Av(12354, 12453, 12543, 13452, 13542, 14532, 21354, 21453, 21543)
Counting Sequence
1, 1, 2, 6, 24, 111, 548, 2803, 14682, 78291, 423494, 2318072, 12816234, 71471230, 401554970, ...
This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 83 rules.
Finding the specification took 90 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 83 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{3}\! \left(x \right) &= x\\
F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{3}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)+F_{76}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x , 1\right)\\
F_{8}\! \left(x , y_{0}\right) &= F_{3}\! \left(x \right) F_{9}\! \left(x , y_{0}\right)\\
F_{9}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y_{0}\right)+F_{12}\! \left(x , y_{0}\right)+F_{66}\! \left(x , y_{0}\right)+F_{72}\! \left(x , y_{0}\right)\\
F_{10}\! \left(x , y_{0}\right) &= F_{11}\! \left(x , y_{0}\right) F_{3}\! \left(x \right)\\
F_{11}\! \left(x , y_{0}\right) &= -\frac{-F_{9}\! \left(x , y_{0}\right) y_{0}+F_{9}\! \left(x , 1\right)}{-1+y_{0}}\\
F_{12}\! \left(x , y_{0}\right) &= F_{13}\! \left(x , y_{0}\right) F_{3}\! \left(x \right)\\
F_{13}\! \left(x , y_{0}\right) &= -\frac{-F_{14}\! \left(x , y_{0}\right) y_{0}+F_{14}\! \left(x , 1\right)}{-1+y_{0}}\\
F_{14}\! \left(x , y_{0}\right) &= -\frac{-y_{0} F_{15}\! \left(x , y_{0}\right)+F_{15}\! \left(x , 1\right)}{-1+y_{0}}\\
F_{15}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x , y_{0}\right)+F_{17}\! \left(x , y_{0}\right)+F_{8}\! \left(x , y_{0}\right)\\
F_{16}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{3}\! \left(x \right)\\
F_{17}\! \left(x , y_{0}\right) &= F_{18}\! \left(x , y_{0}\right) F_{19}\! \left(x , y_{0}\right)\\
F_{18}\! \left(x , y_{0}\right) &= y_{0} x\\
F_{19}\! \left(x , y_{0}\right) &= F_{20}\! \left(x , 1, y_{0}\right)\\
F_{20}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{21}\! \left(x , y_{0} y_{1}\right) y_{0}+F_{21}\! \left(x , y_{1}\right)}{-1+y_{0}}\\
F_{21}\! \left(x , y_{0}\right) &= -\frac{-F_{22}\! \left(x , y_{0}\right) y_{0}+F_{22}\! \left(x , 1\right)}{-1+y_{0}}\\
F_{22}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x , y_{0}\right)+F_{71}\! \left(x , y_{0}\right)\\
F_{23}\! \left(x , y_{0}\right) &= F_{24}\! \left(x , y_{0}\right) F_{3}\! \left(x \right)\\
F_{24}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x , y_{0}\right)+F_{63}\! \left(x , y_{0}\right)+F_{70}\! \left(x , y_{0}\right)\\
F_{25}\! \left(x , y_{0}\right) &= F_{26}\! \left(x , y_{0}\right) F_{3}\! \left(x \right)\\
F_{26}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x , y_{0}\right)+F_{51}\! \left(x , y_{0}\right)+F_{66}\! \left(x , y_{0}\right)+F_{69}\! \left(x , y_{0}\right)\\
F_{27}\! \left(x , y_{0}\right) &= F_{28}\! \left(x , y_{0}\right) F_{3}\! \left(x \right)\\
F_{28}\! \left(x , y_{0}\right) &= F_{29}\! \left(x , 1, y_{0}\right)\\
F_{29}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{30}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{30}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{30}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x , y_{0}, y_{1}\right)+F_{33}\! \left(x , y_{0}, y_{1}\right)+F_{42}\! \left(x , y_{0}, y_{1}\right)+F_{65}\! \left(x , y_{1}, y_{0}\right)\\
F_{31}\! \left(x , y_{0}, y_{1}\right) &= F_{3}\! \left(x \right) F_{32}\! \left(x , y_{0}, y_{1}\right)\\
F_{32}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{30}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{30}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{33}\! \left(x , y_{0}, y_{1}\right) &= F_{3}\! \left(x \right) F_{34}\! \left(x , y_{0}, y_{1}\right)\\
F_{34}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{35}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{35}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{35}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x , y_{0}, y_{1}\right)+F_{33}\! \left(x , y_{0}, y_{1}\right)+F_{36}\! \left(x , y_{0}, y_{1}\right)+F_{41}\! \left(x , y_{1}, y_{0}\right)\\
F_{36}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x , y_{0}\right) F_{37}\! \left(x , y_{0}, y_{1}\right)\\
