Av(1234, 1243, 1342, 2134, 2314, 2341)
View Raw Data
Generating Function
\(\displaystyle \frac{-\sqrt{-4 x +1}\, x^{2}+3 x^{2}+\sqrt{-4 x +1}-1}{2 \left(x -1\right) x}\)
Counting Sequence
1, 1, 2, 6, 18, 55, 173, 560, 1858, 6291, 21657, 75581, 266797, 950911, 3417339, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x -1\right)^{2} F \left(x \right)^{2}-\left(x -1\right) \left(3 x^{2}-1\right) F \! \left(x \right)+x^{4}+2 x^{3}-2 x^{2}-x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 18\)
\(\displaystyle a \! \left(n +2\right) = \frac{2 \left(-1+2 n \right) a \! \left(n \right)}{n +3}+\frac{\left(5+3 n \right) a \! \left(n +1\right)}{n +3}+\frac{6 n}{n +3}, \quad n \geq 5\)

This specification was found using the strategy pack "Row And Col Placements Req Corrob Expand Verified" and has 23 rules.

Found on January 21, 2022.

Finding the specification took 22 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 23 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{12}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{12}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= \frac{F_{7}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{7}\! \left(x \right) &= -F_{1}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x , 1\right)\\ F_{15}\! \left(x , y\right) &= \frac{y F_{16}\! \left(x , y\right)-F_{16}\! \left(x , 1\right)}{-1+y}\\ F_{16}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y\right)+F_{19}\! \left(x , y\right)\\ F_{17}\! \left(x , y\right) &= F_{16}\! \left(x , y\right) F_{18}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= y x\\ F_{19}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{15}\! \left(x , y\right)\\ F_{20}\! \left(x \right) &= -F_{8}\! \left(x \right)+F_{3}\! \left(x \right)\\ F_{21}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{22}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{12}\! \left(x \right) F_{6}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "All The Strategies 2 Expand Verified" and has 26 rules.

Found on January 21, 2022.

Finding the specification took 27 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 26 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{7}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= x\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x , 1\right)\\ F_{12}\! \left(x , y\right) &= -\frac{-y F_{13}\! \left(x , y\right)+F_{13}\! \left(x , 1\right)}{-1+y}\\ F_{13}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x , y\right)+F_{16}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{15}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= y x\\ F_{16}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{9}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{23}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{19}\! \left(x \right) &= \frac{F_{20}\! \left(x \right)}{F_{9}\! \left(x \right)}\\ F_{20}\! \left(x \right) &= -F_{5}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= \frac{F_{22}\! \left(x \right)}{F_{9}\! \left(x \right)}\\ F_{22}\! \left(x \right) &= -F_{1}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{23}\! \left(x \right) F_{9}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Insertion Point Row And Col Placements Expand Verified" and has 33 rules.

Found on January 21, 2022.

Finding the specification took 17 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 33 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{7}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= x\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x , 1\right)\\ F_{12}\! \left(x , y\right) &= -\frac{-y F_{13}\! \left(x , y\right)+F_{13}\! \left(x , 1\right)}{-1+y}\\ F_{13}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x , y\right)+F_{16}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{15}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= y x\\ F_{16}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{9}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{21}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{21}\! \left(x \right) F_{27}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{27}\! \left(x \right) &= \frac{F_{28}\! \left(x \right)}{F_{9}\! \left(x \right)}\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= -F_{22}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= -F_{5}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= \frac{F_{32}\! \left(x \right)}{F_{9}\! \left(x \right)}\\ F_{32}\! \left(x \right) &= F_{6}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Expand Verified" and has 27 rules.

Found on January 21, 2022.

Finding the specification took 37 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 27 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{7}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= x\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x , 1\right)\\ F_{12}\! \left(x , y\right) &= -\frac{-y F_{13}\! \left(x , y\right)+F_{13}\! \left(x , 1\right)}{-1+y}\\ F_{13}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x , y\right)+F_{16}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{15}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= y x\\ F_{16}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{9}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{24}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{19}\! \left(x \right) &= \frac{F_{20}\! \left(x \right)}{F_{9}\! \left(x \right)}\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= -F_{5}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= \frac{F_{23}\! \left(x \right)}{F_{9}\! \left(x \right)}\\ F_{23}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{24}\! \left(x \right) F_{9}\! \left(x \right)\\ \end{align*}\)