Av(1234, 1324, 1342, 1423, 2314, 3124)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(\frac{\left(x -1\right)^{2} \sqrt{-4 x +1}}{2}+\left(x^{2}+1\right) \left(x -\frac{1}{2}\right)\right) \left(x -1\right)^{2}}{x \left(x^{5}-2 x^{3}+5 x^{2}-4 x +1\right)}\)
Counting Sequence
1, 1, 2, 6, 18, 54, 167, 534, 1755, 5896, 20167, 70014, 246105, 874175, 3132871, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x^{5}-2 x^{3}+5 x^{2}-4 x +1\right) F \left(x \right)^{2}+\left(2 x -1\right) \left(x^{2}+1\right) \left(x -1\right)^{2} F \! \left(x \right)+\left(x -1\right)^{4} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 18\)
\(\displaystyle a \! \left(5\right) = 54\)
\(\displaystyle a \! \left(6\right) = 167\)
\(\displaystyle a \! \left(n +7\right) = -\frac{2 \left(2 n +3\right) a \! \left(n \right)}{8+n}+\frac{\left(5 n +29\right) a \! \left(1+n \right)}{8+n}+\frac{\left(7 n +4\right) a \! \left(n +2\right)}{8+n}-\frac{2 \left(15 n +44\right) a \! \left(n +3\right)}{8+n}+\frac{\left(43 n +185\right) a \! \left(n +4\right)}{8+n}-\frac{\left(162+29 n \right) a \! \left(n +5\right)}{8+n}+\frac{\left(9 n +61\right) a \! \left(n +6\right)}{8+n}, \quad n \geq 7\)

This specification was found using the strategy pack "Row And Col Placements Tracked Fusion" and has 19 rules.

Found on July 23, 2021.

Finding the specification took 13 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 19 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{14}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{14}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x , 1\right)\\ F_{8}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{0}\! \left(x \right)+F_{10}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{8}\! \left(x , y\right)\\ F_{11}\! \left(x , y\right) &= y x\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{14}\! \left(x \right)\\ F_{13}\! \left(x , y\right) &= \frac{y F_{8}\! \left(x , y\right)-F_{8}\! \left(x , 1\right)}{-1+y}\\ F_{14}\! \left(x \right) &= x\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17} \left(x \right)^{2} F_{0}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{14}\! \left(x \right) F_{17}\! \left(x \right)\\ \end{align*}\)