F_{37}\! \left(x , y_{0}, y_{1}\right) &= F_{38}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{38}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{39}\! \left(x , y_{0} y_{1}, y_{2}\right) y_{0}+F_{39}\! \left(x , y_{1}, y_{2}\right)}{-1+y_{0}}\\
F_{39}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{40}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{40}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{40}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{22}\! \left(x , y_{0}\right) y_{0}-F_{22}\! \left(x , y_{1}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{41}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x , y_{0}\right) F_{39}\! \left(x , y_{1}, y_{0}\right)\\
F_{42}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x , y_{0}\right) F_{43}\! \left(x , y_{0}, y_{1}\right)\\
F_{43}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{44}\! \left(x , y_{0}, 1\right) y_{0}-F_{44}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{44}\! \left(x , y_{0}, y_{1}\right) &= F_{45}\! \left(x , y_{0}, y_{0} y_{1}\right)\\
F_{45}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{46}\! \left(x , y_{0}, y_{1}\right)+F_{48}\! \left(x , y_{0}, y_{1}\right)+F_{60}\! \left(x , y_{0}, y_{1}\right)+F_{64}\! \left(x , y_{1}\right)\\
F_{46}\! \left(x , y_{0}, y_{1}\right) &= F_{3}\! \left(x \right) F_{47}\! \left(x , y_{0}, y_{1}\right)\\
F_{47}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{26}\! \left(x , y_{0}\right) y_{0}-F_{26}\! \left(x , y_{1}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{48}\! \left(x , y_{0}, y_{1}\right) &= F_{3}\! \left(x \right) F_{49}\! \left(x , y_{0}, y_{1}\right)\\
F_{49}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{50}\! \left(x , y_{0}\right) y_{0}-F_{50}\! \left(x , y_{1}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{50}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x , y_{0}\right)+F_{51}\! \left(x , y_{0}\right)+F_{54}\! \left(x , y_{0}\right)+F_{58}\! \left(x , y_{0}\right)\\
F_{51}\! \left(x , y_{0}\right) &= F_{3}\! \left(x \right) F_{52}\! \left(x , y_{0}\right)\\
F_{52}\! \left(x , y_{0}\right) &= F_{53}\! \left(x , 1, y_{0}\right)\\
F_{53}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{35}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{35}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{54}\! \left(x , y_{0}\right) &= F_{3}\! \left(x \right) F_{55}\! \left(x , y_{0}\right)\\
F_{55}\! \left(x , y_{0}\right) &= F_{56}\! \left(x , 1, y_{0}\right)\\
F_{56}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{57}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{57}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{57}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{40}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{40}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{58}\! \left(x , y_{0}\right) &= F_{18}\! \left(x , y_{0}\right) F_{59}\! \left(x , y_{0}\right)\\
F_{59}\! \left(x , y_{0}\right) &= F_{57}\! \left(x , 1, y_{0}\right)\\
F_{60}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x , y_{0}\right) F_{61}\! \left(x , y_{0}, y_{1}\right)\\
F_{61}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{62}\! \left(x , y_{0}\right) y_{0}-F_{62}\! \left(x , y_{1}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{62}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x , y_{0}\right)+F_{63}\! \left(x , y_{0}\right)+F_{64}\! \left(x , y_{0}\right)\\
F_{63}\! \left(x , y_{0}\right) &= F_{3}\! \left(x \right) F_{50}\! \left(x , y_{0}\right)\\
F_{64}\! \left(x , y_{0}\right) &= F_{18}\! \left(x , y_{0}\right) F_{21}\! \left(x , y_{0}\right)\\
F_{65}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x , y_{0}\right) F_{45}\! \left(x , y_{1}, y_{0}\right)\\
F_{66}\! \left(x , y_{0}\right) &= F_{3}\! \left(x \right) F_{67}\! \left(x , y_{0}\right)\\
F_{67}\! \left(x , y_{0}\right) &= -\frac{-F_{68}\! \left(x , y_{0}\right) y_{0}+F_{68}\! \left(x , 1\right)}{-1+y_{0}}\\
F_{68}\! \left(x , y_{0}\right) &= F_{45}\! \left(x , 1, y_{0}\right)\\
