Av(12354, 12453, 12543, 13254, 21354, 21453, 21543, 31452, 31542)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 111, 548, 2795, 14545, 76817, 410543, 2216053, 12064062, 66161284, 365184731, ...
Implicit Equation for the Generating Function
\(\displaystyle x^{11} F \left(x \right)^{12}+x^{8} \left(4+x \right) F \left(x \right)^{11}+x^{5} \left(3 x^{5}-9 x^{4}-2 x^{3}-4 x^{2}+x -1\right) F \left(x \right)^{10}+x^{4} \left(5 x^{5}+12 x^{3}-20 x^{2}+15 x -3\right) F \left(x \right)^{9}+x^{3} \left(3 x^{6}-18 x^{5}+19 x^{4}+11 x^{3}-15 x^{2}-4 x +8\right) F \left(x \right)^{8}+x^{2} \left(10 x^{6}-31 x^{5}+22 x^{4}-32 x^{3}+66 x^{2}-62 x +10\right) F \left(x \right)^{7}+x \left(x^{7}-x^{6}+11 x^{5}+14 x^{4}-94 x^{3}+120 x^{2}-22 x -7\right) F \left(x \right)^{6}+\left(5 x^{7}-30 x^{6}+45 x^{5}+19 x^{4}-81 x^{3}+x^{2}+29 x +1\right) F \left(x \right)^{5}+\left(8 x^{6}-31 x^{5}+23 x^{4}+12 x^{3}+28 x^{2}-46 x -5\right) F \left(x \right)^{4}+\left(4 x^{5}-6 x^{4}-20 x^{2}+34 x +10\right) F \left(x \right)^{3}+\left(-x^{4}+4 x^{3}+2 x^{2}-11 x -10\right) F \left(x \right)^{2}+\left(-x^{3}+x^{2}+x +5\right) F \! \left(x \right)-1 = 0\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 341 rules.

Finding the specification took 36570 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 341 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{41}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{11}\! \left(x \right) &= x^{2} F_{11} \left(x \right)^{3}+2 x^{2} F_{11} \left(x \right)^{2}+x^{2} F_{11}\! \left(x \right)+x F_{11} \left(x \right)^{2}+2 x F_{11}\! \left(x \right)+x\\ F_{12}\! \left(x \right) &= x^{2}\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{15}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{2}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= x^{2} F_{22} \left(x \right)^{3}-x^{2} F_{22} \left(x \right)^{2}+x F_{22} \left(x \right)^{2}+1\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{19}\! \left(x \right) F_{25}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{25}\! \left(x \right) &= \frac{F_{26}\! \left(x \right)}{F_{41}\! \left(x \right) F_{46}\! \left(x \right)}\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{29}\! \left(x \right) &= \frac{F_{30}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= -F_{22}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= \frac{F_{33}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{33}\! \left(x \right) &= -F_{42}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= \frac{F_{35}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= -F_{22}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= \frac{F_{40}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{40}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{41}\! \left(x \right) &= x\\ F_{42}\! \left(x \right) &= -F_{45}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= \frac{F_{44}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{44}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{2}\! \left(x \right) F_{32}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{25}\! \left(x \right) F_{41}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{22}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{41}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{41}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{14}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{41}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{339}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{0}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= -F_{14}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= -F_{72}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= \frac{F_{71}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{71}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{41}\! \left(x \right) F_{76}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{41}\! \left(x \right) F_{78}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{41}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{155}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{150}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{41}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{41}\! \left(x \right) F_{78}\! \left(x \right) F_{79}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{22}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{41}\! \left(x \right) F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{127}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{102}\! \left(x \right) &= \frac{F_{103}\! \left(x \right)}{F_{41}\! \left(x \right) F_{48}\! \left(x \right)}\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\ F_{104}\! \left(x \right) &= -F_{107}\! \left(x \right)+F_{105}\! \left(x \right)\\ F_{105}\! \left(x \right) &= \frac{F_{106}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{106}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{125}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{110}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{122}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{114}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{116}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{118}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{109}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{109}\! \left(x \right) F_{120}\! \left(x \right) F_{22}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{120}\! \left(x \right) &= \frac{F_{121}\! \left(x \right)}{F_{22}\! \left(x \right) F_{41}\! \left(x \right)}\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)\\ F_{122}\! \left(x \right) &= -F_{114}\! \left(x \right)+F_{123}\! \left(x \right)\\ F_{123}\! \left(x \right) &= \frac{F_{124}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{124}\! \left(x \right) &= F_{96}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{102}\! \left(x \right) F_{19}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{104}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{129}\! \left(x \right) &= -F_{130}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{133}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{135}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{138}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{109}\! \left(x \right) F_{137}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{102}\! \left(x \right) F_{41}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)+F_{144}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{142}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{102}\! \left(x \right) F_{41}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{0}\! \left(x \right) F_{146}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{102}\! \left(x \right) F_{29}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{25}\! \left(x \right) F_{41}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{153}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{0}\! \left(x \right) F_{29}\! \left(x \right) F_{41}\! \left(x \right) F_{78}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{158}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{41}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{151}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{162}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{165}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{164}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{79} \left(x \right)^{2} F_{22}\! \left(x \right) F_{41}\! \left(x \right) F_{78}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{166}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{167}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{32}\! \left(x \right) F_{41}\! \left(x \right) F_{78}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{171}\! \left(x \right) F_{177}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)+F_{175}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{171}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{176}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{172}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{100}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{180}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)+F_{195}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{102}\! \left(x \right) F_{182}\! \left(x \right)\\ F_{182}\! \left(x \right) &= F_{183}\! \left(x \right)+F_{188}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{184}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{185}\! \left(x \right)+F_{186}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{22}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{187}\! \left(x \right)\\ F_{187}\! \left(x \right) &= F_{173}\! \left(x \right) F_{25}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{188}\! \left(x \right) &= F_{189}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{190}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{190}\! \left(x \right) &= F_{191}\! \left(x \right)+F_{192}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{182}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{193}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{172}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{195}\! \left(x \right) &= \frac{F_{196}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{196}\! \left(x \right) &= F_{197}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{198}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)\\ F_{199}\! \left(x \right) &= -F_{338}\! \left(x \right)+F_{200}\! \left(x \right)\\ F_{200}\! \left(x \right) &= \frac{F_{201}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{201}\! \left(x \right) &= F_{202}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{203}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{204}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)+F_{323}\! \left(x \right)\\ F_{205}\! \left(x \right) &= F_{206}\! \left(x \right) F_{210}\! \left(x \right)\\ F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{208}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{209}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{0}\! \left(x \right) F_{22}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{211}\! \left(x \right)+F_{212}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{0}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{212}\! \left(x \right) &= -F_{321}\! \left(x \right)+F_{213}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{214}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{215}\! \left(x \right) F_{41}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{215}\! \left(x \right) &= \frac{F_{216}\! \left(x \right)}{F_{172}\! \left(x \right) F_{41}\! \left(x \right)}\\ F_{216}\! \left(x \right) &= F_{217}\! \left(x \right)\\ F_{217}\! \left(x \right) &= -F_{227}\! \left(x \right)+F_{218}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{219}\! \left(x \right)+F_{224}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{202}\! \left(x \right)+F_{220}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{221}\! \left(x \right)+F_{222}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{223}\! \left(x \right)\\ F_{223}\! \left(x \right) &= F_{102}\! \left(x \right) F_{41}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{224}\! \left(x \right) &= -F_{202}\! \left(x \right)+F_{225}\! \left(x \right)\\ F_{225}\! \left(x \right) &= \frac{F_{226}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{226}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{227}\! \left(x \right) &= F_{228}\! \left(x \right)+F_{230}\! \left(x \right)\\ F_{228}\! \left(x \right) &= F_{0}\! \left(x \right) F_{229}\! \left(x \right)\\ F_{229}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{230}\! \left(x \right) &= -F_{231}\! \left(x \right)+F_{224}\! \left(x \right)\\ F_{231}\! \left(x \right) &= F_{232}\! \left(x \right)\\ F_{232}\! \left(x \right) &= F_{172}\! \left(x \right) F_{233}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{233}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{234}\! \left(x \right)\\ F_{234}\! \left(x \right) &= -F_{320}\! \left(x \right)+F_{235}\! \left(x \right)\\ F_{235}\! \left(x \right) &= F_{236}\! \left(x \right)\\ F_{236}\! \left(x \right) &= F_{237}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{237}\! \left(x \right) &= \frac{F_{238}\! \left(x \right)}{F_{243}\! \left(x \right) F_{41}\! \left(x \right)}\\ F_{238}\! \left(x \right) &= F_{239}\! \left(x \right)\\ F_{239}\! \left(x \right) &= -F_{318}\! \left(x \right)+F_{240}\! \left(x \right)\\ F_{240}\! \left(x \right) &= F_{241}\! \left(x \right)+F_{274}\! \left(x \right)\\ F_{241}\! \left(x \right) &= F_{242}\! \left(x \right)\\ F_{242}\! \left(x \right) &= F_{243}\! \left(x \right) F_{273}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{243}\! \left(x \right) &= F_{244}\! \left(x \right)\\ F_{244}\! \left(x \right) &= F_{245}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{245}\! \left(x \right) &= F_{246}\! \left(x \right)+F_{249}\! \left(x \right)\\ F_{246}\! \left(x \right) &= F_{0}\! \left(x \right) F_{22}\! \left(x \right) F_{247}\! \left(x \right)\\ F_{247}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{248}\! \left(x \right)\\ F_{248}\! \left(x \right) &= F_{247}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{249}\! \left(x \right) &= F_{250}\! \left(x \right)\\ F_{250}\! \left(x \right) &= F_{0}\! \left(x \right) F_{22}\! \left(x \right) F_{251}\! \left(x \right) F_{259}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{251}\! \left(x \right) &= F_{247}\! \left(x \right)+F_{252}\! \left(x \right)\\ F_{252}\! \left(x \right) &= F_{253}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{253}\! \left(x \right) &= F_{254}\! \left(x \right)+F_{255}\! \left(x \right)+F_{258}\! \left(x \right)\\ F_{254}\! \left(x \right) &= 0\\ F_{255}\! \left(x \right) &= F_{256}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{256}\! \left(x \right) &= F_{257}\! \left(x \right)\\ F_{257}\! \left(x \right) &= F_{247}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{258}\! \left(x \right) &= F_{252}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{259}\! \left(x \right) &= F_{247}\! \left(x \right)+F_{260}\! \left(x \right)\\ F_{260}\! \left(x \right) &= F_{261}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{261}\! \left(x \right) &= F_{254}\! \left(x \right)+F_{262}\! \left(x \right)+F_{272}\! \left(x \right)\\ F_{262}\! \left(x \right) &= F_{263}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{263}\! \left(x \right) &= F_{264}\! \left(x \right)+F_{265}\! \left(x \right)\\ F_{264}\! \left(x \right) &= F_{253}\! \left(x \right)+F_{256}\! \left(x \right)\\ F_{265}\! \left(x \right) &= F_{261}\! \left(x \right)+F_{266}\! \left(x \right)\\ F_{266}\! \left(x \right) &= 2 F_{254}\! \left(x \right)+F_{267}\! \left(x \right)+F_{268}\! \left(x \right)\\ F_{267}\! \left(x \right) &= F_{261}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{268}\! \left(x \right) &= F_{269}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{269}\! \left(x \right) &= F_{266}\! \left(x \right)+F_{270}\! \left(x \right)\\ F_{270}\! \left(x \right) &= F_{271}\! \left(x \right)\\ F_{271}\! \left(x \right) &= F_{41}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{272}\! \left(x \right) &= F_{260}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{273}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{109}\! \left(x \right)\\ F_{274}\! \left(x \right) &= F_{275}\! \left(x \right)\\ F_{275}\! \left(x \right) &= F_{276}\! \left(x \right) F_{279}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{276}\! \left(x \right) &= F_{243}\! \left(x \right)+F_{277}\! \left(x \right)\\ F_{277}\! \left(x \right) &= F_{278}\! \left(x \right)\\ F_{278}\! \left(x \right) &= F_{0}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{279}\! \left(x \right) &= \frac{F_{280}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{280}\! \left(x \right) &= F_{281}\! \left(x \right)\\ F_{281}\! \left(x \right) &= -F_{296}\! \left(x \right)+F_{282}\! \left(x \right)\\ F_{282}\! \left(x \right) &= F_{283}\! \left(x \right)\\ F_{283}\! \left(x \right) &= -F_{289}\! \left(x \right)+F_{284}\! \left(x \right)\\ F_{284}\! \left(x \right) &= \frac{F_{285}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{285}\! \left(x \right) &= F_{286}\! \left(x \right)\\ F_{286}\! \left(x \right) &= -F_{287}\! \left(x \right)+F_{129}\! \left(x \right)\\ F_{287}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{288}\! \left(x \right)\\ F_{288}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{289}\! \left(x \right) &= F_{290}\! \left(x \right)+F_{294}\! \left(x \right)\\ F_{290}\! \left(x \right) &= \frac{F_{291}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{291}\! \left(x \right) &= F_{292}\! \left(x \right)\\ F_{292}\! \left(x \right) &= -F_{288}\! \left(x \right)+F_{293}\! \left(x \right)\\ F_{293}\! \left(x \right) &= -F_{140}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{294}\! \left(x \right) &= F_{295}\! \left(x \right)\\ F_{295}\! \left(x \right) &= F_{109}\! \left(x \right) F_{146}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{296}\! \left(x \right) &= F_{297}\! \left(x \right)\\ F_{297}\! \left(x \right) &= F_{298}\! \left(x \right) F_{302}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{298}\! \left(x \right) &= F_{299}\! \left(x \right)\\ F_{299}\! \left(x \right) &= F_{300}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{300}\! \left(x \right) &= \frac{F_{301}\! \left(x \right)}{F_{22}\! \left(x \right) F_{41}\! \left(x \right)}\\ F_{301}\! \left(x \right) &= F_{146}\! \left(x \right)\\ F_{302}\! \left(x \right) &= F_{303}\! \left(x \right)+F_{306}\! \left(x \right)\\ F_{303}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{304}\! \left(x \right)\\ F_{304}\! \left(x \right) &= F_{305}\! \left(x \right)\\ F_{305}\! \left(x \right) &= F_{251}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{306}\! \left(x \right) &= \frac{F_{307}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{307}\! \left(x \right) &= -F_{316}\! \left(x \right)+F_{308}\! \left(x \right)\\ F_{308}\! \left(x \right) &= -F_{311}\! \left(x \right)+F_{309}\! \left(x \right)\\ F_{309}\! \left(x \right) &= \frac{F_{310}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{310}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{311}\! \left(x \right) &= F_{312}\! \left(x \right)\\ F_{312}\! \left(x \right) &= F_{313}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{313}\! \left(x \right) &= \frac{F_{314}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{314}\! \left(x \right) &= F_{315}\! \left(x \right)\\ F_{315}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{316}\! \left(x \right) &= F_{317}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{317}\! \left(x \right) &= F_{304}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{318}\! \left(x \right) &= F_{319}\! \left(x \right)\\ F_{319}\! \left(x \right) &= F_{0}\! \left(x \right) F_{22}\! \left(x \right) F_{279}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{320}\! \left(x \right) &= F_{109}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{321}\! \left(x \right) &= F_{322}\! \left(x \right)\\ F_{322}\! \left(x \right) &= F_{233}\! \left(x \right) F_{41}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{323}\! \left(x \right) &= F_{324}\! \left(x \right)\\ F_{324}\! \left(x \right) &= -F_{337}\! \left(x \right)+F_{325}\! \left(x \right)\\ F_{325}\! \left(x \right) &= \frac{F_{326}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{326}\! \left(x \right) &= F_{327}\! \left(x \right)\\ F_{327}\! \left(x \right) &= -F_{330}\! \left(x \right)+F_{328}\! \left(x \right)\\ F_{328}\! \left(x \right) &= \frac{F_{329}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{329}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{330}\! \left(x \right) &= F_{288}\! \left(x \right)+F_{331}\! \left(x \right)\\ F_{331}\! \left(x \right) &= F_{332}\! \left(x \right)\\ F_{332}\! \left(x \right) &= F_{333}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{333}\! \left(x \right) &= F_{334}\! \left(x \right)+F_{335}\! \left(x \right)\\ F_{334}\! \left(x \right) &= F_{4}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{335}\! \left(x \right) &= F_{336}\! \left(x \right)\\ F_{336}\! \left(x \right) &= F_{120}\! \left(x \right) F_{41}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{337}\! \left(x \right) &= F_{177}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{338}\! \left(x \right) &= F_{171}\! \left(x \right) F_{177}\! \left(x \right)\\ F_{339}\! \left(x \right) &= F_{340}\! \left(x \right)\\ F_{340}\! \left(x \right) &= F_{171}\! \left(x \right) F_{41}\! \left(x \right) F_{79}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point And Row Placements Req Corrob" and has 89 rules.

Finding the specification took 21598 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 89 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{14}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{14}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{4} \left(x \right)^{2}\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{15}\! \left(x \right) F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= x\\ F_{15}\! \left(x \right) &= x^{2} F_{15} \left(x \right)^{3}-x^{2} F_{15} \left(x \right)^{2}+x F_{15} \left(x \right)^{2}+1\\ F_{16}\! \left(x \right) &= \frac{F_{17}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{20}\! \left(x \right) &= 0\\ F_{21}\! \left(x \right) &= F_{14}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{24}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{25}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{14}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{14}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= -F_{52}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= \frac{F_{30}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{30}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{34}\! \left(x \right)-F_{46}\! \left(x \right)-F_{64}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{14}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{14}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{14}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{14}\! \left(x \right) F_{15}\! \left(x \right) F_{16}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{14}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{49}\! \left(x \right) &= \frac{F_{50}\! \left(x \right)}{F_{14}\! \left(x \right)}\\ F_{50}\! \left(x \right) &= -F_{20}\! \left(x \right)-F_{51}\! \left(x \right)-F_{62}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{14}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{14}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{14}\! \left(x \right) F_{15}\! \left(x \right) F_{16}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{14}\! \left(x \right) F_{15}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{14}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{14}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{14}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{14}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{72}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{14}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{14}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{14}\! \left(x \right) F_{16}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{79}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{14}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{14}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{14}\! \left(x \right) F_{77}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{14}\! \left(x \right) F_{16}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{14}\! \left(x \right) F_{15}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{14}\! \left(x \right) F_{32}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 349 rules.

