Av(1234, 1342, 1423, 2314, 2341, 3124)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(-1+\sqrt{1-4 x}\right) \left(3 x^{2}-3 x +1\right)}{2 x \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 18, 53, 159, 495, 1600, 5333, 18194, 63167, 222294, 790797, 2838452, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x -1\right)^{6} F \left(x \right)^{2}+\left(3 x^{2}-3 x +1\right) \left(x -1\right)^{3} F \! \left(x \right)+\left(3 x^{2}-3 x +1\right)^{2} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 18\)
\(\displaystyle a \! \left(n +4\right) = -\frac{6 \left(3+2 n \right) a \! \left(n \right)}{5+n}+\frac{9 \left(5+3 n \right) a \! \left(1+n \right)}{5+n}-\frac{2 \left(29+11 n \right) a \! \left(n +2\right)}{5+n}+\frac{2 \left(15+4 n \right) a \! \left(n +3\right)}{5+n}+\frac{n -1}{5+n}, \quad n \geq 5\)

This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 30 rules.

Found on July 23, 2021.

Finding the specification took 12 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 30 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{13}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x , 1\right)\\ F_{8}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{8}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= y x\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{13}\! \left(x \right)\\ F_{12}\! \left(x , y\right) &= \frac{y F_{8}\! \left(x , y\right)-F_{8}\! \left(x , 1\right)}{-1+y}\\ F_{13}\! \left(x \right) &= x\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{13}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x , 1\right)\\ F_{18}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)+F_{22}\! \left(x , y\right)\\ F_{19}\! \left(x , y\right) &= F_{20}\! \left(x , y\right)+F_{5}\! \left(x \right)\\ F_{20}\! \left(x , y\right) &= F_{21}\! \left(x , y\right)\\ F_{21}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{18}\! \left(x , y\right)\\ F_{22}\! \left(x , y\right) &= F_{23}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{24}\! \left(x , y\right)\\ F_{24}\! \left(x , y\right) &= \frac{y F_{18}\! \left(x , y\right)-F_{18}\! \left(x , 1\right)}{-1+y}\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27} \left(x \right)^{2} F_{28}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{13}\! \left(x \right) F_{27}\! \left(x \right)\\ \end{align*}\)