F_{69}\! \left(x , y_{0}\right) &= F_{18}\! \left(x , y_{0}\right) F_{68}\! \left(x , y_{0}\right)\\
F_{70}\! \left(x , y_{0}\right) &= F_{18}\! \left(x , y_{0}\right) F_{62}\! \left(x , y_{0}\right)\\
F_{71}\! \left(x , y_{0}\right) &= F_{18}\! \left(x , y_{0}\right) F_{22}\! \left(x , y_{0}\right)\\
F_{72}\! \left(x , y_{0}\right) &= F_{18}\! \left(x , y_{0}\right) F_{73}\! \left(x , y_{0}\right)\\
F_{73}\! \left(x , y_{0}\right) &= F_{74}\! \left(x , 1, y_{0}\right)\\
F_{74}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{75}\! \left(x , 1, y_{1}\right) y_{1}-F_{75}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right) y_{0}}{-y_{1}+y_{0}}\\
F_{75}\! \left(x , y_{0}, y_{1}\right) &= F_{45}\! \left(x , y_{0} y_{1}, y_{1}\right)\\
F_{76}\! \left(x \right) &= F_{3}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{78}\! \left(x , 1\right)\\
F_{78}\! \left(x , y_{0}\right) &= -\frac{-y_{0} F_{15}\! \left(x , y_{0}\right)+F_{15}\! \left(x , 1\right)}{-1+y_{0}}\\
F_{79}\! \left(x \right) &= F_{3}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{68}\! \left(x , 1\right)\\
F_{81}\! \left(x \right) &= F_{3}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{15}\! \left(x , 1\right)\\
\end{align*}\)
This specification was found using the strategy pack "Point Placements Req Corrob" and has 387 rules.
Finding the specification took 59359 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 387 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{18}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{341}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{15}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= x\\
F_{19}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{338}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{15}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{18}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{12}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{18}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{337}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{184}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{15}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{18}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{15}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{18}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{18}\! \left(x \right) F_{276}\! \left(x \right) F_{43}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= \frac{F_{48}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= -F_{51}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{52}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= \frac{F_{54}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{54}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{18}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{336}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{18}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{18}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{18}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{18}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{332}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{18}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= -F_{87}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= \frac{F_{82}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= -F_{86}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= \frac{F_{85}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{85}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{18}\! \left(x \right) F_{65}\! \left(x \right) F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{18}\! \left(x \right) F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{90}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{18}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= -F_{330}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{18}\! \left(x \right) F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= \frac{F_{100}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{329}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{326}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{107}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{109}\! \left(x \right) &= \frac{F_{110}\! \left(x \right)}{F_{18}\! \left(x \right) F_{211}\! \left(x \right)}\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\
