F_{26}\! \left(x \right)-1\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{31}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{31}\! \left(x \right) &= \frac{F_{32}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= -F_{26}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= \frac{F_{35}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{35}\! \left(x \right) &= -F_{42}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= \frac{F_{37}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= \frac{F_{40}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{40}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{41}\! \left(x \right) &= x\\ F_{42}\! \left(x \right) &= -F_{46}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= \frac{F_{44}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= -F_{20}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{2}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{26}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{41}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{41}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{41}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{41}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{62}\! \left(x \right) &= \frac{F_{63}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= -F_{103}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= -F_{4}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= \frac{F_{68}\! \left(x \right)}{F_{41}\! \left(x \right) F_{75}\! \left(x \right)}\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{41}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{41}\! \left(x \right) F_{75}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{75}\! \left(x \right) &= -F_{24}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= -F_{47}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{78}\! \left(x \right) &= \frac{F_{79}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{79}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{80}\! \left(x \right) &= -F_{85}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= \frac{F_{82}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{2}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{41}\! \left(x \right) F_{89}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{90}\! \left(x \right) &= \frac{F_{91}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{91}\! \left(x \right) &= F_{80}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{41}\! \left(x \right) F_{75}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= \frac{F_{95}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{41}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{41}\! \left(x \right) F_{62}\! \left(x \right) F_{75}\! \left(x \right)\\ \end{align*}\)