Av(12354, 12453, 12543, 13452, 13542, 14532, 23451, 23541, 24531)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 111, 546, 2758, 14110, 72687, 375998, 1950212, 10134024, 52730484, 274647566, ...

This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 741 rules.

Found on January 23, 2022.

Finding the specification took 564 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 741 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{11}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{735}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)+F_{722}\! \left(x \right)+F_{732}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{11}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{32}\! \left(x \right)+F_{684}\! \left(x \right)+F_{719}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{11}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)+F_{32}\! \left(x \right)+F_{684}\! \left(x \right)+F_{715}\! \left(x \right)+F_{717}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{11}\! \left(x \right) &= x\\ F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)+F_{13}\! \left(x \right)+F_{20}\! \left(x \right)+F_{713}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{11}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x , 1\right)\\ F_{15}\! \left(x , y\right) &= -\frac{-y F_{16}\! \left(x , y\right)+F_{16}\! \left(x , 1\right)}{-1+y}\\ F_{16}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y\right)+F_{19}\! \left(x , y\right)+F_{20}\! \left(x \right)+F_{712}\! \left(x , y\right)\\ F_{17}\! \left(x , y\right) &= F_{16}\! \left(x , y\right) F_{18}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= y x\\ F_{19}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{15}\! \left(x , y\right)\\ F_{20}\! \left(x \right) &= F_{11}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x , 1\right)\\ F_{22}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x , y\right)+F_{23}\! \left(x , y\right)+F_{24}\! \left(x , y\right)+F_{26}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{22}\! \left(x , y\right)\\ F_{24}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{25}\! \left(x , y\right)\\ F_{25}\! \left(x , y\right) &= -\frac{-y F_{22}\! \left(x , y\right)+F_{22}\! \left(x , 1\right)}{-1+y}\\ F_{26}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{27}\! \left(x , y\right)\\ F_{27}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x , y\right)+F_{29}\! \left(x , y\right)+F_{48}\! \left(x , y\right)+F_{686}\! \left(x , y\right)+F_{710}\! \left(x , y\right)\\ F_{28}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{27}\! \left(x , y\right)\\ F_{29}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{30}\! \left(x , y\right)\\ F_{30}\! \left(x , y\right) &= -\frac{-y F_{31}\! \left(x , y\right)+F_{31}\! \left(x , 1\right)}{-1+y}\\ F_{31}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y\right)+F_{29}\! \left(x , y\right)+F_{32}\! \left(x \right)+F_{39}\! \left(x , y\right)+F_{689}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{11}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x , 1\right)\\ F_{34}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{35}\! \left(x , y\right)+F_{36}\! \left(x , y\right)+F_{48}\! \left(x , y\right)+F_{686}\! \left(x , y\right)+F_{688}\! \left(x , y\right)\\ F_{35}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{34}\! \left(x , y\right)\\ F_{36}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{37}\! \left(x , y\right)\\ F_{37}\! \left(x , y\right) &= -\frac{-y F_{38}\! \left(x , y\right)+F_{38}\! \left(x , 1\right)}{-1+y}\\ F_{38}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y\right)+F_{32}\! \left(x \right)+F_{36}\! \left(x , y\right)+F_{39}\! \left(x , y\right)+F_{684}\! \left(x \right)\\ F_{39}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{40}\! \left(x , y\right)\\ F_{40}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y\right)+F_{39}\! \left(x , y\right)+F_{41}\! \left(x , y\right)+F_{43}\! \left(x \right)+F_{682}\! \left(x \right)+F_{683}\! \left(x \right)\\ F_{41}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{42}\! \left(x , y\right)\\ F_{42}\! \left(x , y\right) &= -\frac{-y F_{40}\! \left(x , y\right)+F_{40}\! \left(x , 1\right)}{-1+y}\\ F_{43}\! \left(x \right) &= F_{11}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x , 1\right)\\ F_{45}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{35}\! \left(x , y\right)+F_{359}\! \left(x \right)+F_{36}\! \left(x , y\right)+F_{46}\! \left(x , y\right)+F_{48}\! \left(x , y\right)+F_{681}\! \left(x , y\right)\\ F_{46}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{47}\! \left(x , y\right)\\ F_{47}\! \left(x , y\right) &= -\frac{-y F_{45}\! \left(x , y\right)+F_{45}\! \left(x , 1\right)}{-1+y}\\ F_{48}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{49}\! \left(x , y\right)\\ F_{49}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{41}\! \left(x , y\right)+F_{46}\! \left(x , y\right)+F_{48}\! \left(x , y\right)+F_{50}\! \left(x , y\right)+F_{51}\! \left(x , y\right)+F_{633}\! \left(x , y\right)\\ F_{50}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{49}\! \left(x , y\right)\\ F_{51}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{52}\! \left(x , y\right)\\ F_{52}\! \left(x , y\right) &= -\frac{-y F_{53}\! \left(x , y\right)+F_{53}\! \left(x , 1\right)}{-1+y}\\ F_{53}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{360}\! \left(x , y\right)+F_{361}\! \left(x , y\right)+F_{54}\! \left(x , y\right)+F_{55}\! \left(x , y\right)+F_{62}\! \left(x , y\right)+F_{632}\! \left(x , y\right)\\ F_{54}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{53}\! \left(x , y\right)\\ F_{55}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{56}\! \left(x , y\right)\\ F_{56}\! \left(x , y\right) &= -\frac{-y F_{57}\! \left(x , y\right)+F_{57}\! \left(x , 1\right)}{-1+y}\\ F_{57}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{138}\! \left(x , y\right)+F_{333}\! \left(x \right)+F_{359}\! \left(x \right)+F_{55}\! \left(x , y\right)+F_{58}\! \left(x , y\right)+F_{62}\! \left(x , y\right)\\ F_{58}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{59}\! \left(x , y\right)\\ F_{59}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{134}\! \left(x , y\right)+F_{58}\! \left(x , y\right)+F_{60}\! \left(x , y\right)+F_{62}\! \left(x , y\right)\\ F_{60}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{61}\! \left(x , y\right)\\ F_{61}\! \left(x , y\right) &= -\frac{-y F_{59}\! \left(x , y\right)+F_{59}\! \left(x , 1\right)}{-1+y}\\ F_{62}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{63}\! \left(x , y\right)\\ F_{63}\! \left(x , y\right) &= F_{64}\! \left(x \right)+F_{91}\! \left(x , y\right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{11}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{11}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{75}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{74}\! \left(x \right) &= 0\\ F_{75}\! \left(x \right) &= F_{11}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{11}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{81}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{11}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{11}\! \left(x \right) F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{86}\! \left(x \right)+F_{88}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{11}\! \left(x \right) F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{11}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{11}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{91}\! \left(x , y\right) &= F_{113}\! \left(x , y\right)+F_{92}\! \left(x , y\right)\\ F_{92}\! \left(x , y\right) &= F_{101}\! \left(x , y\right)+F_{93}\! \left(x , y\right)\\ F_{93}\! \left(x , y\right) &= F_{94}\! \left(x , y\right)+F_{97}\! \left(x , y\right)\\ F_{94}\! \left(x , y\right) &= F_{95}\! \left(x , y\right)\\ F_{95}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{96}\! \left(x , y\right)\\ F_{96}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{94}\! \left(x , y\right)\\ F_{97}\! \left(x , y\right) &= F_{100}\! \left(x , y\right)+F_{74}\! \left(x \right)+F_{98}\! \left(x , y\right)\\ F_{98}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{99}\! \left(x , y\right)\\ F_{99}\! \left(x , y\right) &= F_{67}\! \left(x \right)+F_{97}\! \left(x , y\right)\\ F_{100}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{93}\! \left(x , y\right)\\ F_{101}\! \left(x , y\right) &= F_{102}\! \left(x , y\right)+F_{107}\! \left(x , y\right)\\ F_{102}\! \left(x , y\right) &= F_{103}\! \left(x , y\right)+F_{105}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{103}\! \left(x , y\right) &= F_{104}\! \left(x , y\right) F_{18}\! \left(x , y\right)\\ F_{104}\! \left(x , y\right) &= F_{102}\! \left(x , y\right)+F_{70}\! \left(x \right)\\ F_{105}\! \left(x , y\right) &= F_{106}\! \left(x , y\right) F_{11}\! \left(x \right)\\ F_{106}\! \left(x , y\right) &= F_{102}\! \left(x , y\right)+F_{94}\! \left(x , y\right)\\ F_{107}\! \left(x , y\right) &= F_{108}\! \left(x , y\right)+F_{110}\! \left(x , y\right)+F_{112}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{108}\! \left(x , y\right) &= F_{109}\! \left(x , y\right) F_{18}\! \left(x , y\right)\\ F_{109}\! \left(x , y\right) &= F_{107}\! \left(x , y\right)+F_{73}\! \left(x \right)\\ F_{110}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{111}\! \left(x , y\right)\\ F_{111}\! \left(x , y\right) &= F_{107}\! \left(x , y\right)+F_{97}\! \left(x , y\right)\\ F_{112}\! \left(x , y\right) &= F_{101}\! \left(x , y\right) F_{11}\! \left(x \right)\\ F_{113}\! \left(x , y\right) &= F_{114}\! \left(x , y\right)+F_{122}\! \left(x , y\right)\\ F_{114}\! \left(x , y\right) &= F_{115}\! \left(x , y\right)+F_{118}\! \left(x , y\right)\\ F_{115}\! \left(x , y\right) &= F_{116}\! \left(x , y\right)\\ F_{116}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{117}\! \left(x , y\right)\\ F_{117}\! \left(x , y\right) &= F_{115}\! \left(x , y\right)+F_{94}\! \left(x , y\right)\\ F_{118}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{119}\! \left(x , y\right)+F_{121}\! \left(x , y\right)\\ F_{119}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{120}\! \left(x , y\right)\\ F_{120}\! \left(x , y\right) &= F_{118}\! \left(x , y\right)+F_{97}\! \left(x , y\right)\\ F_{121}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{114}\! \left(x , y\right)\\ F_{122}\! \left(x , y\right) &= F_{123}\! \left(x , y\right)+F_{128}\! \left(x , y\right)\\ F_{123}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{124}\! \left(x , y\right)+F_{126}\! \left(x , y\right)\\ F_{124}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{125}\! \left(x , y\right)\\ F_{125}\! \left(x , y\right) &= F_{102}\! \left(x , y\right)+F_{123}\! \left(x , y\right)\\ F_{126}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{127}\! \left(x , y\right)\\ F_{127}\! \left(x , y\right) &= F_{115}\! \left(x , y\right)+F_{123}\! \left(x , y\right)\\ F_{128}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{129}\! \left(x , y\right)+F_{131}\! \left(x , y\right)+F_{133}\! \left(x , y\right)\\ F_{129}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{130}\! \left(x , y\right)\\ F_{130}\! \left(x , y\right) &= F_{107}\! \left(x , y\right)+F_{128}\! \left(x , y\right)\\ F_{131}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{132}\! \left(x , y\right)\\ F_{132}\! \left(x , y\right) &= F_{118}\! \left(x , y\right)+F_{128}\! \left(x , y\right)\\ F_{133}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{122}\! \left(x , y\right)\\ F_{134}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{135}\! \left(x , y\right)\\ F_{135}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{136}\! \left(x , y\right)+F_{138}\! \left(x , y\right)+F_{139}\! \left(x \right)+F_{58}\! \left(x , y\right)+F_{62}\! \left(x , y\right)\\ F_{136}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{137}\! \left(x , y\right)\\ F_{137}\! \left(x , y\right) &= -\frac{-y F_{135}\! \left(x , y\right)+F_{135}\! \left(x , 1\right)}{-1+y}\\ F_{138}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{57}\! \left(x , y\right)\\ F_{139}\! \left(x \right) &= F_{11}\! \left(x \right) F_{140}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)+F_{231}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{227}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{210}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{144}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{11}\! \left(x \right) F_{146}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{155}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{148}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{11}\! \left(x \right) F_{150}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{152}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{153}\! \left(x \right)+F_{154}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{11}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{11}\! \left(x \right) F_{151}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{165}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{11}\! \left(x \right) F_{158}\! \left(x \right)\\ F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)+F_{160}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{164}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{11}\! \left(x \right) F_{163}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{161}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{11}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{166}\! \left(x \right)+F_{189}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{11}\! \left(x \right) F_{167}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{172}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{169}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{153}\! \left(x \right)+F_{170}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{11}\! \left(x \right) F_{171}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{151}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{184}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)+F_{176}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{11}\! \left(x \right) F_{175}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{173}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{11}\! \left(x \right) F_{177}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{179}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{180}\! \left(x \right)+F_{182}\! \left(x \right)+F_{183}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{11}\! \left(x \right) F_{181}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{152}\! \left(x \right)+F_{179}\! \left(x \right)\\ F_{182}\! \left(x \right) &= F_{11}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{11}\! \left(x \right) F_{178}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{182}\! \left(x \right)+F_{185}\! \left(x \right)+F_{187}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{11}\! \left(x \right) F_{186}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{184}\! \left(x \right)\\ F_{187}\! \left(x \right) &= F_{11}\! \left(x \right) F_{188}\! \left(x \right)\\ F_{188}\! \left(x \right) &= F_{178}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{11}\! \left(x \right) F_{190}\! \left(x \right)\\ F_{190}\! \left(x \right) &= F_{191}\! \left(x \right)+F_{198}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{192}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{193}\! \left(x \right)+F_{197}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{11}\! \left(x \right) F_{194}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{195}\! \left(x \right)+F_{196}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{152}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{179}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{11}\! \left(x \right) F_{191}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)+F_{204}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{200}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{11}\! \left(x \right) F_{201}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{202}\! \left(x \right)+F_{203}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{161}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{182}\! \left(x \right)+F_{205}\! \left(x \right)+F_{209}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{205}\! \left(x \right) &= F_{11}\! \left(x \right) F_{206}\! \left(x \right)\\ F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)+F_{208}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{152}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{179}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{11}\! \left(x \right) F_{198}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{211}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{212}\! \left(x \right)+F_{221}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{212}\! \left(x \right) &= F_{11}\! \left(x \right) F_{213}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{214}\! \left(x \right)+F_{215}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{217}\! \left(x \right)+F_{74}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{11}\! \left(x \right) F_{218}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{219}\! \left(x \right)+F_{220}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{11}\! \left(x \right) F_{222}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{223}\! \left(x \right)\\ F_{223}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{224}\! \left(x \right) &= F_{225}\! \left(x \right)+F_{74}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{225}\! \left(x \right) &= F_{11}\! \left(x \right) F_{226}\! \left(x \right)\\ F_{226}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{227}\! \left(x \right) &= F_{228}\! \left(x \right)+F_{229}\! \left(x \right)\\ F_{228}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{229}\! \left(x \right) &= F_{230}\! \left(x \right)\\ F_{230}\! \left(x \right) &= F_{221}\! \left(x \right)+F_{74}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{231}\! \left(x \right) &= F_{232}\! \left(x \right)+F_{327}\! \left(x \right)\\ F_{232}\! \left(x \right) &= F_{233}\! \left(x \right)+F_{305}\! \left(x \right)\\ F_{233}\! \left(x \right) &= F_{234}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{234}\! \left(x \right) &= F_{235}\! \left(x \right)+F_{237}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{235}\! \left(x \right) &= F_{11}\! \left(x \right) F_{236}\! \left(x \right)\\ F_{236}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{234}\! \left(x \right)\\ F_{237}\! \left(x \right) &= F_{11}\! \left(x \right) F_{238}\! \left(x \right)\\ F_{238}\! \left(x \right) &= F_{239}\! \left(x \right)+F_{240}\! \left(x \right)\\ F_{239}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{240}\! \left(x \right) &= F_{241}\! \left(x \right)+F_{253}\! \left(x \right)\\ F_{241}\! \left(x \right) &= F_{242}\! \left(x \right)+F_{244}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{242}\! \left(x \right) &= F_{11}\! \left(x \right) F_{243}\! \left(x \right)\\ F_{243}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{241}\! \left(x \right)\\ F_{244}\! \left(x \right) &= F_{11}\! \left(x \right) F_{245}\! \left(x \right)\\ F_{245}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{246}\! \left(x \right)\\ F_{246}\! \left(x \right) &= F_{247}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{247}\! \left(x \right) &= F_{248}\! \left(x \right)+F_{250}\! \left(x \right)+F_{252}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{248}\! \left(x \right) &= F_{11}\! \left(x \right) F_{249}\! \left(x \right)\\ F_{249}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{247}\! \left(x \right)\\ F_{250}\! \left(x \right) &= F_{11}\! \left(x \right) F_{251}\! \left(x \right)\\ F_{251}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{247}\! \left(x \right)\\ F_{252}\! \left(x \right) &= F_{11}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{253}\! \left(x \right) &= F_{254}\! \left(x \right)+F_{256}\! \left(x \right)+F_{281}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{254}\! \left(x \right) &= F_{11}\! \left(x \right) F_{255}\! \left(x \right)\\ F_{255}\! \left(x \right) &= F_{165}\! \left(x \right)+F_{253}\! \left(x \right)\\ F_{256}\! \left(x \right) &= F_{11}\! \left(x \right) F_{257}\! \left(x \right)\\ F_{257}\! \left(x \right) &= F_{172}\! \left(x \right)+F_{258}\! \left(x \right)\\ F_{258}\! \left(x \right) &= F_{259}\! \left(x \right)+F_{274}\! \left(x \right)\\ F_{259}\! \left(x \right) &= F_{260}\! \left(x \right)+F_{262}\! \left(x \right)+F_{264}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{260}\! \left(x \right) &= F_{11}\! \left(x \right) F_{261}\! \left(x \right)\\ F_{261}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{259}\! \left(x \right)\\ F_{262}\! \left(x \right) &= F_{11}\! \left(x \right) F_{263}\! \left(x \right)\\ F_{263}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{259}\! \left(x \right)\\ F_{264}\! \left(x \right) &= F_{11}\! \left(x \right) F_{265}\! \left(x \right)\\ F_{265}\! \left(x \right) &= F_{266}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{266}\! \left(x \right) &= F_{247}\! \left(x \right)+F_{267}\! \left(x \right)\\ F_{267}\! \left(x \right) &= F_{268}\! \left(x \right)+F_{270}\! \left(x \right)+F_{272}\! \left(x \right)+F_{273}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{268}\! \left(x \right) &= F_{11}\! \left(x \right) F_{269}\! \left(x \right)\\ F_{269}\! \left(x \right) &= F_{179}\! \left(x \right)+F_{267}\! \left(x \right)\\ F_{270}\! \left(x \right) &= F_{11}\! \left(x \right) F_{271}\! \left(x \right)\\ F_{271}\! \left(x \right) &= F_{179}\! \left(x \right)+F_{267}\! \left(x \right)\\ F_{272}\! \left(x \right) &= F_{11}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{273}\! \left(x \right) &= F_{11}\! \left(x \right) F_{266}\! \left(x \right)\\ F_{274}\! \left(x \right) &= F_{272}\! \left(x \right)+F_{275}\! \left(x \right)+F_{277}\! \left(x \right)+F_{279}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{275}\! \left(x \right) &= F_{11}\! \left(x \right) F_{276}\! \left(x \right)\\ F_{276}\! \left(x \right) &= F_{184}\! \left(x \right)+F_{274}\! \left(x \right)\\ F_{277}\! \left(x \right) &= F_{11}\! \left(x \right) F_{278}\! \left(x \right)\\ F_{278}\! \left(x \right) &= F_{184}\! \left(x \right)+F_{274}\! \left(x \right)\\ F_{279}\! \left(x \right) &= F_{11}\! \left(x \right) F_{280}\! \left(x \right)\\ F_{280}\! \left(x \right) &= F_{266}\! \left(x \right)\\ F_{281}\! \left(x \right) &= F_{11}\! \left(x \right) F_{282}\! \left(x \right)\\ F_{282}\! \left(x \right) &= F_{283}\! \left(x \right)+F_{291}\! \left(x \right)\\ F_{283}\! \left(x \right) &= F_{241}\! \left(x \right)+F_{284}\! \left(x \right)\\ F_{284}\! \left(x \right) &= F_{285}\! \left(x \right)+F_{287}\! \left(x \right)+F_{290}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{285}\! \left(x \right) &= F_{11}\! \left(x \right) F_{286}\! \left(x \right)\\ F_{286}\! \left(x \right) &= F_{192}\! \left(x \right)+F_{284}\! \left(x \right)\\ F_{287}\! \left(x \right) &= F_{11}\! \left(x \right) F_{288}\! \left(x \right)\\ F_{288}\! \left(x \right) &= F_{196}\! \left(x \right)+F_{289}\! \left(x \right)\\ F_{289}\! \left(x \right) &= F_{267}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{290}\! \left(x \right) &= F_{11}\! \left(x \right) F_{283}\! \left(x \right)\\ F_{291}\! \left(x \right) &= F_{292}\! \left(x \right)+F_{298}\! \left(x \right)\\ F_{292}\! \left(x \right) &= F_{252}\! \left(x \right)+F_{293}\! \left(x \right)+F_{295}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{293}\! \left(x \right) &= F_{11}\! \left(x \right) F_{294}\! \left(x \right)\\ F_{294}\! \left(x \right) &= F_{199}\! \left(x \right)+F_{292}\! \left(x \right)\\ F_{295}\! \left(x \right) &= F_{11}\! \left(x \right) F_{296}\! \left(x \right)\\ F_{296}\! \left(x \right) &= F_{203}\! \left(x \right)+F_{297}\! \left(x \right)\\ F_{297}\! \left(x \right) &= F_{247}\! \left(x \right)\\ F_{298}\! \left(x \right) &= F_{272}\! \left(x \right)+F_{299}\! \left(x \right)+F_{301}\! \left(x \right)+F_{304}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{299}\! \left(x \right) &= F_{11}\! \left(x \right) F_{300}\! \left(x \right)\\ F_{300}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{298}\! \left(x \right)\\ F_{301}\! \left(x \right) &= F_{11}\! \left(x \right) F_{302}\! \left(x \right)\\ F_{302}\! \left(x \right) &= F_{208}\! \left(x \right)+F_{303}\! \left(x \right)\\ F_{303}\! \left(x \right) &= F_{267}\! \left(x \right)\\ F_{304}\! \left(x \right) &= F_{11}\! \left(x \right) F_{291}\! \left(x \right)\\ F_{305}\! \left(x \right) &= F_{234}\! \left(x \right)+F_{306}\! \left(x \right)\\ F_{306}\! \left(x \right) &= F_{307}\! \left(x \right)+F_{309}\! \left(x \right)+F_{319}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{307}\! \left(x \right) &= F_{11}\! \left(x \right) F_{308}\! \left(x \right)\\ F_{308}\! \left(x \right) &= F_{211}\! \left(x \right)+F_{306}\! \left(x \right)\\ F_{309}\! \left(x \right) &= F_{11}\! \left(x \right) F_{310}\! \left(x \right)\\ F_{310}\! \left(x \right) &= F_{311}\! \left(x \right)+F_{312}\! \left(x \right)\\ F_{311}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{312}\! \left(x \right) &= F_{313}\! \left(x \right)\\ F_{313}\! \left(x \right) &= F_{314}\! \left(x \right)+F_{316}\! \left(x \right)+F_{74}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{314}\! \left(x \right) &= F_{11}\! \left(x \right) F_{315}\! \left(x \right)\\ F_{315}\! \left(x \right) &= F_{216}\! \left(x \right)+F_{313}\! \left(x \right)\\ F_{316}\! \left(x \right) &= F_{11}\! \left(x \right) F_{317}\! \left(x \right)\\ F_{317}\! \left(x \right) &= F_{220}\! \left(x \right)+F_{318}\! \left(x \right)\\ F_{318}\! \left(x \right) &= F_{85}\! \left(x \right)\\ F_{319}\! \left(x \right) &= F_{11}\! \left(x \right) F_{320}\! \left(x \right)\\ F_{320}\! \left(x \right) &= F_{321}\! \left(x \right)\\ F_{321}\! \left(x \right) &= F_{322}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{322}\! \left(x \right) &= F_{323}\! \left(x \right)+F_{325}\! \left(x \right)+F_{74}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{323}\! \left(x \right) &= F_{11}\! \left(x \right) F_{324}\! \left(x \right)\\ F_{324}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{322}\! \left(x \right)\\ F_{325}\! \left(x \right) &= F_{11}\! \left(x \right) F_{326}\! \left(x \right)\\ F_{326}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{327}\! \left(x \right) &= F_{328}\! \left(x \right)+F_{329}\! \left(x \right)\\ F_{328}\! \left(x \right) &= F_{80}\! \left(x \right)\\ F_{329}\! \left(x \right) &= F_{330}\! \left(x \right)\\ F_{330}\! \left(x \right) &= F_{319}\! \left(x \right)+F_{331}\! \left(x \right)+F_{74}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{331}\! \left(x \right) &= F_{11}\! \left(x \right) F_{332}\! \left(x \right)\\ F_{332}\! \left(x \right) &= F_{230}\! \left(x \right)+F_{330}\! \left(x \right)\\ F_{333}\! \left(x \right) &= F_{11}\! \left(x \right) F_{334}\! \left(x \right)\\ F_{334}\! \left(x \right) &= F_{335}\! \left(x \right)+F_{346}\! \left(x \right)\\ F_{335}\! \left(x \right) &= F_{336}\! \left(x \right)+F_{343}\! \left(x \right)\\ F_{336}\! \left(x \right) &= F_{337}\! \left(x \right)+F_{340}\! \left(x \right)\\ F_{337}\! \left(x \right) &= F_{338}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{338}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{339}\! \left(x \right)\\ F_{339}\! \left(x \right) &= F_{212}\! \left(x \right)+F_{74}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{340}\! \left(x \right) &= F_{341}\! \left(x \right)+F_{342}\! \left(x \right)\\ F_{341}\! \left(x \right) &= F_{144}\! \left(x \right)\\ F_{342}\! \left(x \right) &= F_{211}\! \left(x \right)\\ F_{343}\! \left(x \right) &= F_{344}\! \left(x \right)+F_{345}\! \left(x \right)\\ F_{344}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{345}\! \left(x \right) &= F_{230}\! \left(x \right)\\ F_{346}\! \left(x \right) &= F_{347}\! \left(x \right)+F_{356}\! \left(x \right)\\ F_{347}\! \left(x \right) &= F_{348}\! \left(x \right)+F_{353}\! \left(x \right)\\ F_{348}\! \left(x \right) &= F_{349}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{349}\! \left(x \right) &= F_{234}\! \left(x \right)+F_{350}\! \left(x \right)\\ F_{350}\! \left(x \right) &= F_{309}\! \left(x \right)+F_{351}\! \left(x \right)+F_{74}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{351}\! \left(x \right) &= F_{11}\! \left(x \right) F_{352}\! \left(x \right)\\ F_{352}\! \left(x \right) &= F_{339}\! \left(x \right)+F_{350}\! \left(x \right)\\ F_{353}\! \left(x \right) &= F_{354}\! \left(x \right)+F_{355}\! \left(x \right)\\ F_{354}\! \left(x \right) &= F_{234}\! \left(x \right)\\ F_{355}\! \left(x \right) &= F_{306}\! \left(x \right)\\ F_{356}\! \left(x \right) &= F_{357}\! \left(x \right)+F_{358}\! \left(x \right)\\ F_{357}\! \left(x \right) &= F_{80}\! \left(x \right)\\ F_{358}\! \left(x \right) &= F_{330}\! \left(x \right)\\ F_{359}\! \left(x \right) &= F_{11}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{360}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{53}\! \left(x , y\right)\\ F_{361}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{362}\! \left(x , y\right)\\ F_{362}\! \left(x , y\right) &= F_{334}\! \left(x \right)+F_{363}\! \left(x , y\right)\\ F_{363}\! \left(x , y\right) &= F_{364}\! \left(x , y\right)+F_{498}\! \left(x , y\right)\\ F_{364}\! \left(x , y\right) &= F_{365}\! \left(x , y\right)+F_{492}\! \left(x , y\right)\\ F_{365}\! \left(x , y\right) &= F_{366}\! \left(x , y\right)+F_{478}\! \left(x , y\right)\\ F_{366}\! \left(x , y\right) &= F_{367}\! \left(x , y\right)+F_{93}\! \left(x , y\right)\\ F_{367}\! \left(x , y\right) &= F_{368}\! \left(x , y\right)+F_{464}\! \left(x , y\right)\\ F_{368}\! \left(x , y\right) &= F_{369}\! \left(x , y\right)+F_{371}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{369}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{370}\! \left(x , y\right)\\ F_{370}\! \left(x , y\right) &= F_{144}\! \left(x \right)+F_{368}\! \left(x , y\right)\\ F_{371}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{372}\! \left(x , y\right)\\ F_{372}\! \left(x , y\right) &= F_{373}\! \left(x , y\right)+F_{389}\! \left(x , y\right)\\ F_{373}\! \left(x , y\right) &= F_{374}\! \left(x , y\right)+F_{94}\! \left(x , y\right)\\ F_{374}\! \left(x , y\right) &= F_{375}\! \left(x , y\right)+F_{377}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{375}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{376}\! \left(x , y\right)\\ F_{376}\! \left(x , y\right) &= F_{148}\! \left(x \right)+F_{374}\! \left(x , y\right)\\ F_{377}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{378}\! \left(x , y\right)\\ F_{378}\! \left(x , y\right) &= F_{379}\! \left(x , y\right)+F_{93}\! \left(x , y\right)\\ F_{379}\! \left(x , y\right) &= F_{380}\! \left(x , y\right)+F_{384}\! \left(x , y\right)\\ F_{380}\! \left(x , y\right) &= F_{381}\! \left(x , y\right)+F_{383}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{381}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{382}\! \left(x , y\right)\\ F_{382}\! \left(x , y\right) &= F_{11}\! \left(x \right)+F_{380}\! \left(x , y\right)\\ F_{383}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{94}\! \left(x , y\right)\\ F_{384}\! \left(x , y\right) &= F_{385}\! \left(x , y\right)+F_{387}\! \left(x , y\right)+F_{388}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{385}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{386}\! \left(x , y\right)\\ F_{386}\! \left(x , y\right) &= F_{152}\! \left(x \right)+F_{384}\! \left(x , y\right)\\ F_{387}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{97}\! \left(x , y\right)\\ F_{388}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{379}\! \left(x , y\right)\\ F_{389}\! \left(x , y\right) &= F_{390}\! \left(x , y\right)+F_{403}\! \left(x , y\right)\\ F_{390}\! \left(x , y\right) &= F_{391}\! \left(x , y\right)+F_{393}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{391}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{392}\! \left(x , y\right)\\ F_{392}\! \left(x , y\right) &= F_{156}\! \left(x \right)+F_{390}\! \left(x , y\right)\\ F_{393}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{394}\! \left(x , y\right)\\ F_{394}\! \left(x , y\right) &= F_{395}\! \left(x , y\right)+F_{396}\! \left(x , y\right)\\ F_{395}\! \left(x , y\right) &= F_{380}\! \left(x , y\right)+F_{94}\! \left(x , y\right)\\ F_{396}\! \left(x , y\right) &= F_{102}\! \left(x , y\right)+F_{397}\! \left(x , y\right)\\ F_{397}\! \left(x , y\right) &= F_{398}\! \left(x , y\right)+F_{400}\! \left(x , y\right)+F_{402}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{398}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{399}\! \left(x , y\right)\\ F_{399}\! \left(x , y\right) &= F_{161}\! \left(x \right)+F_{397}\! \left(x , y\right)\\ F_{400}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{401}\! \left(x , y\right)\\ F_{401}\! \left(x , y\right) &= F_{380}\! \left(x , y\right)+F_{397}\! \left(x , y\right)\\ F_{402}\! \left(x , y\right) &= F_{102}\! \left(x , y\right) F_{11}\! \left(x \right)\\ F_{403}\! \left(x , y\right) &= F_{404}\! \left(x , y\right)+F_{406}\! \left(x , y\right)+F_{437}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{404}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{405}\! \left(x , y\right)\\ F_{405}\! \left(x , y\right) &= F_{165}\! \left(x \right)+F_{403}\! \left(x , y\right)\\ F_{406}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{407}\! \left(x , y\right)\\ F_{407}\! \left(x , y\right) &= F_{408}\! \left(x , y\right)+F_{414}\! \left(x , y\right)\\ F_{408}\! \left(x , y\right) &= F_{374}\! \left(x , y\right)+F_{409}\! \left(x , y\right)\\ F_{409}\! \left(x , y\right) &= F_{387}\! \left(x , y\right)+F_{410}\! \left(x , y\right)+F_{412}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{410}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{411}\! \left(x , y\right)\\ F_{411}\! \left(x , y\right) &= F_{169}\! \left(x \right)+F_{409}\! \left(x , y\right)\\ F_{412}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{413}\! \left(x , y\right)\\ F_{413}\! \left(x , y\right) &= F_{379}\! \left(x , y\right)\\ F_{414}\! \left(x , y\right) &= F_{415}\! \left(x , y\right)+F_{430}\! \left(x , y\right)\\ F_{415}\! \left(x , y\right) &= F_{416}\! \left(x , y\right)+F_{418}\! \left(x , y\right)+F_{420}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{416}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{417}\! \left(x , y\right)\\ F_{417}\! \left(x , y\right) &= F_{173}\! \left(x \right)+F_{415}\! \left(x , y\right)\\ F_{418}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{419}\! \left(x , y\right)\\ F_{419}\! \left(x , y\right) &= F_{374}\! \left(x , y\right)+F_{415}\! \left(x , y\right)\\ F_{420}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{421}\! \left(x , y\right)\\ F_{421}\! \left(x , y\right) &= F_{101}\! \left(x , y\right)+F_{422}\! \left(x , y\right)\\ F_{422}\! \left(x , y\right) &= F_{397}\! \left(x , y\right)+F_{423}\! \left(x , y\right)\\ F_{423}\! \left(x , y\right) &= F_{424}\! \left(x , y\right)+F_{426}\! \left(x , y\right)+F_{428}\! \left(x , y\right)+F_{429}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{424}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{425}\! \left(x , y\right)\\ F_{425}\! \left(x , y\right) &= F_{179}\! \left(x \right)+F_{423}\! \left(x , y\right)\\ F_{426}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{427}\! \left(x , y\right)\\ F_{427}\! \left(x , y\right) &= F_{384}\! \left(x , y\right)+F_{423}\! \left(x , y\right)\\ F_{428}\! \left(x , y\right) &= F_{107}\! \left(x , y\right) F_{11}\! \left(x \right)\\ F_{429}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{422}\! \left(x , y\right)\\ F_{430}\! \left(x , y\right) &= F_{428}\! \left(x , y\right)+F_{431}\! \left(x , y\right)+F_{433}\! \left(x , y\right)+F_{435}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{431}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{432}\! \left(x , y\right)\\ F_{432}\! \left(x , y\right) &= F_{184}\! \left(x \right)+F_{430}\! \left(x , y\right)\\ F_{433}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{434}\! \left(x , y\right)\\ F_{434}\! \left(x , y\right) &= F_{409}\! \left(x , y\right)+F_{430}\! \left(x , y\right)\\ F_{435}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{436}\! \left(x , y\right)\\ F_{436}\! \left(x , y\right) &= F_{422}\! \left(x , y\right)\\ F_{437}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{438}\! \left(x , y\right)\\ F_{438}\! \left(x , y\right) &= F_{439}\! \left(x , y\right)+F_{448}\! \left(x , y\right)\\ F_{439}\! \left(x , y\right) &= F_{390}\! \left(x , y\right)+F_{440}\! \left(x , y\right)\\ F_{440}\! \left(x , y\right) &= F_{441}\! \left(x , y\right)+F_{443}\! \left(x , y\right)+F_{447}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{441}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{442}\! \left(x , y\right)\\ F_{442}\! \left(x , y\right) &= F_{192}\! \left(x \right)+F_{440}\! \left(x , y\right)\\ F_{443}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{444}\! \left(x , y\right)\\ F_{444}\! \left(x , y\right) &= F_{445}\! \left(x , y\right)+F_{446}\! \left(x , y\right)\\ F_{445}\! \left(x , y\right) &= F_{384}\! \left(x , y\right)+F_{97}\! \left(x , y\right)\\ F_{446}\! \left(x , y\right) &= F_{107}\! \left(x , y\right)+F_{423}\! \left(x , y\right)\\ F_{447}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{439}\! \left(x , y\right)\\ F_{448}\! \left(x , y\right) &= F_{449}\! \left(x , y\right)+F_{456}\! \left(x , y\right)\\ F_{449}\! \left(x , y\right) &= F_{402}\! \left(x , y\right)+F_{450}\! \left(x , y\right)+F_{452}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{450}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{451}\! \left(x , y\right)\\ F_{451}\! \left(x , y\right) &= F_{199}\! \left(x \right)+F_{449}\! \left(x , y\right)\\ F_{452}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{453}\! \left(x , y\right)\\ F_{453}\! \left(x , y\right) &= F_{454}\! \left(x , y\right)+F_{455}\! \left(x , y\right)\\ F_{454}\! \left(x , y\right) &= F_{380}\! \left(x , y\right)\\ F_{455}\! \left(x , y\right) &= F_{397}\! \left(x , y\right)\\ F_{456}\! \left(x , y\right) &= F_{428}\! \left(x , y\right)+F_{457}\! \left(x , y\right)+F_{459}\! \left(x , y\right)+F_{463}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{457}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{458}\! \left(x , y\right)\\ F_{458}\! \left(x , y\right) &= F_{204}\! \left(x \right)+F_{456}\! \left(x , y\right)\\ F_{459}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{460}\! \left(x , y\right)\\ F_{460}\! \left(x , y\right) &= F_{461}\! \left(x , y\right)+F_{462}\! \left(x , y\right)\\ F_{461}\! \left(x , y\right) &= F_{384}\! \left(x , y\right)\\ F_{462}\! \left(x , y\right) &= F_{423}\! \left(x , y\right)\\ F_{463}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{448}\! \left(x , y\right)\\ F_{464}\! \left(x , y\right) &= F_{112}\! \left(x , y\right)+F_{465}\! \left(x , y\right)+F_{467}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{465}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{466}\! \left(x , y\right)\\ F_{466}\! \left(x , y\right) &= F_{339}\! \left(x \right)+F_{464}\! \left(x , y\right)\\ F_{467}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{468}\! \left(x , y\right)\\ F_{468}\! \left(x , y\right) &= F_{469}\! \left(x , y\right)+F_{470}\! \left(x , y\right)\\ F_{469}\! \left(x , y\right) &= F_{97}\! \left(x , y\right)\\ F_{470}\! \left(x , y\right) &= F_{471}\! \left(x , y\right)\\ F_{471}\! \left(x , y\right) &= F_{112}\! \left(x , y\right)+F_{472}\! \left(x , y\right)+F_{474}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{472}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{473}\! \left(x , y\right)\\ F_{473}\! \left(x , y\right) &= F_{216}\! \left(x \right)+F_{471}\! \left(x , y\right)\\ F_{474}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{475}\! \left(x , y\right)\\ F_{475}\! \left(x , y\right) &= F_{476}\! \left(x , y\right)+F_{477}\! \left(x , y\right)\\ F_{476}\! \left(x , y\right) &= F_{97}\! \left(x , y\right)\\ F_{477}\! \left(x , y\right) &= F_{107}\! \left(x , y\right)\\ F_{478}\! \left(x , y\right) &= F_{479}\! \left(x , y\right)+F_{480}\! \left(x , y\right)\\ F_{479}\! \left(x , y\right) &= F_{368}\! \left(x , y\right)\\ F_{480}\! \left(x , y\right) &= F_{481}\! \left(x , y\right)\\ F_{481}\! \left(x , y\right) &= F_{467}\! \left(x , y\right)+F_{482}\! \left(x , y\right)+F_{484}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{482}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{483}\! \left(x , y\right)\\ F_{483}\! \left(x , y\right) &= F_{211}\! \left(x \right)+F_{481}\! \left(x , y\right)\\ F_{484}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{485}\! \left(x , y\right)\\ F_{485}\! \left(x , y\right) &= F_{486}\! \left(x , y\right)\\ F_{486}\! \left(x , y\right) &= F_{102}\! \left(x , y\right)+F_{487}\! \left(x , y\right)\\ F_{487}\! \left(x , y\right) &= F_{110}\! \left(x , y\right)+F_{488}\! \left(x , y\right)+F_{490}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{488}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{489}\! \left(x , y\right)\\ F_{489}\! \left(x , y\right) &= F_{224}\! \left(x \right)+F_{487}\! \left(x , y\right)\\ F_{490}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{491}\! \left(x , y\right)\\ F_{491}\! \left(x , y\right) &= F_{101}\! \left(x , y\right)\\ F_{492}\! \left(x , y\right) &= F_{493}\! \left(x , y\right)+F_{494}\! \left(x , y\right)\\ F_{493}\! \left(x , y\right) &= F_{102}\! \left(x , y\right)\\ F_{494}\! \left(x , y\right) &= F_{495}\! \left(x , y\right)\\ F_{495}\! \left(x , y\right) &= F_{110}\! \left(x , y\right)+F_{484}\! \left(x , y\right)+F_{496}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{496}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{497}\! \left(x , y\right)\\ F_{497}\! \left(x , y\right) &= F_{230}\! \left(x \right)+F_{495}\! \left(x , y\right)\\ F_{498}\! \left(x , y\right) &= F_{499}\! \left(x , y\right)+F_{626}\! \left(x , y\right)\\ F_{499}\! \left(x , y\right) &= F_{500}\! \left(x , y\right)+F_{612}\! \left(x , y\right)\\ F_{500}\! \left(x , y\right) &= F_{114}\! \left(x , y\right)+F_{501}\! \left(x , y\right)\\ F_{501}\! \left(x , y\right) &= F_{502}\! \left(x , y\right)+F_{598}\! \left(x , y\right)\\ F_{502}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{503}\! \left(x , y\right)+F_{505}\! \left(x , y\right)\\ F_{503}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{504}\! \left(x , y\right)\\ F_{504}\! \left(x , y\right) &= F_{368}\! \left(x , y\right)+F_{502}\! \left(x , y\right)\\ F_{505}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{506}\! \left(x , y\right)\\ F_{506}\! \left(x , y\right) &= F_{507}\! \left(x , y\right)+F_{523}\! \left(x , y\right)\\ F_{507}\! \left(x , y\right) &= F_{115}\! \left(x , y\right)+F_{508}\! \left(x , y\right)\\ F_{508}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{509}\! \left(x , y\right)+F_{511}\! \left(x , y\right)\\ F_{509}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{510}\! \left(x , y\right)\\ F_{510}\! \left(x , y\right) &= F_{374}\! \left(x , y\right)+F_{508}\! \left(x , y\right)\\ F_{511}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{512}\! \left(x , y\right)\\ F_{512}\! \left(x , y\right) &= F_{114}\! \left(x , y\right)+F_{513}\! \left(x , y\right)\\ F_{513}\! \left(x , y\right) &= F_{514}\! \left(x , y\right)+F_{518}\! \left(x , y\right)\\ F_{514}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{515}\! \left(x , y\right)+F_{517}\! \left(x , y\right)\\ F_{515}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{516}\! \left(x , y\right)\\ F_{516}\! \left(x , y\right) &= F_{380}\! \left(x , y\right)+F_{514}\! \left(x , y\right)\\ F_{517}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{115}\! \left(x , y\right)\\ F_{518}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{519}\! \left(x , y\right)+F_{521}\! \left(x , y\right)+F_{522}\! \left(x , y\right)\\ F_{519}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{520}\! \left(x , y\right)\\ F_{520}\! \left(x , y\right) &= F_{384}\! \left(x , y\right)+F_{518}\! \left(x , y\right)\\ F_{521}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{118}\! \left(x , y\right)\\ F_{522}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{513}\! \left(x , y\right)\\ F_{523}\! \left(x , y\right) &= F_{524}\! \left(x , y\right)+F_{537}\! \left(x , y\right)\\ F_{524}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{525}\! \left(x , y\right)+F_{527}\! \left(x , y\right)\\ F_{525}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{526}\! \left(x , y\right)\\ F_{526}\! \left(x , y\right) &= F_{390}\! \left(x , y\right)+F_{524}\! \left(x , y\right)\\ F_{527}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{528}\! \left(x , y\right)\\ F_{528}\! \left(x , y\right) &= F_{529}\! \left(x , y\right)+F_{530}\! \left(x , y\right)\\ F_{529}\! \left(x , y\right) &= F_{115}\! \left(x , y\right)+F_{514}\! \left(x , y\right)\\ F_{530}\! \left(x , y\right) &= F_{123}\! \left(x , y\right)+F_{531}\! \left(x , y\right)\\ F_{531}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{532}\! \left(x , y\right)+F_{534}\! \left(x , y\right)+F_{536}\! \left(x , y\right)\\ F_{532}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{533}\! \left(x , y\right)\\ F_{533}\! \left(x , y\right) &= F_{397}\! \left(x , y\right)+F_{531}\! \left(x , y\right)\\ F_{534}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{535}\! \left(x , y\right)\\ F_{535}\! \left(x , y\right) &= F_{514}\! \left(x , y\right)+F_{531}\! \left(x , y\right)\\ F_{536}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{123}\! \left(x , y\right)\\ F_{537}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{538}\! \left(x , y\right)+F_{540}\! \left(x , y\right)+F_{571}\! \left(x , y\right)\\ F_{538}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{539}\! \left(x , y\right)\\ F_{539}\! \left(x , y\right) &= F_{403}\! \left(x , y\right)+F_{537}\! \left(x , y\right)\\ F_{540}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{541}\! \left(x , y\right)\\ F_{541}\! \left(x , y\right) &= F_{542}\! \left(x , y\right)+F_{548}\! \left(x , y\right)\\ F_{542}\! \left(x , y\right) &= F_{508}\! \left(x , y\right)+F_{543}\! \left(x , y\right)\\ F_{543}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{521}\! \left(x , y\right)+F_{544}\! \left(x , y\right)+F_{546}\! \left(x , y\right)\\ F_{544}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{545}\! \left(x , y\right)\\ F_{545}\! \left(x , y\right) &= F_{409}\! \left(x , y\right)+F_{543}\! \left(x , y\right)\\ F_{546}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{547}\! \left(x , y\right)\\ F_{547}\! \left(x , y\right) &= F_{513}\! \left(x , y\right)\\ F_{548}\! \left(x , y\right) &= F_{549}\! \left(x , y\right)+F_{564}\! \left(x , y\right)\\ F_{549}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{550}\! \left(x , y\right)+F_{552}\! \left(x , y\right)+F_{554}\! \left(x , y\right)\\ F_{550}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{551}\! \left(x , y\right)\\ F_{551}\! \left(x , y\right) &= F_{415}\! \left(x , y\right)+F_{549}\! \left(x , y\right)\\ F_{552}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{553}\! \left(x , y\right)\\ F_{553}\! \left(x , y\right) &= F_{508}\! \left(x , y\right)+F_{549}\! \left(x , y\right)\\ F_{554}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{555}\! \left(x , y\right)\\ F_{555}\! \left(x , y\right) &= F_{122}\! \left(x , y\right)+F_{556}\! \left(x , y\right)\\ F_{556}\! \left(x , y\right) &= F_{531}\! \left(x , y\right)+F_{557}\! \left(x , y\right)\\ F_{557}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{558}\! \left(x , y\right)+F_{560}\! \left(x , y\right)+F_{562}\! \left(x , y\right)+F_{563}\! \left(x , y\right)\\ F_{558}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{559}\! \left(x , y\right)\\ F_{559}\! \left(x , y\right) &= F_{423}\! \left(x , y\right)+F_{557}\! \left(x , y\right)\\ F_{560}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{561}\! \left(x , y\right)\\ F_{561}\! \left(x , y\right) &= F_{518}\! \left(x , y\right)+F_{557}\! \left(x , y\right)\\ F_{562}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{128}\! \left(x , y\right)\\ F_{563}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{556}\! \left(x , y\right)\\ F_{564}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{562}\! \left(x , y\right)+F_{565}\! \left(x , y\right)+F_{567}\! \left(x , y\right)+F_{569}\! \left(x , y\right)\\ F_{565}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{566}\! \left(x , y\right)\\ F_{566}\! \left(x , y\right) &= F_{430}\! \left(x , y\right)+F_{564}\! \left(x , y\right)\\ F_{567}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{568}\! \left(x , y\right)\\ F_{568}\! \left(x , y\right) &= F_{543}\! \left(x , y\right)+F_{564}\! \left(x , y\right)\\ F_{569}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{570}\! \left(x , y\right)\\ F_{570}\! \left(x , y\right) &= F_{556}\! \left(x , y\right)\\ F_{571}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{572}\! \left(x , y\right)\\ F_{572}\! \left(x , y\right) &= F_{573}\! \left(x , y\right)+F_{582}\! \left(x , y\right)\\ F_{573}\! \left(x , y\right) &= F_{524}\! \left(x , y\right)+F_{574}\! \left(x , y\right)\\ F_{574}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{575}\! \left(x , y\right)+F_{577}\! \left(x , y\right)+F_{581}\! \left(x , y\right)\\ F_{575}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{576}\! \left(x , y\right)\\ F_{576}\! \left(x , y\right) &= F_{440}\! \left(x , y\right)+F_{574}\! \left(x , y\right)\\ F_{577}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{578}\! \left(x , y\right)\\ F_{578}\! \left(x , y\right) &= F_{579}\! \left(x , y\right)+F_{580}\! \left(x , y\right)\\ F_{579}\! \left(x , y\right) &= F_{118}\! \left(x , y\right)+F_{518}\! \left(x , y\right)\\ F_{580}\! \left(x , y\right) &= F_{128}\! \left(x , y\right)+F_{557}\! \left(x , y\right)\\ F_{581}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{573}\! \left(x , y\right)\\ F_{582}\! \left(x , y\right) &= F_{583}\! \left(x , y\right)+F_{590}\! \left(x , y\right)\\ F_{583}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{536}\! \left(x , y\right)+F_{584}\! \left(x , y\right)+F_{586}\! \left(x , y\right)\\ F_{584}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{585}\! \left(x , y\right)\\ F_{585}\! \left(x , y\right) &= F_{449}\! \left(x , y\right)+F_{583}\! \left(x , y\right)\\ F_{586}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{587}\! \left(x , y\right)\\ F_{587}\! \left(x , y\right) &= F_{588}\! \left(x , y\right)+F_{589}\! \left(x , y\right)\\ F_{588}\! \left(x , y\right) &= F_{514}\! \left(x , y\right)\\ F_{589}\! \left(x , y\right) &= F_{531}\! \left(x , y\right)\\ F_{590}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{562}\! \left(x , y\right)+F_{591}\! \left(x , y\right)+F_{593}\! \left(x , y\right)+F_{597}\! \left(x , y\right)\\ F_{591}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{592}\! \left(x , y\right)\\ F_{592}\! \left(x , y\right) &= F_{456}\! \left(x , y\right)+F_{590}\! \left(x , y\right)\\ F_{593}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{594}\! \left(x , y\right)\\ F_{594}\! \left(x , y\right) &= F_{595}\! \left(x , y\right)+F_{596}\! \left(x , y\right)\\ F_{595}\! \left(x , y\right) &= F_{518}\! \left(x , y\right)\\ F_{596}\! \left(x , y\right) &= F_{557}\! \left(x , y\right)\\ F_{597}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{582}\! \left(x , y\right)\\ F_{598}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{133}\! \left(x , y\right)+F_{599}\! \left(x , y\right)+F_{601}\! \left(x , y\right)\\ F_{599}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{600}\! \left(x , y\right)\\ F_{600}\! \left(x , y\right) &= F_{464}\! \left(x , y\right)+F_{598}\! \left(x , y\right)\\ F_{601}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{602}\! \left(x , y\right)\\ F_{602}\! \left(x , y\right) &= F_{603}\! \left(x , y\right)+F_{604}\! \left(x , y\right)\\ F_{603}\! \left(x , y\right) &= F_{118}\! \left(x , y\right)\\ F_{604}\! \left(x , y\right) &= F_{605}\! \left(x , y\right)\\ F_{605}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{133}\! \left(x , y\right)+F_{606}\! \left(x , y\right)+F_{608}\! \left(x , y\right)\\ F_{606}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{607}\! \left(x , y\right)\\ F_{607}\! \left(x , y\right) &= F_{471}\! \left(x , y\right)+F_{605}\! \left(x , y\right)\\ F_{608}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{609}\! \left(x , y\right)\\ F_{609}\! \left(x , y\right) &= F_{610}\! \left(x , y\right)+F_{611}\! \left(x , y\right)\\ F_{610}\! \left(x , y\right) &= F_{118}\! \left(x , y\right)\\ F_{611}\! \left(x , y\right) &= F_{128}\! \left(x , y\right)\\ F_{612}\! \left(x , y\right) &= F_{613}\! \left(x , y\right)+F_{614}\! \left(x , y\right)\\ F_{613}\! \left(x , y\right) &= F_{502}\! \left(x , y\right)\\ F_{614}\! \left(x , y\right) &= F_{615}\! \left(x , y\right)\\ F_{615}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{601}\! \left(x , y\right)+F_{616}\! \left(x , y\right)+F_{618}\! \left(x , y\right)\\ F_{616}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{617}\! \left(x , y\right)\\ F_{617}\! \left(x , y\right) &= F_{481}\! \left(x , y\right)+F_{615}\! \left(x , y\right)\\ F_{618}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{619}\! \left(x , y\right)\\ F_{619}\! \left(x , y\right) &= F_{620}\! \left(x , y\right)\\ F_{620}\! \left(x , y\right) &= F_{123}\! \left(x , y\right)+F_{621}\! \left(x , y\right)\\ F_{621}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{131}\! \left(x , y\right)+F_{622}\! \left(x , y\right)+F_{624}\! \left(x , y\right)\\ F_{622}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{623}\! \left(x , y\right)\\ F_{623}\! \left(x , y\right) &= F_{487}\! \left(x , y\right)+F_{621}\! \left(x , y\right)\\ F_{624}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{625}\! \left(x , y\right)\\ F_{625}\! \left(x , y\right) &= F_{122}\! \left(x , y\right)\\ F_{626}\! \left(x , y\right) &= F_{627}\! \left(x , y\right)+F_{628}\! \left(x , y\right)\\ F_{627}\! \left(x , y\right) &= F_{123}\! \left(x , y\right)\\ F_{628}\! \left(x , y\right) &= F_{629}\! \left(x , y\right)\\ F_{629}\! \left(x , y\right) &= 2 F_{74}\! \left(x \right)+F_{131}\! \left(x , y\right)+F_{618}\! \left(x , y\right)+F_{630}\! \left(x , y\right)\\ F_{630}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{631}\! \left(x , y\right)\\ F_{631}\! \left(x , y\right) &= F_{495}\! \left(x , y\right)+F_{629}\! \left(x , y\right)\\ F_{632}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{63}\! \left(x , y\right)\\ F_{633}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{634}\! \left(x , y\right)\\ F_{634}\! \left(x , y\right) &= F_{635}\! \left(x \right)+F_{658}\! \left(x , y\right)\\ F_{635}\! \left(x \right) &= F_{636}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{636}\! \left(x \right) &= F_{637}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{637}\! \left(x \right) &= F_{638}\! \left(x \right)+F_{646}\! \left(x \right)\\ F_{638}\! \left(x \right) &= F_{639}\! \left(x \right)+F_{642}\! \left(x \right)\\ F_{639}\! \left(x \right) &= F_{640}\! \left(x \right)\\ F_{640}\! \left(x \right) &= F_{11}\! \left(x \right) F_{641}\! \left(x \right)\\ F_{641}\! \left(x \right) &= F_{639}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{642}\! \left(x \right) &= 2 F_{74}\! \left(x \right)+F_{643}\! \left(x \right)+F_{645}\! \left(x \right)\\ F_{643}\! \left(x \right) &= F_{11}\! \left(x \right) F_{644}\! \left(x \right)\\ F_{644}\! \left(x \right) &= F_{642}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{645}\! \left(x \right) &= F_{11}\! \left(x \right) F_{638}\! \left(x \right)\\ F_{646}\! \left(x \right) &= F_{647}\! \left(x \right)+F_{652}\! \left(x \right)\\ F_{647}\! \left(x \right) &= 2 F_{74}\! \left(x \right)+F_{648}\! \left(x \right)+F_{650}\! \left(x \right)\\ F_{648}\! \left(x \right) &= F_{11}\! \left(x \right) F_{649}\! \left(x \right)\\ F_{649}\! \left(x \right) &= F_{647}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{650}\! \left(x \right) &= F_{11}\! \left(x \right) F_{651}\! \left(x \right)\\ F_{651}\! \left(x \right) &= F_{639}\! \left(x \right)+F_{647}\! \left(x \right)\\ F_{652}\! \left(x \right) &= 2 F_{74}\! \left(x \right)+F_{653}\! \left(x \right)+F_{655}\! \left(x \right)+F_{657}\! \left(x \right)\\ F_{653}\! \left(x \right) &= F_{11}\! \left(x \right) F_{654}\! \left(x \right)\\ F_{654}\! \left(x \right) &= F_{652}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{655}\! \left(x \right) &= F_{11}\! \left(x \right) F_{656}\! \left(x \right)\\ F_{656}\! \left(x \right) &= F_{642}\! \left(x \right)+F_{652}\! \left(x \right)\\ F_{657}\! \left(x \right) &= F_{11}\! \left(x \right) F_{646}\! \left(x \right)\\ F_{658}\! \left(x , y\right) &= F_{659}\! \left(x , y\right)+F_{91}\! \left(x , y\right)\\ F_{659}\! \left(x , y\right) &= F_{113}\! \left(x , y\right)+F_{660}\! \left(x , y\right)\\ F_{660}\! \left(x , y\right) &= F_{661}\! \left(x , y\right)+F_{669}\! \left(x , y\right)\\ F_{661}\! \left(x , y\right) &= F_{662}\! \left(x , y\right)+F_{665}\! \left(x , y\right)\\ F_{662}\! \left(x , y\right) &= F_{663}\! \left(x , y\right)\\ F_{663}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{664}\! \left(x , y\right)\\ F_{664}\! \left(x , y\right) &= F_{115}\! \left(x , y\right)+F_{662}\! \left(x , y\right)\\ F_{665}\! \left(x , y\right) &= 3 F_{74}\! \left(x \right)+F_{666}\! \left(x , y\right)+F_{668}\! \left(x , y\right)\\ F_{666}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{667}\! \left(x , y\right)\\ F_{667}\! \left(x , y\right) &= F_{118}\! \left(x , y\right)+F_{665}\! \left(x , y\right)\\ F_{668}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{661}\! \left(x , y\right)\\ F_{669}\! \left(x , y\right) &= F_{670}\! \left(x , y\right)+F_{675}\! \left(x , y\right)\\ F_{670}\! \left(x , y\right) &= 3 F_{74}\! \left(x \right)+F_{671}\! \left(x , y\right)+F_{673}\! \left(x , y\right)\\ F_{671}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{672}\! \left(x , y\right)\\ F_{672}\! \left(x , y\right) &= F_{123}\! \left(x , y\right)+F_{670}\! \left(x , y\right)\\ F_{673}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{674}\! \left(x , y\right)\\ F_{674}\! \left(x , y\right) &= F_{662}\! \left(x , y\right)+F_{670}\! \left(x , y\right)\\ F_{675}\! \left(x , y\right) &= 3 F_{74}\! \left(x \right)+F_{676}\! \left(x , y\right)+F_{678}\! \left(x , y\right)+F_{680}\! \left(x , y\right)\\ F_{676}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{677}\! \left(x , y\right)\\ F_{677}\! \left(x , y\right) &= F_{128}\! \left(x , y\right)+F_{675}\! \left(x , y\right)\\ F_{678}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{679}\! \left(x , y\right)\\ F_{679}\! \left(x , y\right) &= F_{665}\! \left(x , y\right)+F_{675}\! \left(x , y\right)\\ F_{680}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{669}\! \left(x , y\right)\\ F_{681}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{56}\! \left(x , y\right)\\ F_{682}\! \left(x \right) &= F_{360}\! \left(x , 1\right)\\ F_{683}\! \left(x \right) &= F_{11}\! \left(x \right) F_{635}\! \left(x \right)\\ F_{684}\! \left(x \right) &= F_{11}\! \left(x \right) F_{685}\! \left(x \right)\\ F_{685}\! \left(x \right) &= F_{135}\! \left(x , 1\right)\\ F_{686}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{687}\! \left(x , y\right)\\ F_{687}\! \left(x , y\right) &= -\frac{-y F_{34}\! \left(x , y\right)+F_{34}\! \left(x , 1\right)}{-1+y}\\ F_{688}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{137}\! \left(x , y\right)\\ F_{689}\! \left(x \right) &= F_{11}\! \left(x \right) F_{690}\! \left(x \right)\\ F_{690}\! \left(x \right) &= F_{691}\! \left(x , 1\right)\\ F_{691}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{136}\! \left(x , y\right)+F_{360}\! \left(x , y\right)+F_{62}\! \left(x , y\right)+F_{692}\! \left(x , y\right)+F_{693}\! \left(x , y\right)\\ F_{692}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{691}\! \left(x , y\right)\\ F_{693}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{694}\! \left(x , y\right)\\ F_{694}\! \left(x , y\right) &= F_{140}\! \left(x \right)+F_{695}\! \left(x , y\right)\\ F_{695}\! \left(x , y\right) &= F_{696}\! \left(x , y\right)+F_{703}\! \left(x , y\right)\\ F_{696}\! \left(x , y\right) &= F_{697}\! \left(x , y\right)+F_{700}\! \left(x , y\right)\\ F_{697}\! \left(x , y\right) &= F_{698}\! \left(x , y\right)+F_{699}\! \left(x , y\right)\\ F_{698}\! \left(x , y\right) &= F_{368}\! \left(x , y\right)+F_{94}\! \left(x , y\right)\\ F_{699}\! \left(x , y\right) &= F_{368}\! \left(x , y\right)+F_{481}\! \left(x , y\right)\\ F_{700}\! \left(x , y\right) &= F_{701}\! \left(x , y\right)+F_{702}\! \left(x , y\right)\\ F_{701}\! \left(x , y\right) &= F_{102}\! \left(x , y\right)\\ F_{702}\! \left(x , y\right) &= F_{495}\! \left(x , y\right)\\ F_{703}\! \left(x , y\right) &= F_{704}\! \left(x , y\right)+F_{707}\! \left(x , y\right)\\ F_{704}\! \left(x , y\right) &= F_{705}\! \left(x , y\right)+F_{706}\! \left(x , y\right)\\ F_{705}\! \left(x , y\right) &= F_{115}\! \left(x , y\right)+F_{502}\! \left(x , y\right)\\ F_{706}\! \left(x , y\right) &= F_{502}\! \left(x , y\right)+F_{615}\! \left(x , y\right)\\ F_{707}\! \left(x , y\right) &= F_{708}\! \left(x , y\right)+F_{709}\! \left(x , y\right)\\ F_{708}\! \left(x , y\right) &= F_{123}\! \left(x , y\right)\\ F_{709}\! \left(x , y\right) &= F_{629}\! \left(x , y\right)\\ F_{710}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{711}\! \left(x , y\right)\\ F_{711}\! \left(x , y\right) &= -\frac{-y F_{691}\! \left(x , y\right)+F_{691}\! \left(x , 1\right)}{-1+y}\\ F_{712}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{31}\! \left(x , y\right)\\ F_{713}\! \left(x \right) &= F_{11}\! \left(x \right) F_{714}\! \left(x \right)\\ F_{714}\! \left(x \right) &= F_{31}\! \left(x , 1\right)\\ F_{715}\! \left(x \right) &= F_{11}\! \left(x \right) F_{716}\! \left(x \right)\\ F_{716}\! \left(x \right) &= F_{37}\! \left(x , 1\right)\\ F_{717}\! \left(x \right) &= F_{11}\! \left(x \right) F_{718}\! \left(x \right)\\ F_{718}\! \left(x \right) &= F_{40}\! \left(x , 1\right)\\ F_{719}\! \left(x \right) &= F_{11}\! \left(x \right) F_{720}\! \left(x \right)\\ F_{720}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{43}\! \left(x \right)+F_{682}\! \left(x \right)+F_{683}\! \left(x \right)+F_{719}\! \left(x \right)+F_{721}\! \left(x \right)\\ F_{721}\! \left(x \right) &= F_{11}\! \left(x \right) F_{718}\! \left(x \right)\\ F_{722}\! \left(x \right) &= F_{11}\! \left(x \right) F_{723}\! \left(x \right)\\ F_{723}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{359}\! \left(x \right)+F_{722}\! \left(x \right)+F_{724}\! \left(x \right)+F_{728}\! \left(x \right)\\ F_{724}\! \left(x \right) &= F_{11}\! \left(x \right) F_{725}\! \left(x \right)\\ F_{725}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{359}\! \left(x \right)+F_{43}\! \left(x \right)+F_{719}\! \left(x \right)+F_{726}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{726}\! \left(x \right) &= F_{11}\! \left(x \right) F_{727}\! \left(x \right)\\ F_{727}\! \left(x \right) &= F_{57}\! \left(x , 1\right)\\ F_{728}\! \left(x \right) &= F_{11}\! \left(x \right) F_{729}\! \left(x \right)\\ F_{729}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{333}\! \left(x \right)+F_{359}\! \left(x \right)+F_{728}\! \left(x \right)+F_{730}\! \left(x \right)+F_{731}\! \left(x \right)\\ F_{730}\! \left(x \right) &= F_{11}\! \left(x \right) F_{727}\! \left(x \right)\\ F_{731}\! \left(x \right) &= F_{11}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{732}\! \left(x \right) &= F_{11}\! \left(x \right) F_{733}\! \left(x \right)\\ F_{733}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{139}\! \left(x \right)+F_{728}\! \left(x \right)+F_{731}\! \left(x \right)+F_{734}\! \left(x \right)\\ F_{734}\! \left(x \right) &= F_{11}\! \left(x \right) F_{685}\! \left(x \right)\\ F_{735}\! \left(x \right) &= F_{11}\! \left(x \right) F_{736}\! \left(x \right)\\ F_{736}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)+F_{737}\! \left(x \right)+F_{738}\! \left(x \right)\\ F_{737}\! \left(x \right) &= F_{11}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{738}\! \left(x \right) &= F_{11}\! \left(x \right) F_{739}\! \left(x \right)\\ F_{739}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{32}\! \left(x \right)+F_{689}\! \left(x \right)+F_{719}\! \left(x \right)+F_{740}\! \left(x \right)\\ F_{740}\! \left(x \right) &= F_{11}\! \left(x \right) F_{714}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 36 rules.

Found on January 22, 2022.

Finding the specification took 130 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 36 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x , 1\right)\\ F_{4}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{5}\! \left(x , y\right) &= F_{6}\! \left(x , y\right) F_{7}\! \left(x \right)\\ F_{6}\! \left(x , y\right) &= -\frac{-y F_{4}\! \left(x , y\right)+F_{4}\! \left(x , 1\right)}{-1+y}\\ F_{7}\! \left(x \right) &= x\\ F_{8}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y\right)+F_{34}\! \left(x , y\right)+F_{35}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{7}\! \left(x \right)\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , 1, y\right)\\ F_{12}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y , z\right)+F_{15}\! \left(x , y , z\right)+F_{17}\! \left(x , y , z\right)+F_{32}\! \left(x , y , z\right)\\ F_{13}\! \left(x , y , z\right) &= F_{12}\! \left(x , y , z\right) F_{14}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= y x\\ F_{15}\! \left(x , y , z\right) &= F_{16}\! \left(x , y , z\right) F_{7}\! \left(x \right)\\ F_{16}\! \left(x , y , z\right) &= -\frac{-y F_{12}\! \left(x , y , z\right)+F_{12}\! \left(x , 1, z\right)}{-1+y}\\ F_{17}\! \left(x , y , z\right) &= F_{14}\! \left(x , z\right) F_{18}\! \left(x , y , z\right)\\ F_{18}\! \left(x , y , z\right) &= -\frac{-y F_{19}\! \left(x , y , z\right)+F_{19}\! \left(x , 1, z\right)}{-1+y}\\ F_{19}\! \left(x , y , z\right) &= -\frac{z F_{20}\! \left(x , 1, z\right)-y F_{20}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\ F_{20}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x , z , y\right)+F_{22}\! \left(x , y , z\right)+F_{24}\! \left(x , y , z\right)\\ F_{21}\! \left(x , y , z\right) &= F_{14}\! \left(x , z\right) F_{20}\! \left(x , z , y\right)\\ F_{22}\! \left(x , y , z\right) &= F_{23}\! \left(x , y z , z\right)\\ F_{23}\! \left(x , y , z\right) &= F_{14}\! \left(x , z\right) F_{19}\! \left(x , y , z\right)\\ F_{24}\! \left(x , y , z\right) &= F_{25}\! \left(x , y z , z\right)\\ F_{25}\! \left(x , y , z\right) &= F_{14}\! \left(x , z\right) F_{26}\! \left(x , y , z\right)\\ F_{26}\! \left(x , y , z\right) &= -\frac{z F_{27}\! \left(x , 1, z\right)-y F_{27}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\ F_{27}\! \left(x , y , z\right) &= F_{28}\! \left(x , y z , z\right)\\ F_{28}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x , y , z\right)+F_{29}\! \left(x , y , z\right)+F_{30}\! \left(x , z\right)\\ F_{29}\! \left(x , y , z\right) &= F_{14}\! \left(x , y\right) F_{28}\! \left(x , y , z\right)\\ F_{30}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{31}\! \left(x , y\right)\\ F_{31}\! \left(x , y\right) &= F_{20}\! \left(x , 1, y\right)\\ F_{32}\! \left(x , y , z\right) &= F_{14}\! \left(x , z\right) F_{33}\! \left(x , y , z\right)\\ F_{33}\! \left(x , y , z\right) &= -\frac{-y F_{26}\! \left(x , y , z\right)+F_{26}\! \left(x , 1, z\right)}{-1+y}\\ F_{34}\! \left(x , y\right) &= F_{23}\! \left(x , 1, y\right)\\ F_{35}\! \left(x , y\right) &= F_{25}\! \left(x , 1, y\right)\\ \end{align*}\)