F_{111}\! \left(x \right) &= \frac{F_{112}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)\\
F_{115}\! \left(x \right) &= -F_{313}\! \left(x \right)+F_{116}\! \left(x \right)\\
F_{116}\! \left(x \right) &= \frac{F_{117}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)\\
F_{118}\! \left(x \right) &= -F_{119}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{307}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{306}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{0}\! \left(x \right) F_{122}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{123}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{125}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{134}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{127}\! \left(x \right)\\
F_{127}\! \left(x \right) &= -F_{134}\! \left(x \right)+F_{128}\! \left(x \right)\\
F_{128}\! \left(x \right) &= \frac{F_{129}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)\\
F_{130}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{131}\! \left(x \right)\\
F_{131}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{132}\! \left(x \right)\\
F_{132}\! \left(x \right) &= \frac{F_{133}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{133}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{136}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{136}\! \left(x \right) &= -F_{143}\! \left(x \right)+F_{137}\! \left(x \right)\\
F_{137}\! \left(x \right) &= \frac{F_{138}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)\\
F_{139}\! \left(x \right) &= -F_{142}\! \left(x \right)+F_{140}\! \left(x \right)\\
F_{140}\! \left(x \right) &= \frac{F_{141}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{141}\! \left(x \right) &= F_{130}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{132}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{143}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{305}\! \left(x \right)\\
F_{144}\! \left(x \right) &= F_{145}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{145}\! \left(x \right) &= \frac{F_{146}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)\\
F_{147}\! \left(x \right) &= -F_{148}\! \left(x \right)+F_{140}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{150}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)+F_{292}\! \left(x \right)\\
F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{0}\! \left(x \right) F_{153}\! \left(x \right)\\
F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{252}\! \left(x \right)\\
F_{154}\! \left(x \right) &= \frac{F_{155}\! \left(x \right)}{F_{0}\! \left(x \right) F_{18}\! \left(x \right)}\\
F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{159}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{161}\! \left(x \right)\\
F_{160}\! \left(x \right) &= F_{2}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{161}\! \left(x \right) &= F_{0}\! \left(x \right) F_{162}\! \left(x \right)\\
F_{162}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{163}\! \left(x \right)\\
F_{163}\! \left(x \right) &= \frac{F_{164}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{164}\! \left(x \right) &= F_{165}\! \left(x \right)\\
F_{165}\! \left(x \right) &= -F_{235}\! \left(x \right)+F_{166}\! \left(x \right)\\
F_{166}\! \left(x \right) &= -F_{179}\! \left(x \right)+F_{167}\! \left(x \right)\\
F_{167}\! \left(x \right) &= \frac{F_{168}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)\\
F_{169}\! \left(x \right) &= -F_{173}\! \left(x \right)+F_{170}\! \left(x \right)\\
F_{170}\! \left(x \right) &= \frac{F_{171}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)\\
F_{172}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)+F_{227}\! \left(x \right)\\
F_{174}\! \left(x \right) &= -F_{175}\! \left(x \right)+F_{170}\! \left(x \right)\\
F_{175}\! \left(x \right) &= F_{176}\! \left(x \right)+F_{193}\! \left(x \right)\\