Finding the specification took 76539 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 349 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{40}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{288}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{183}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{0}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{40}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{21}\! \left(x \right) &= x^{2} F_{21} \left(x \right)^{3}-x^{2} F_{21} \left(x \right)^{2}+x F_{21} \left(x \right)^{2}+1\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{20}\! \left(x \right) F_{24}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{24}\! \left(x \right) &= \frac{F_{25}\! \left(x \right)}{F_{18}\! \left(x \right) F_{40}\! \left(x \right)}\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{27}\! \left(x \right) &= \frac{F_{28}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= -F_{21}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= \frac{F_{31}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{31}\! \left(x \right) &= -F_{41}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= \frac{F_{33}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{35}\! \left(x \right) &= x^{2} F_{35} \left(x \right)^{3}+2 x^{2} F_{35} \left(x \right)^{2}+x^{2} F_{35}\! \left(x \right)+x F_{35} \left(x \right)^{2}+2 x F_{35}\! \left(x \right)+x\\ F_{36}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= -F_{21}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= \frac{F_{39}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{39}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{40}\! \left(x \right) &= x\\ F_{41}\! \left(x \right) &= -F_{44}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= \frac{F_{43}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{43}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{2}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{2}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{24}\! \left(x \right) F_{40}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{21}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{16}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{0}\! \left(x \right) F_{21}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{40} \left(x \right)^{2} F_{0}\! \left(x \right) F_{21}\! \left(x \right) F_{59}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{40}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{40}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x , 1\right)\\ F_{68}\! \left(x , y\right) &= F_{69}\! \left(x , y\right)\\ F_{69}\! \left(x , y\right) &= F_{40}\! \left(x \right) F_{70}\! \left(x , y\right)\\ F_{70}\! \left(x , y\right) &= F_{22}\! \left(x \right)+F_{71}\! \left(x , y\right)\\ F_{71}\! \left(x , y\right) &= F_{72}\! \left(x \right)+F_{76}\! \left(x , y\right)\\ F_{72}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{21}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{76}\! \left(x , y\right) &= F_{77}\! \left(x , y\right)\\ F_{77}\! \left(x , y\right) &= F_{78}\! \left(x \right) F_{79}\! \left(x , y\right) F_{80}\! \left(x , y\right) F_{81}\! \left(x , y\right)\\ F_{78}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{79}\! \left(x , y\right) &= y x\\ F_{80}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{79}\! \left(x , y\right)\\ F_{81}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{82}\! \left(x , y\right)\\ F_{82}\! \left(x , y\right) &= F_{83}\! \left(x , y\right)\\ F_{83}\! \left(x , y\right) &= F_{79}\! \left(x , y\right) F_{84}\! \left(x , y\right)\\ F_{84}\! \left(x , y\right) &= F_{80}\! \left(x , y\right)+F_{85}\! \left(x , y\right)\\ F_{85}\! \left(x , y\right) &= F_{82}\! \left(x , y\right)+F_{86}\! \left(x , y\right)\\ F_{86}\! \left(x , y\right) &= F_{87}\! \left(x , y\right)\\ F_{87}\! \left(x , y\right) &= F_{79}\! \left(x , y\right) F_{82}\! \left(x , y\right)\\ F_{88}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{40}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= \frac{F_{92}\! \left(x \right)}{F_{20}\! \left(x \right) F_{40}\! \left(x \right)}\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{20}\! \left(x \right) F_{40}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{40}\! \left(x \right) F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{151}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{20}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{101}\! \left(x \right) &= \frac{F_{102}\! \left(x \right)}{F_{21}\! \left(x \right) F_{40}\! \left(x \right)}\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)\\ F_{103}\! \left(x \right) &= -F_{129}\! \left(x \right)+F_{104}\! \left(x \right)\\ F_{104}\! \left(x \right) &= \frac{F_{105}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{112}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{40}\! \left(x \right) F_{93}\! \left(x \right)\\ F_{112}\! \left(x \right) &= -F_{150}\! \left(x \right)+F_{113}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{141}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{117}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{116}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{119}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{121}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{135}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right) F_{124}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{125}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{128}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{129}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{131}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{133}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{115}\! \left(x \right) F_{124}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{101}\! \left(x \right) F_{124}\! \left(x \right) F_{21}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right) F_{40}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{139}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{113}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{137}\! \left(x \right) F_{24}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{146}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{144}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right) F_{40}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{0}\! \left(x \right) F_{148}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{27}\! \left(x \right) F_{40}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)+F_{177}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{153}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{154}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{154}\! \left(x \right) &= \frac{F_{155}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)\\ F_{156}\! \left(x \right) &= -F_{182}\! \left(x \right)+F_{157}\! \left(x \right)\\ F_{157}\! \left(x \right) &= \frac{F_{158}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)\\ F_{159}\! \left(x \right) &= -F_{162}\! \left(x \right)+F_{160}\! \left(x \right)\\ F_{160}\! \left(x \right) &= \frac{F_{161}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{161}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{167}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{165}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{166}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{40}\! \left(x \right) F_{49}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{174}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{170}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{171}\! \left(x \right)+F_{172}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{116}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{101}\! \left(x \right) F_{18}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{175}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{176}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{180}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{154}\! \left(x \right) F_{179}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{154}\! \left(x \right) F_{40}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{182}\! \left(x \right) &= F_{20}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{184}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{185}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{200}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{187}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{187}\! \left(x \right) &= F_{188}\! \left(x \right)+F_{193}\! \left(x \right)\\ F_{188}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{189}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{190}\! \left(x \right)+F_{191}\! \left(x \right)\\ F_{190}\! \left(x \right) &= F_{21}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{192}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{24}\! \left(x \right) F_{40}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{195}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{196}\! \left(x \right)+F_{197}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{187}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{198}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{17}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{200}\! \left(x \right) &= \frac{F_{201}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{201}\! \left(x \right) &= F_{202}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{203}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{204}\! \left(x \right)\\ F_{205}\! \left(x , y\right) &= F_{204}\! \left(x \right)+F_{343}\! \left(x , y\right)\\ F_{206}\! \left(x , y\right) &= F_{205}\! \left(x , y\right) F_{40}\! \left(x \right)\\ F_{206}\! \left(x , y\right) &= F_{207}\! \left(x , y\right)\\ F_{207}\! \left(x , y\right) &= F_{208}\! \left(x \right)+F_{335}\! \left(x , y\right)\\ F_{208}\! \left(x \right) &= F_{209}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{210}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{211}\! \left(x \right)+F_{333}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{212}\! \left(x \right) F_{215}\! \left(x \right)\\ F_{212}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{213}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{214}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{18}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)+F_{217}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{0}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{217}\! \left(x \right) &= -F_{312}\! \left(x \right)+F_{218}\! \left(x \right)\\ F_{218}\! \left(x \right) &= -F_{222}\! \left(x \right)+F_{219}\! \left(x \right)\\ F_{219}\! \left(x \right) &= \frac{F_{220}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{220}\! \left(x \right) &= F_{221}\! \left(x \right)\\ F_{221}\! \left(x \right) &= -F_{61}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{223}\! \left(x \right)\\ F_{223}\! \left(x \right) &= F_{224}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{224}\! \left(x \right) &= -F_{311}\! \left(x \right)+F_{225}\! \left(x \right)\\ F_{225}\! \left(x \right) &= -F_{229}\! \left(x \right)+F_{226}\! \left(x \right)\\ F_{226}\! \left(x \right) &= \frac{F_{227}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{227}\! \left(x \right) &= F_{228}\! \left(x \right)\\ F_{228}\! \left(x \right) &= -F_{109}\! \left(x \right)+F_{219}\! \left(x \right)\\ F_{229}\! \left(x \right) &= F_{230}\! \left(x \right)+F_{232}\! \left(x \right)\\ F_{230}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{231}\! \left(x \right)\\ F_{231}\! \left(x \right) &= F_{110}\! \left(x \right)\\ F_{232}\! \left(x \right) &= -F_{265}\! \left(x \right)+F_{233}\! \left(x \right)\\ F_{233}\! \left(x \right) &= F_{234}\! \left(x \right)\\ F_{234}\! \left(x \right) &= -F_{239}\! \left(x \right)+F_{235}\! \left(x \right)\\ F_{235}\! \left(x \right) &= \frac{F_{236}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{236}\! \left(x \right) &= F_{237}\! \left(x \right)\\ F_{237}\! \left(x \right) &= -F_{238}\! \left(x \right)+F_{112}\! \left(x \right)\\ F_{238}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{164}\! \left(x \right)\\ F_{239}\! \left(x \right) &= F_{240}\! \left(x \right)+F_{263}\! \left(x \right)\\ F_{240}\! \left(x \right) &= F_{241}\! \left(x \right)+F_{257}\! \left(x \right)\\ F_{241}\! \left(x \right) &= F_{242}\! \left(x \right)\\ F_{242}\! \left(x \right) &= F_{243}\! \left(x \right) F_{40}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{243}\! \left(x \right) &= \frac{F_{244}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{244}\! \left(x \right) &= F_{245}\! \left(x \right)\\ F_{245}\! \left(x \right) &= F_{246}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{246}\! \left(x \right) &= F_{247}\! \left(x \right)\\ F_{247}\! \left(x \right) &= F_{21}\! \left(x \right) F_{248}\! \left(x \right) F_{40}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{248}\! \left(x \right) &= F_{249}\! \left(x \right)+F_{252}\! \left(x \right)\\ F_{249}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{250}\! \left(x \right)\\ F_{250}\! \left(x \right) &= F_{251}\! \left(x \right)\\ F_{251}\! \left(x \right) &= F_{249}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{252}\! \left(x \right) &= F_{253}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{253}\! \left(x \right) &= F_{254}\! \left(x \right)+F_{255}\! \left(x \right)+F_{256}\! \left(x \right)\\ F_{254}\! \left(x \right) &= 0\\ F_{255}\! \left(x \right) &= F_{250}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{256}\! \left(x \right) &= F_{252}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{257}\! \left(x \right) &= -F_{261}\! \left(x \right)+F_{258}\! \left(x \right)\\ F_{258}\! \left(x \right) &= \frac{F_{259}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{259}\! \left(x \right) &= F_{260}\! \left(x \right)\\ F_{260}\! \left(x \right) &= -F_{141}\! \left(x \right)+F_{108}\! \left(x \right)\\ F_{261}\! \left(x \right) &= F_{241}\! \left(x \right)+F_{262}\! \left(x \right)\\ F_{262}\! \left(x \right) &= F_{0}\! \left(x \right) F_{124}\! \left(x \right)\\ F_{263}\! \left(x \right) &= F_{264}\! \left(x \right)\\ F_{264}\! \left(x \right) &= F_{124}\! \left(x \right) F_{148}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{265}\! \left(x \right) &= F_{266}\! \left(x \right)\\ F_{266}\! \left(x \right) &= F_{267}\! \left(x \right) F_{271}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{267}\! \left(x \right) &= F_{268}\! \left(x \right)\\ F_{268}\! \left(x \right) &= F_{269}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{269}\! \left(x \right) &= \frac{F_{270}\! \left(x \right)}{F_{21}\! \left(x \right) F_{40}\! \left(x \right)}\\ F_{270}\! \left(x \right) &= F_{148}\! \left(x \right)\\ F_{271}\! \left(x \right) &= F_{272}\! \left(x \right)+F_{275}\! \left(x \right)\\ F_{272}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{273}\! \left(x \right)\\ F_{273}\! \left(x \right) &= F_{274}\! \left(x \right)\\ F_{274}\! \left(x \right) &= F_{248}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{275}\! \left(x \right) &= \frac{F_{276}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{276}\! \left(x \right) &= -F_{309}\! \left(x \right)+F_{277}\! \left(x \right)\\ F_{277}\! \left(x \right) &= -F_{280}\! \left(x \right)+F_{278}\! \left(x \right)\\ F_{278}\! \left(x \right) &= \frac{F_{279}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{279}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{280}\! \left(x \right) &= F_{281}\! \left(x \right)\\ F_{281}\! \left(x \right) &= F_{282}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{282}\! \left(x \right) &= \frac{F_{283}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{283}\! \left(x \right) &= F_{284}\! \left(x \right)\\ F_{284}\! \left(x \right) &= F_{285}\! \left(x \right)+F_{294}\! \left(x \right)\\ F_{285}\! \left(x \right) &= -F_{288}\! \left(x \right)+F_{286}\! \left(x \right)\\ F_{286}\! \left(x \right) &= \frac{F_{287}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{287}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{288}\! \left(x \right) &= F_{289}\! \left(x \right)+F_{294}\! \left(x \right)\\ F_{289}\! \left(x \right) &= F_{290}\! \left(x \right)\\ F_{290}\! \left(x \right) &= F_{291}\! \left(x \right)+F_{293}\! \left(x \right)\\ F_{291}\! \left(x \right) &= F_{292}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{292}\! \left(x \right) &= x^{2}\\ F_{293}\! \left(x \right) &= F_{40}\! \left(x \right) F_{59}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{294}\! \left(x \right) &= F_{295}\! \left(x \right)\\ F_{295}\! \left(x \right) &= F_{296}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{296}\! \left(x \right) &= F_{297}\! \left(x \right)+F_{303}\! \left(x \right)\\ F_{297}\! \left(x \right) &= F_{298}\! \left(x \right)+F_{302}\! \left(x \right)\\ F_{298}\! \left(x \right) &= F_{299}\! \left(x , 1\right)\\ F_{299}\! \left(x , y\right) &= F_{300}\! \left(x , y\right)+F_{46}\! \left(x \right)\\ F_{300}\! \left(x , y\right) &= F_{301}\! \left(x , y\right)\\ F_{301}\! \left(x , y\right) &= F_{145}\! \left(x \right) F_{79}\! \left(x , y\right) F_{80}\! \left(x , y\right) F_{81}\! \left(x , y\right)\\ F_{302}\! \left(x \right) &= F_{71}\! \left(x , 1\right)\\ F_{303}\! \left(x \right) &= F_{304}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{304}\! \left(x \right) &= F_{305}\! \left(x \right)+F_{307}\! \left(x \right)\\ F_{305}\! \left(x \right) &= F_{306}\! \left(x \right)\\ F_{306}\! \left(x \right) &= F_{145}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{307}\! \left(x \right) &= F_{308}\! \left(x \right)\\ F_{308}\! \left(x \right) &= F_{40} \left(x \right)^{2} F_{145}\! \left(x \right) F_{59}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{309}\! \left(x \right) &= F_{310}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{310}\! \left(x \right) &= F_{273}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{311}\! \left(x \right) &= F_{218}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{312}\! \left(x \right) &= F_{313}\! \left(x \right)\\ F_{313}\! \left(x \right) &= F_{314}\! \left(x \right) F_{40}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{314}\! \left(x \right) &= \frac{F_{315}\! \left(x \right)}{F_{17}\! \left(x \right) F_{40}\! \left(x \right)}\\ F_{315}\! \left(x \right) &= F_{316}\! \left(x \right)\\ F_{316}\! \left(x \right) &= -F_{331}\! \left(x \right)+F_{317}\! \left(x \right)\\ F_{317}\! \left(x \right) &= F_{318}\! \left(x \right)+F_{320}\! \left(x \right)\\ F_{318}\! \left(x \right) &= F_{319}\! \left(x \right)\\ F_{319}\! \left(x \right) &= F_{18}\! \left(x \right) F_{40}\! \left(x \right) F_{93}\! \left(x \right)\\ F_{320}\! \left(x \right) &= -F_{328}\! \left(x \right)+F_{321}\! \left(x \right)\\ F_{321}\! \left(x \right) &= -F_{324}\! \left(x \right)+F_{322}\! \left(x \right)\\ F_{322}\! \left(x \right) &= \frac{F_{323}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{323}\! \left(x \right) &= F_{285}\! \left(x \right)\\ F_{324}\! \left(x \right) &= F_{325}\! \left(x \right)+F_{326}\! \left(x \right)\\ F_{325}\! \left(x \right) &= F_{4} \left(x \right)^{2}\\ F_{326}\! \left(x \right) &= F_{327}\! \left(x \right)\\ F_{327}\! \left(x \right) &= F_{18}\! \left(x \right) F_{224}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{328}\! \left(x \right) &= F_{318}\! \left(x \right)+F_{329}\! \left(x \right)\\ F_{329}\! \left(x \right) &= F_{330}\! \left(x \right)\\ F_{330}\! \left(x \right) &= F_{18}\! \left(x \right) F_{40}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{331}\! \left(x \right) &= -F_{332}\! \left(x \right)+F_{208}\! \left(x \right)\\ F_{332}\! \left(x \right) &= F_{0}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{333}\! \left(x \right) &= F_{334}\! \left(x \right)\\ F_{334}\! \left(x \right) &= F_{154}\! \left(x \right) F_{18}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{335}\! \left(x , y\right) &= F_{336}\! \left(x , y\right)\\ F_{336}\! \left(x , y\right) &= F_{337}\! \left(x , y\right) F_{59}\! \left(x \right)\\ F_{337}\! \left(x , y\right) &= y F_{338}\! \left(x \right)\\ F_{338}\! \left(x \right) &= F_{339}\! \left(x \right)\\ F_{339}\! \left(x \right) &= F_{340}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{340}\! \left(x \right) &= F_{213}\! \left(x \right)+F_{341}\! \left(x \right)\\ F_{341}\! \left(x \right) &= F_{342}\! \left(x \right)\\ F_{342}\! \left(x \right) &= F_{213}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{343}\! \left(x , y\right) &= F_{344}\! \left(x \right)+F_{345}\! \left(x , y\right)\\ F_{344}\! \left(x \right) &= F_{16}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{345}\! \left(x , y\right) &= F_{346}\! \left(x , y\right) F_{59}\! \left(x \right)\\ F_{346}\! \left(x , y\right) &= y F_{347}\! \left(x \right)\\ F_{347}\! \left(x \right) &= \frac{F_{348}\! \left(x \right)}{F_{40}\! \left(x \right)}\\ F_{348}\! \left(x \right) &= F_{338}\! \left(x \right)\\ \end{align*}\)