F_{176}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{189}\! \left(x \right)\\
F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)\\
F_{178}\! \left(x \right) &= F_{179}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{179}\! \left(x \right) &= F_{180}\! \left(x \right)+F_{187}\! \left(x \right)\\
F_{180}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{181}\! \left(x \right)\\
F_{181}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{182}\! \left(x \right)\\
F_{182}\! \left(x \right) &= F_{183}\! \left(x \right)\\
F_{183}\! \left(x \right) &= F_{18}\! \left(x \right) F_{184}\! \left(x \right)\\
F_{184}\! \left(x \right) &= F_{185}\! \left(x \right)+F_{186}\! \left(x \right)\\
F_{185}\! \left(x \right) &= F_{181}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{186}\! \left(x \right) &= F_{134}\! \left(x \right)\\
F_{187}\! \left(x \right) &= F_{188}\! \left(x \right)\\
F_{188}\! \left(x \right) &= F_{18}\! \left(x \right) F_{181}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{189}\! \left(x \right) &= F_{190}\! \left(x \right)\\
F_{190}\! \left(x \right) &= F_{18}\! \left(x \right) F_{181}\! \left(x \right) F_{191}\! \left(x \right)\\
F_{191}\! \left(x \right) &= F_{192}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{192}\! \left(x \right) &= F_{65}\! \left(x \right) F_{68}\! \left(x \right)\\
F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)\\
F_{194}\! \left(x \right) &= F_{195}\! \left(x \right)\\
F_{195}\! \left(x \right) &= F_{18}\! \left(x \right) F_{196}\! \left(x \right)\\
F_{196}\! \left(x \right) &= F_{197}\! \left(x \right)+F_{225}\! \left(x \right)\\
F_{197}\! \left(x \right) &= -F_{224}\! \left(x \right)+F_{198}\! \left(x \right)\\
F_{198}\! \left(x \right) &= \frac{F_{199}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{199}\! \left(x \right) &= F_{200}\! \left(x \right)\\
F_{200}\! \left(x \right) &= -F_{203}\! \left(x \right)+F_{201}\! \left(x \right)\\
F_{201}\! \left(x \right) &= \frac{F_{202}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{202}\! \left(x \right) &= F_{172}\! \left(x \right)\\
F_{203}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{205}\! \left(x \right)\\
F_{204}\! \left(x \right) &= F_{122}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{205}\! \left(x \right) &= F_{206}\! \left(x \right)\\
F_{206}\! \left(x \right) &= F_{18}\! \left(x \right) F_{207}\! \left(x \right)\\
F_{207}\! \left(x \right) &= F_{208}\! \left(x \right)+F_{221}\! \left(x \right)\\
F_{208}\! \left(x \right) &= F_{209}\! \left(x \right) F_{68}\! \left(x \right)\\
F_{209}\! \left(x \right) &= F_{184}\! \left(x \right)+F_{210}\! \left(x \right)\\
F_{210}\! \left(x \right) &= F_{211}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{211}\! \left(x \right) &= F_{185}\! \left(x \right)+F_{212}\! \left(x \right)\\
F_{212}\! \left(x \right) &= F_{213}\! \left(x \right)\\
F_{213}\! \left(x \right) &= F_{18}\! \left(x \right) F_{214}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{214}\! \left(x \right) &= \frac{F_{215}\! \left(x \right)}{F_{18}\! \left(x \right) F_{65}\! \left(x \right)}\\
F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)\\
F_{216}\! \left(x \right) &= -F_{219}\! \left(x \right)+F_{217}\! \left(x \right)\\
F_{217}\! \left(x \right) &= \frac{F_{218}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{218}\! \left(x \right) &= F_{148}\! \left(x \right)\\
F_{219}\! \left(x \right) &= \frac{F_{220}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{220}\! \left(x \right) &= F_{127}\! \left(x \right)\\
F_{221}\! \left(x \right) &= F_{222}\! \left(x \right)+F_{223}\! \left(x \right)\\
F_{222}\! \left(x \right) &= F_{184}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{223}\! \left(x \right) &= F_{211}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{224}\! \left(x \right) &= F_{184}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{225}\! \left(x \right) &= F_{226}\! \left(x \right)\\
F_{226}\! \left(x \right) &= F_{18}\! \left(x \right) F_{191}\! \left(x \right) F_{211}\! \left(x \right)\\
F_{227}\! \left(x \right) &= F_{189}\! \left(x \right)+F_{228}\! \left(x \right)\\
F_{228}\! \left(x \right) &= F_{229}\! \left(x \right)\\
F_{229}\! \left(x \right) &= F_{18}\! \left(x \right) F_{230}\! \left(x \right)\\
F_{230}\! \left(x \right) &= F_{225}\! \left(x \right)+F_{231}\! \left(x \right)\\
F_{231}\! \left(x \right) &= F_{232}\! \left(x \right)\\
F_{232}\! \left(x \right) &= F_{18}\! \left(x \right) F_{211}\! \left(x \right) F_{233}\! \left(x \right)\\
F_{233}\! \left(x \right) &= F_{234}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{234}\! \left(x \right) &= F_{65}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{235}\! \left(x \right) &= F_{236}\! \left(x \right)\\
F_{236}\! \left(x \right) &= -F_{249}\! \left(x \right)+F_{237}\! \left(x \right)\\
F_{237}\! \left(x \right) &= F_{238}\! \left(x \right)\\
F_{238}\! \left(x \right) &= F_{239}\! \left(x \right)+F_{242}\! \left(x \right)\\
F_{239}\! \left(x \right) &= F_{182}\! \left(x \right)+F_{240}\! \left(x \right)\\
F_{240}\! \left(x \right) &= F_{241}\! \left(x \right)\\
F_{241}\! \left(x \right) &= F_{166}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{242}\! \left(x \right) &= F_{243}\! \left(x \right)\\
F_{243}\! \left(x \right) &= F_{18}\! \left(x \right) F_{244}\! \left(x \right)\\
F_{244}\! \left(x \right) &= F_{245}\! \left(x \right)+F_{247}\! \left(x \right)\\
F_{245}\! \left(x \right) &= F_{246}\! \left(x \right)\\
F_{246}\! \left(x \right) &= F_{18}\! \left(x \right) F_{209}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{247}\! \left(x \right) &= F_{248}\! \left(x \right)\\
F_{248}\! \left(x \right) &= F_{240}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{249}\! \left(x \right) &= F_{242}\! \left(x \right)+F_{250}\! \left(x \right)\\
F_{250}\! \left(x \right) &= F_{240}\! \left(x \right)+F_{251}\! \left(x \right)\\
F_{251}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{252}\! \left(x \right) &= F_{253}\! \left(x \right)\\
F_{253}\! \left(x \right) &= \frac{F_{254}\! \left(x \right)}{F_{273}\! \left(x \right)}\\
F_{254}\! \left(x \right) &= -F_{285}\! \left(x \right)+F_{255}\! \left(x \right)\\
F_{255}\! \left(x \right) &= \frac{F_{256}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{256}\! \left(x \right) &= F_{257}\! \left(x \right)\\
F_{257}\! \left(x \right) &= -F_{271}\! \left(x \right)+F_{258}\! \left(x \right)\\
F_{258}\! \left(x \right) &= -F_{261}\! \left(x \right)+F_{259}\! \left(x \right)\\
F_{259}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{260}\! \left(x \right)\\
F_{260}\! \left(x \right) &= F_{0}\! \left(x \right) F_{132}\! \left(x \right)\\
F_{261}\! \left(x \right) &= F_{262}\! \left(x \right)+F_{263}\! \left(x \right)\\
F_{262}\! \left(x \right) &= F_{0} \left(x \right)^{2}\\
F_{263}\! \left(x \right) &= F_{182}\! \left(x \right)+F_{264}\! \left(x \right)\\
F_{264}\! \left(x \right) &= F_{265}\! \left(x \right)\\
F_{265}\! \left(x \right) &= F_{18}\! \left(x \right) F_{266}\! \left(x \right)\\
F_{266}\! \left(x \right) &= F_{267}\! \left(x \right)+F_{268}\! \left(x \right)\\
F_{267}\! \left(x \right) &= F_{182}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{268}\! \left(x \right) &= F_{269}\! \left(x \right)\\
F_{269}\! \left(x \right) &= F_{18}\! \left(x \right) F_{211}\! \left(x \right) F_{270}\! \left(x \right)\\
F_{270}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{271}\! \left(x \right) &= F_{272}\! \left(x \right)\\
F_{272}\! \left(x \right) &= F_{18}\! \left(x \right) F_{273}\! \left(x \right) F_{283}\! \left(x \right)\\
F_{273}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{274}\! \left(x \right)\\
F_{274}\! \left(x \right) &= F_{275}\! \left(x \right)\\
F_{275}\! \left(x \right) &= F_{18}\! \left(x \right) F_{276}\! \left(x \right) F_{64}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{276}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{277}\! \left(x \right)\\
F_{277}\! \left(x \right) &= F_{278}\! \left(x \right)\\
F_{278}\! \left(x \right) &= F_{18}\! \left(x \right) F_{279}\! \left(x \right)\\
F_{279}\! \left(x \right) &= F_{280}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{280}\! \left(x \right) &= F_{277}\! \left(x \right)+F_{281}\! \left(x \right)\\
F_{281}\! \left(x \right) &= F_{282}\! \left(x \right)\\
F_{282}\! \left(x \right) &= F_{18}\! \left(x \right) F_{280}\! \left(x \right)\\
F_{283}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{284}\! \left(x \right)\\
F_{284}\! \left(x \right) &= F_{131}\! \left(x \right)\\
F_{285}\! \left(x \right) &= -F_{288}\! \left(x \right)+F_{286}\! \left(x \right)\\
F_{286}\! \left(x \right) &= \frac{F_{287}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{287}\! \left(x \right) &= F_{258}\! \left(x \right)\\
F_{288}\! \left(x \right) &= F_{273}\! \left(x \right) F_{289}\! \left(x \right)\\
F_{289}\! \left(x \right) &= F_{290}\! \left(x \right)+F_{291}\! \left(x \right)\\
F_{290}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{147}\! \left(x \right)\\
F_{291}\! \left(x \right) &= F_{147}\! \left(x \right)\\
F_{292}\! \left(x \right) &= F_{293}\! \left(x \right)\\
F_{293}\! \left(x \right) &= F_{18}\! \left(x \right) F_{294}\! \left(x \right)\\
F_{294}\! \left(x \right) &= F_{295}\! \left(x \right)+F_{302}\! \left(x \right)\\
F_{295}\! \left(x \right) &= F_{153}\! \left(x \right) F_{296}\! \left(x \right)\\
F_{296}\! \left(x \right) &= F_{297}\! \left(x \right)+F_{298}\! \left(x \right)\\
F_{297}\! \left(x \right) &= F_{0}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{298}\! \left(x \right) &= F_{299}\! \left(x \right)\\
F_{299}\! \left(x \right) &= F_{18}\! \left(x \right) F_{300}\! \left(x \right)\\
F_{300}\! \left(x \right) &= F_{221}\! \left(x \right)+F_{301}\! \left(x \right)\\
F_{301}\! \left(x \right) &= F_{209}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{302}\! \left(x \right) &= F_{303}\! \left(x \right)\\
F_{303}\! \left(x \right) &= F_{18}\! \left(x \right) F_{214}\! \left(x \right) F_{304}\! \left(x \right)\\
F_{304}\! \left(x \right) &= F_{270}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{305}\! \left(x \right) &= F_{214}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{306}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{205}\! \left(x \right)\\
F_{307}\! \left(x \right) &= F_{308}\! \left(x \right)+F_{309}\! \left(x \right)\\
F_{308}\! \left(x \right) &= F_{122}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{309}\! \left(x \right) &= F_{310}\! \left(x \right)\\
F_{310}\! \left(x \right) &= F_{18}\! \left(x \right) F_{311}\! \left(x \right)\\
F_{311}\! \left(x \right) &= F_{312}\! \left(x \right)\\
F_{312}\! \left(x \right) &= F_{18}\! \left(x \right) F_{184}\! \left(x \right) F_{92}\! \left(x \right)\\
F_{313}\! \left(x \right) &= F_{314}\! \left(x \right)+F_{315}\! \left(x \right)\\
F_{314}\! \left(x \right) &= F_{106}\! \left(x \right) F_{184}\! \left(x \right)\\
F_{315}\! \left(x \right) &= F_{316}\! \left(x \right)\\
F_{316}\! \left(x \right) &= F_{317}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{317}\! \left(x \right) &= \frac{F_{318}\! \left(x \right)}{F_{18}\! \left(x \right) F_{65}\! \left(x \right)}\\
F_{318}\! \left(x \right) &= F_{319}\! \left(x \right)\\
F_{319}\! \left(x \right) &= F_{194}\! \left(x \right)+F_{320}\! \left(x \right)\\
F_{320}\! \left(x \right) &= F_{321}\! \left(x \right)\\
F_{321}\! \left(x \right) &= F_{18}\! \left(x \right) F_{322}\! \left(x \right)\\
F_{322}\! \left(x \right) &= F_{323}\! \left(x \right)\\
F_{323}\! \left(x \right) &= F_{18}\! \left(x \right) F_{211}\! \left(x \right) F_{324}\! \left(x \right)\\
F_{324}\! \left(x \right) &= F_{325}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{325}\! \left(x \right) &= F_{66}\! \left(x \right) F_{89}\! \left(x \right)\\
F_{326}\! \left(x \right) &= F_{327}\! \left(x \right)\\
F_{327}\! \left(x \right) &= F_{328}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{328}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{329}\! \left(x \right) &= F_{96}\! \left(x \right)\\
F_{330}\! \left(x \right) &= F_{331}\! \left(x \right)\\
F_{331}\! \left(x \right) &= F_{18}\! \left(x \right) F_{93}\! \left(x \right)\\
F_{332}\! \left(x \right) &= F_{333}\! \left(x \right)\\
F_{333}\! \left(x \right) &= F_{18}\! \left(x \right) F_{334}\! \left(x \right)\\
F_{334}\! \left(x \right) &= F_{335}\! \left(x \right)\\
F_{335}\! \left(x \right) &= F_{65} \left(x \right)^{2} F_{18}\! \left(x \right) F_{276}\! \left(x \right) F_{89}\! \left(x \right)\\
F_{336}\! \left(x \right) &= F_{331}\! \left(x \right)\\
F_{337}\! \left(x \right) &= F_{211}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{338}\! \left(x \right) &= F_{339}\! \left(x \right)\\
F_{339}\! \left(x \right) &= F_{18}\! \left(x \right) F_{340}\! \left(x \right)\\
F_{340}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{341}\! \left(x \right) &= F_{342}\! \left(x \right)\\
F_{342}\! \left(x \right) &= F_{18}\! \left(x \right) F_{343}\! \left(x \right)\\
F_{343}\! \left(x \right) &= F_{344}\! \left(x \right)+F_{386}\! \left(x \right)\\
F_{344}\! \left(x \right) &= F_{345}\! \left(x \right)+F_{374}\! \left(x \right)\\
F_{345}\! \left(x \right) &= F_{304}\! \left(x \right)+F_{346}\! \left(x \right)\\
F_{346}\! \left(x \right) &= F_{347}\! \left(x \right)\\
F_{347}\! \left(x \right) &= F_{18}\! \left(x \right) F_{348}\! \left(x \right)\\
F_{348}\! \left(x \right) &= F_{349}\! \left(x \right)+F_{370}\! \left(x \right)\\
F_{349}\! \left(x \right) &= F_{350}\! \left(x \right)+F_{354}\! \left(x \right)\\
F_{350}\! \left(x \right) &= -F_{351}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{351}\! \left(x \right) &= F_{352}\! \left(x \right)\\
F_{352}\! \left(x \right) &= F_{18}\! \left(x \right) F_{353}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{353}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{354}\! \left(x \right) &= \frac{F_{355}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{355}\! \left(x \right) &= F_{356}\! \left(x \right)\\
F_{356}\! \left(x \right) &= -F_{357}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{357}\! \left(x \right) &= F_{358}\! \left(x \right)+F_{366}\! \left(x \right)\\
F_{358}\! \left(x \right) &= -F_{365}\! \left(x \right)+F_{359}\! \left(x \right)\\
F_{359}\! \left(x \right) &= -F_{363}\! \left(x \right)+F_{360}\! \left(x \right)\\
F_{360}\! \left(x \right) &= \frac{F_{361}\! \left(x \right)}{F_{18}\! \left(x \right)}\\
F_{361}\! \left(x \right) &= F_{362}\! \left(x \right)\\
F_{362}\! \left(x \right) &= -F_{53}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{363}\! \left(x \right) &= F_{364}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{364}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{365}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{366}\! \left(x \right) &= F_{367}\! \left(x \right)\\
F_{367}\! \left(x \right) &= F_{18}\! \left(x \right) F_{368}\! \left(x \right)\\
F_{368}\! \left(x \right) &= F_{369}\! \left(x \right)\\
F_{369}\! \left(x \right) &= F_{65} \left(x \right)^{2} F_{18}\! \left(x \right) F_{276}\! \left(x \right) F_{353}\! \left(x \right)\\
F_{370}\! \left(x \right) &= F_{371}\! \left(x \right)\\
F_{371}\! \left(x \right) &= F_{372}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{372}\! \left(x \right) &= F_{373}\! \left(x \right)\\
F_{373}\! \left(x \right) &= F_{18}\! \left(x \right) F_{353}\! \left(x \right)\\
F_{374}\! \left(x \right) &= F_{375}\! \left(x \right)+F_{384}\! \left(x \right)\\
F_{375}\! \left(x \right) &= F_{376}\! \left(x \right)\\
F_{376}\! \left(x \right) &= F_{18}\! \left(x \right) F_{377}\! \left(x \right)\\
F_{377}\! \left(x \right) &= F_{378}\! \left(x \right)+F_{380}\! \left(x \right)\\
F_{378}\! \left(x \right) &= F_{15}\! \left(x \right) F_{379}\! \left(x \right)\\
F_{379}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{380}\! \left(x \right) &= F_{381}\! \left(x \right)\\
F_{381}\! \left(x \right) &= F_{15}\! \left(x \right) F_{382}\! \left(x \right)\\
F_{382}\! \left(x \right) &= F_{383}\! \left(x \right)\\
F_{383}\! \left(x \right) &= F_{18}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{384}\! \left(x \right) &= F_{385}\! \left(x \right)\\
F_{385}\! \left(x \right) &= F_{18}\! \left(x \right) F_{368}\! \left(x \right)\\
F_{386}\! \left(x \right) &= F_{45}\! \left(x \right)\\
\end{align*}\)